Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

04/21/2022

Last Time

Re-lightingHDR

Today

Panorama

- Overview
- Feature detection

Panorama Building: History

Along the River During Ching Ming Festival by Z.D Zhang (1085-1145)

San Francisco from Rincon Hill, 1851, by Martin Behrmanx

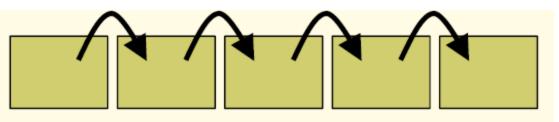
Panorama Building: A Concise History

The state of the art and practice is good at assembling images into panoramas

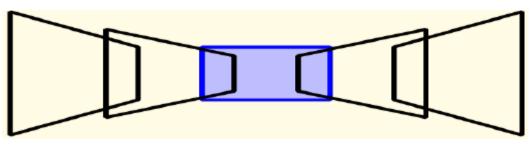
- Mid 90s -Commercial Players (e.g. QuicktimeVR)
- Late 90s -Robust stitchers (in research)
- Early 00s -Consumer stitching common
- Mid 00s -Automation

Stitching Recipe

□ Align pairs of images



□ Align all to a common frame

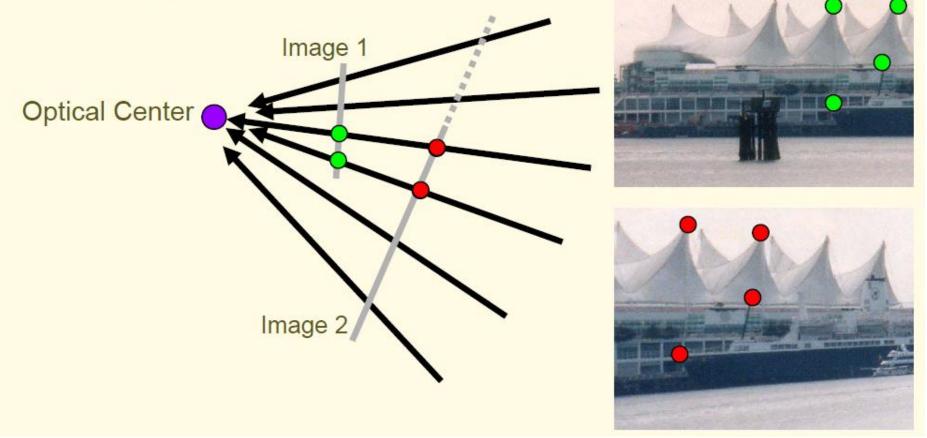


Adjust (Global) & Blend

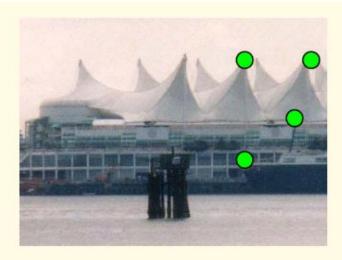
Stitching Images Together

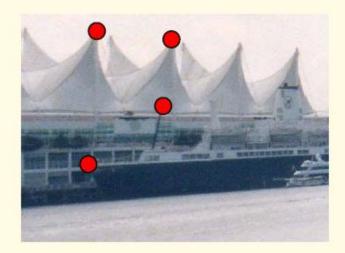
When do two images "stitch"?

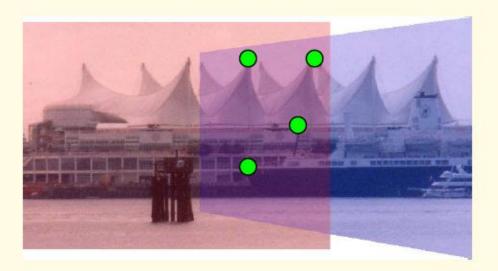
Images taken from the same viewpoint are related



