Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

04/19/2022

Last Time

Re-lighting

Tone mapping

Today

Re-lighting: high dynamic range imaging Full presentation schedule is online

High dynamic range imaging

Digital Visual Effects Yung-Yu Chuang

with slides by Fredo Durand, Brian Curless, Steve Seitz, Paul Debevec and Alexei Efros

The world is high dynamic range

DigiVFX

The world is high dynamic range

Camera is an imperfect device

- Camera is an imperfect device for measuring the radiance distribution of a scene because it cannot capture the full spectral content and dynamic range.
- Limitations in sensor design prevent cameras from capturing all information passed by lens.

Camera pipeline

Camera pipeline

DigiVF)

Camera pipeline

Real world dynamic range

- Digi<mark>VFX</mark>
- Eye can adapt from ~ 10^{-6} to $10^{6}\ cd/m^{2}$
- Often 1 : 100,000 in a scene
- Typical 1:50, max 1:500 for pictures

Short exposure

Long exposure

Camera is not a photometer

- Limited dynamic range
 ⇒ Perhaps use multiple exposures?
- Unknown, nonlinear response
 ⇒ Not possible to convert pixel values to radiance
- Solution:
 - Recover response curve from multiple exposures, then reconstruct the *radiance map*

Varying exposure

- Ways to change exposure
 - Shutter speed
 - Aperture
 - Neutral density filters

 Note: shutter times usually obey a power series - each "stop" is a factor of 2

¹/₄, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Digi<mark>VFX</mark>

Varying shutter speeds

HDRI capturing from multiple exposures

- Capture images with multiple exposures
- Image alignment (even if you use tripod, it is suggested to run alignment)
- Response curve recovery
- Ghost/flare removal

Image alignment

- We will introduce a fast and easy-to-implement method for this task, called Median Threshold Bitmap (MTB) alignment technique.
- Consider only integral translations. It is enough empirically.
- The inputs are N grayscale images. (You can either use the green channel or convert into grayscale by Y=(54R+183G+19B)/256)
- MTB is a binary image formed by thresholding the input image using the median of intensities.

Fast, Robust Image Registration for Compositing High Dynamic Range Photographs from Hand-Held Exposures . Greg Ward. Journal of Graphics Tools

MTB

Edge map

Why is MTB better than gradient?

- Edge-detection filters are dependent on image exposures
- Taking the difference of two edge bitmaps would not give a good indication of where the edges are misaligned.

Search for the optimal offset

- Try all possible offsets.
- Gradient descent
- Multiscale technique
- log(max_offset) levels
- Try 9 possibilities for the top level
- Scale by 2 when passing down; try its 9 neighbors

Threshold noise

Results

Success rate = 84%. 10% failure due to rotation. 3% for excessive motion and 3% for too much high-frequency content.

Unaligned HDR

Aligned HDR

Recovering response curve

DigiVF)

DigiVFX

Recovering response curve

• We want to obtain the inverse of the response curve 255 $Z_{ij} = f(E_i \Delta t_j)$ Z_{ij} $E_i \Delta t_j$

Recovering response curve

Image series

Recovering response curve

Image series

Idea behind the math

Idea behind the math

Idea behind the math

Basic idea

- Design an objective function
- Optimize it

Math for recovering response curve

$$Z_{ij} = f(E_i \Delta t_j)$$

f is monotonic, it is invertible

 $\ln f^{-1}(Z_{ij}) = \ln E_i + \ln \Delta t_j$ let us define function $g = \ln f^{-1}$

$$g(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

minimize the following

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \left[g(Z_{ij}) - \ln E_i - \ln \Delta t_j \right]^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} g''(z)^2$$
$$g''(z) = g(z-1) - 2g(z) + g(z+1)$$

Recovering response curve

• The solution can be only up to a scale, add a constraint

 $g(Z_{mid}) = 0$, where $Z_{mid} = \frac{1}{2}(Z_{min} + Z_{max})$

• Add a hat weighting function

 $z = Z_{min} + 1$

$$w(z) = \begin{cases} z - Z_{min} & \text{for } z \leq \frac{1}{2}(Z_{min} + Z_{max}) \\ Z_{max} - z & \text{for } z > \frac{1}{2}(Z_{min} + Z_{max}) \end{cases}$$
$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 + \sum_{i=1}^{Z_{max} - 1} [w(z)g''(z)]^2$$

Recovering response curve

- We want $N(P-1) > (Z_{max} Z_{min})$ If P=11, N~25 (typically 50 is used)
- We prefer that selected pixels are well distributed and sampled from constant regions. They picked points by hand.
- It is an overdetermined system of linear equations and can be solved using SVD

How to optimize?

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

Set partial derivatives zero
 2.

$$\min \sum_{i=1}^{N} (\mathbf{a}_{i}\mathbf{x} - \mathbf{b}_{i})^{2} \rightarrow \text{least - square solution of}$$

$$\begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_N \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_N \end{bmatrix}$$

Matlab code


```
÷
 gsolve.m - Solve for imaging system response function
%
%
% Given a set of pixel values observed for several pixels in several
 images with different exposure times, this function returns the
 imaging system's response function g as well as the log film irradiance
% values for the observed pixels.
%
%
 Assumes:
%
%
  Zmin = 0
  Zmax = 255
%
%
% Arguments:
%
%
  Z(i,j) is the pixel values of pixel location number i in image j
         is the log delta t, or log shutter speed, for image j
÷
  B(j)
%
          is lamdba, the constant that determines the amount of smoothness
   1
         is the weighting function value for pixel value z
÷
  w(z)
%
%
 Returns:
%
%
  g(z) is the log exposure corresponding to pixel value z
%
  lE(i) is the log film irradiance at pixel location i
%
```

Matlab code


```
function [q,lE]=gsolve(Z,B,l,w)
n = 256;
A = \operatorname{zeros}(\operatorname{size}(Z,1) \times \operatorname{size}(Z,2) + n + 1, n + \operatorname{size}(Z,1));
b = zeros(size(A,1),1);
k = 1;
                       %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(j);
    k=k+1;
  end
end
A(k, 129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
  A(k,i) = 1*w(i+1); A(k,i+1) = -2*1*w(i+1); A(k,i+2) = 1*w(i+1);
  k=k+1;
end
x = A b;
                       %% Solve the system using SVD
q = x(1:n);
lE = x(n+1:size(x,1));
```

Recovered response function

$$\ln E_i = g(Z_{ij}) - \ln \Delta t_j$$

combine pixels to reduce noise and obtain a more reliable estimation

$$\ln E_{i} = \frac{\sum_{j=1}^{P} w(Z_{ij})(g(Z_{ij}) - \ln \Delta t_{j})}{\sum_{j=1}^{P} w(Z_{ij})}$$

Reconstructed radiance map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

What is this for?

- Human perception
- Vision/graphics applications

Tone Mapping

Reprint from [Debevec and Malik 97]

Robust color-to-gray via nonlinear global mapping

Yongjin Kim, Cheolhun Jang Julien Demouth, and Seungyong Lee SIGGRAPH ASIA 2009

Presenter: Chen, Ray

Next Time

Panorama

Student paper presentations

- 04/21: Nguyen, Henry
 - Colorization Using Optimization A. Levin, D. Lischinski, and Y. Weiss SIGGRAPH 2004
 - 04/21: Gerendasy, Daniel R.

Color harmonization D. Cohen-Or, O. Sorkine, R. Gal, T. Leyv, and, Y. Xu ACM SIGGRAPH 2006