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Last Time

Re-lighting
B Tone mapping




Today

Re-lighting: high dynamic range imaging
Full presentation schedule is online

1/8 sec @ f/16 1/2 sec @ {116 8 sec @ /16 30 sec @ /16
2sec @ /116
-4 stops -2 stops +2 stops +4 stops

Combine using
HDR software

Tone mapping

High dynamic range image 8-bit or 16-bit

(shown with linear scaling) tone mapped image



High dynamic range imaging

Digital Visual Effects
Yung-Yu Chuang

with slides by Fredo Durand, Brian Curless, Steve Seit, Paul Debevec and Alexei Efros



The world is high dynamic range D
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The world is high dynamic range
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Digil2x

Camera is an imperfect device

« Camera is an imperfect device for measuring
the radiance distribution of a scene because it
cannot capture the full spectral content and
dynamic range.

e Limitations in sensor desigh prevent cameras
from capturing all information passed by lens.



Camera pipeline Ve

Lens Shutter

scene sensor sensor
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Camera pipeline

Lens Shutter
scene sensor sensor
radiance — — irradiance — J —> exposure —»
(L) (E) (X)
CCD ADC Remapping

final

analog _ digital __ digital

' |; - voltages f!.r"_» values _rr,r'__.__ values
(4)

12 bits 8 bits




Camera pipeline

Lens Shutter
scene sensor sensor
radiance — — irradiance — J —> exposure —»
(L) (E) (X)
CCD ADC Remapping
final
analog _ digital __ digital
' |; - voltages f!.r"_» values _rr,r'__.__ values
(£)
\ 12 bits ) 8bits

v

Camera response



Real world dynamic range

e Eye can adapt from ~ 106 to 10® cd/m?
« Often1 : 100,000 in a scene
e Typical 1:50, max 1:500 for pictures

106 106
Realworld | | | | | | | 0 0
I

High dynamic range

spotmeter




Short exposure

10 dynamic range 10°
Realworld | | | | | | 1 1 L L 1]
radiance
10-6 106
Picture ] L1 ]

intensity




Long exposure

10 dynamic range 10°
Realworld | | | | | | 1 1 L L 1]
radiance
10-6 106
Picture | | | |

intensity




Camera is not a photometer

e Limited dynamic range

— Perhaps use multiple exposures?
e Unknown, nonlinear response

— Not possible to convert pixel values to radiance
e Solution:

- Recover response curve from multiple exposures,
then reconstruct the radiance map




Varying exposure

« Ways to change exposure
- Shutter speed
- Aperture
- Neutral density filters




Digil2x

Shutter speed

e Note: shutter times usually obey a power
series - each “stop” is a factor of 2

Va, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512,
1/1024 sec



Varying shutter speeds




HDRI capturing from multiple exposur@

o Capture images with multiple exposures

e Image alignment (even if you use tripod, it is
suggested to run alignment)

e Response curve recovery
e Ghost/flare removal



Image alighment

 We will introduce a fast and easy-to-implement
method for this task, called Median Threshold
Bitmap (MTB) alighment technique.

e Consider only integral translations. It is enough
empirically.

e The inputs are N grayscale images. (You can
either use the green channel or convert into
grayscale by Y=(54R+183G+19B)/256)

« MTB is a binary image formed by thresholding
the input image using the median of intensities.

Fast, Robust Image Registration for Compositing High Dynamic Range Photographs from Hand-Held Exposures .
Greg Ward. Journal of Graphics Tools






Why is MTB better than gradient? Digil/23
e Edge-detection filters are dependent on image
exposures

o Taking the difference of two edge bitmaps
would not give a good indication of where the

edges are misaligned.




Search for the optimal offset Digil/2

e Try all possible
offsets.

e Gradient descent
e Multiscale technique

e log(max_offset) levels

e Try 9 possibilities for
the top level

e Scale by 2 when
passing down; try its 9
neighbors




Threshold noise

ignore pixels that are
close to tf; .threshold
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Digi\{!

Results

Success rate = 84%. 10% failure due to rotation.
3% for excessive motion and 3% for too much
high-frequency content.

Unaligned HDR Aligned HDR



Recovering response curve

Lens Shutter
scene /] sensor sensor
radiance — — irradiance — J —> exposure —»
(L) (E) (X)
‘Zz'j = f(EiAtJ)‘
CCD ADC Remapping

final

analog _ digital __ digital

' |; - voltages f!.r"_» values _rr,r'__.__ values
(4)

12 bits 8 bits




. JIVFX
Recovering response curve e

« We want to obtain the inverse of the response
curve -
1.? — f(E Atj) _________________ f —————




Recovering response curve

Image series

At= At= At= At= At=
2 Sec 1 sec 1/2 sec 1/4 sec 1/8 sec
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Recovering response curve

Image series

At = At= At= At=
2 Sec 1 sec 1/2 sec 1/4 sec 1/8 sec
4&

In E; + In At;
f_l(Zij) = F; At;
In f~'(Zi;) = In Ei + In At;
let us define function ¢ = In f~!