Images can be transformed to match





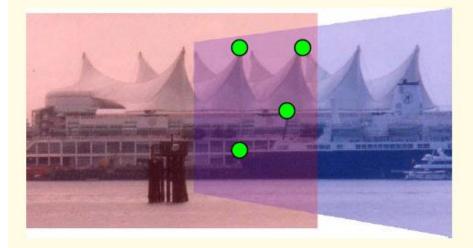


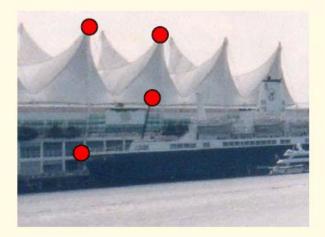
Images are related by *Homographies*

8 parameter, 2D Image Transformation

$$x', y' = \frac{ax + by + c}{gx + hy + 1}, \frac{dx + ey + f}{gx + hy + 1}$$

$$\begin{bmatrix} wx \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$





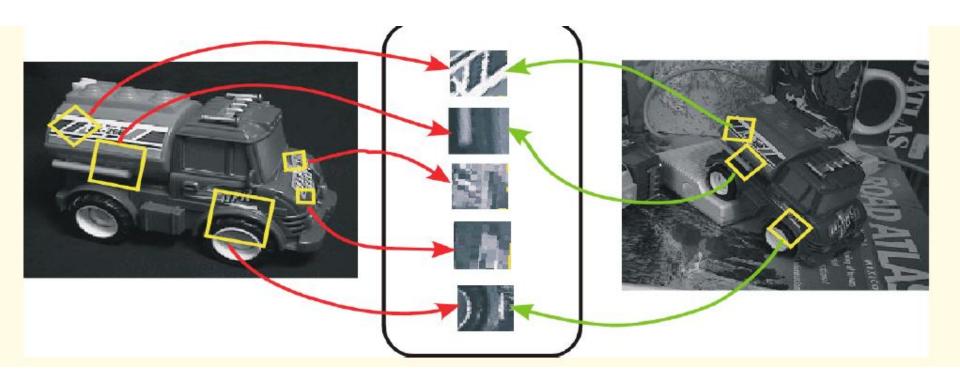
Compute Homographies

- Find Corresponding Features^{*}
- Compute Best-Fit Homography (using robust statistics e.g. RANSAC)

- Two images stitch if and only if the best fit homography is a good fit
- If the best fit homography is a bad fit, the resulting panorama will be bad.

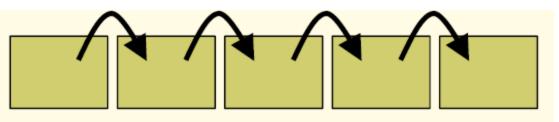
Automatic Feature Points Matching

- Match local neighborhoods around points
- □ Use descriptors to efficiently compare SIFT
 - [Lowe 04] most common choice

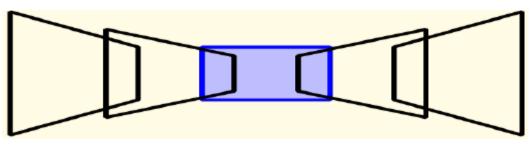


Stitching Recipe

□ Align pairs of images



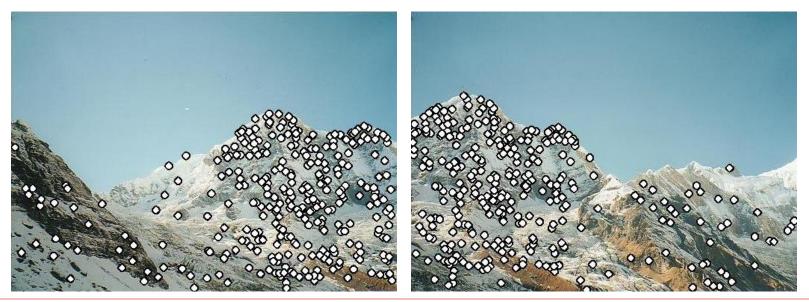
□ Align all to a common frame



Adjust (Global) & Blend

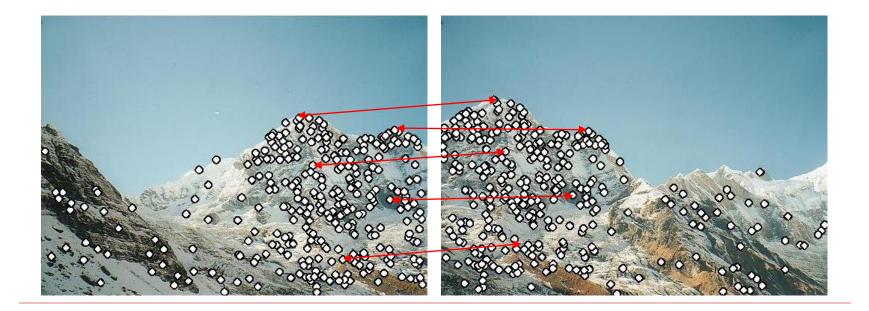
Wide Baseline Matching

- Images taken by cameras that are far apart make the correspondence problem very difficult
- Feature-based approach: Detect and match feature points in pairs of images



Matching with Features

- Detect feature points
- Find corresponding pairs



Matching with Features

Problem 1:

Detect the same point independently in both images

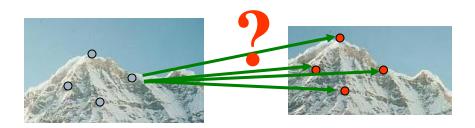
no chance to match!