g(Z?;j) —InE; +1In Atj




Idea behind the math RV FX

plot of g(Zi)) from three pixels observed in five images, assuming unit radiance at each pixel
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Idea behind the math RV FX

plot of g(Zi)) from three pixels observed in five iImages, assuming unit radiance at each pixel
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ldea behind the math

* (delta t)j)

log exposure (Ei

normalized plot of g(Zij) after determining pixel exposures
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Basic idea

e Design an objective function
e Optimize it



Digi\42.4

Math for recovering response curve

Z;j = f(E;Atj)
f 1s monotonic, it 1s invertible
In f~'(Zij) = InE; + In Aty
let us define function ¢ = In f~*
g9(Zij) = In E; 4+ 1In At;

minimize the following

N P Lmaa—1
O=> "> [g(Zy;) —mE —nAt; P+ X Y g"(2)°
i=1 j=1 2=Zmin+1

g"(2) = g(z—1)—2g(z) +g(z +1)



Recovering response curve

e The solution can be only up to a scale, add a
constraint
g(Zmid) = 0, where Z,, ;4 = %(Zmzn + Zma:c)
e Add a hat weighting function
( ) . 2 — Zmin for z S l(Zmin T Zma;r:)
A Zmam — & for z > §(Zmin T Zmam)

P
- -

Z

O {w(Zij) [g(Z-j,j) — In E@: — In Atj]}g +

A ﬂi [w(2)g” (2)]°

F=ZminTtl



Recovering response curve

e We want N(P — 1) > (Zmam — min)
If P=11, N~25 (typically 50 is used)

o We prefer that selected pixels are well
distributed and sampled from constant regions.
They picked points by hand.

e It is an overdetermined system of linear
equations and can be solved using SVD



How to optimize? D

O=> "> {w(Zy)[9(Z;) —mE: —In At;]}* +

1=1 yg=1
Zma-ffﬂ_l

Ay [w)g" )

2=Zmin+t1
1. Set partial derivatives zero

2. _al_ _bl_

N a
min > (a;x—b;)* — least - square solution of | * |x =
1=1 .




Matlab code

%

%

%

%

%

%

%

%

% Assumes:

%

% Zmin = 0
% Zmax = 255
%

% Arguments:
%

% Z(i,7) 1is
% B(73) is
5 1 is
5 wi(z) is
%

% Returns:

%

5 gl(z) is
% 1lE(i) 1is
%

gscolve.m - Solve for imaging system response function

Given a set of pixel values observed for several pixels in several
images with different exposure times, this function returns the

imaging system’s response function g as well as the log film irradiance
values for the observed pixels.

the pixel values of pixel location number i in image j

the log delta t, or log shutter speed, for image ]

lamdba, the constant that determines the amount of smoothness
the weighting function wvalue for pixel value =z

the log exposure corresponding to pixel value z
the log film irradiance at pixel location i




Matlab code

function [g,lE]=gsolve(Z,B,1,w)

256;
zeros (size(Z,1) *size(2,2)+n+1l ,n+size(2,1)) ;
zeros (size(A,1),1);

1; %% Include the data-fitting equations
or i=l:size(Z,1)

for j=l:size(Z,2)
wij = w(zZ(1i,3)+1);

Hh~® OB

A(k,Z2(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B( 3J):
k=k+1;
end
end
A(k,129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
A(k,i)=1*w(i+1l),; A(k,i+l)=-2*1*w(i+1l),; A(k,i+2)=1*w(i+1) ;
k=k+1;
end
x = A\b; $% Solve the system using SVD
g = x(1:n);

1E = x(n+l:size(x,1));



Recovered response function

log expomre X

Redidashed), Green (sdid) ard Bluz (dash—doted) arves




Digil2x

Constructing HDR radiance map

In E; — g(Zij) — In Atj

combine pixels to reduce noise and obtain a more
reliable estimation

S w(Zij)(9(Zij) — In At;)

In Et — D
D i— w(Zij)




Reconstructed radiance map

Digi\{!




What is this for? Digil[34

« Human perception
e Vision/graphics applications




Tone Mapping

W/sr/m2
121,741
28.869

Reprint from [Debevec and Malik 97]




Student paper presentation

Robust color-to-gray via
nonlinear global mapping

Yongjin Kim, Cheolhun Jang

Julien Demouth, and Seungyong Lee
SIGGRAPH ASIA 2009

Presenter. Chen, Ray

44



Next Time

Panorama

Student paper presentations
B 04/21: Nguyen, Henry

[1 Colorization Using Optimization
A. Levin, D. Lischinski, and Y. Weiss
SIGGRAPH 2004

B 04/21:. Gerendasy, Daniel R.

0 Color harmonization
D. Cohen-Or, O. Sorkine, R. Gal, T. Leyv, and, Y. Xu
ACM SIGGRAPH 2006
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