We need a **repeatable detector**

Matching with Features

Problem 2:

For each point correctly recognize the corresponding point



We need a reliable and distinctive **descriptor**

Properties of an Ideal Feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation)
- Invariant (or covariant) to many kinds of geometric and photometric transformations
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature
- Distinctive: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- □ Accurate: precise localization
- **Efficient:** close to real-time performance

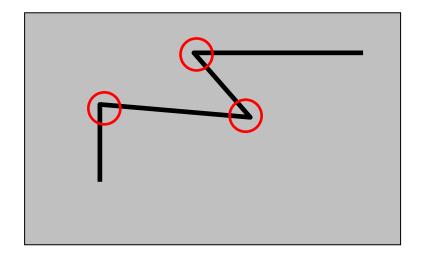
Problem 1: Detecting Good Feature Points

[Image from T. Tuytelaars ECCV 2006 tutorial]

Feature Detectors

- Hessian
- Harris
- □ Lowe: SIFT (DoG)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
- Others

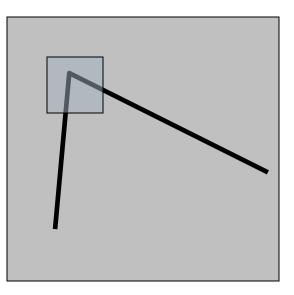
Harris Corner Point Detector



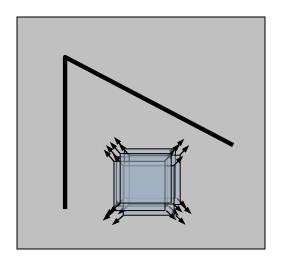
C. Harris, M. Stephens, "A Combined Corner and Edge Detector," 1988

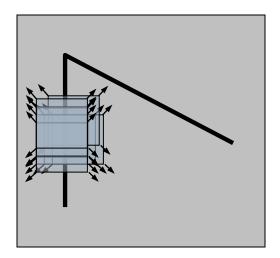
Harris Detector: Basic Idea

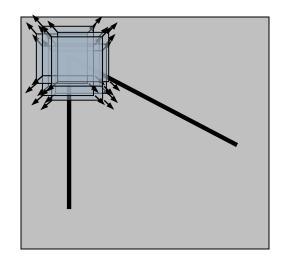
- We should recognize the point by looking through a small window
- Shifting a window in *any direction* should give a *large change* in response



Harris Detector: Basic Idea







"flat" region: no change in all directions "edge":

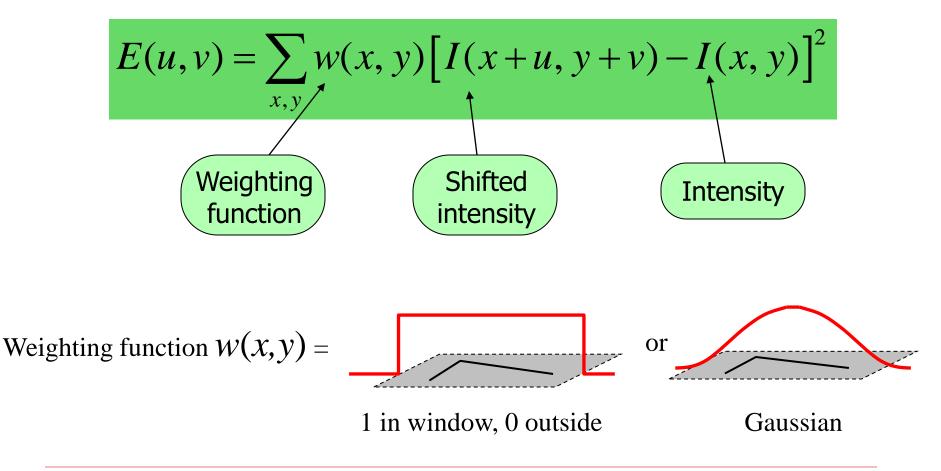
no change along the edge direction

"corner":

significant change in *all* directions

Harris Detector: Derivation

Change of intensity for a (small) shift by [*u*,*v*] in image *I*:



Credit: R. Szeliski

Calculus: Taylor Series Expansion

A real function f(x+u) can be approximated as the 2nd order of its Taylor series expansion at a point x.

$$f(x + u) = f(x) + uf'(x) + O(u^2)$$

Derivatives

For 1D function f(x), the derivative is:

$$\frac{\partial f(x)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

Derivatives

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

-1

 $\frac{\partial f(x, y)}{\partial x}$ $\frac{\partial f(x, y)}{\partial y}$ -1 1 or -1 1

Which shows changes with respect to x?

Source: S. Lazebnik

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Image gradient

The gradient of an image: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$ $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$ $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$ $\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Harris Detector

Apply 2nd order Taylor series expansion:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$
$$= \sum_{x,y} w(x,y) [I_{x}u + I_{y}v + O(u^{2},v^{2})]^{2}$$

$$E(u,v) = Au^{2} + 2Cuv + Bv^{2}$$

$$A = \sum_{x,y} w(x,y)I_{x}^{2}(x,y)$$

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & C \\ C & B \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$B = \sum_{x,y} w(x,y)I_{y}^{2}(x,y)$$

$$I_{x} = \partial I(x,y)/\partial x$$

$$I_{y} = \partial I(x,y)/\partial y$$

Credit: R. Szeliski

Harris Corner Detector

Expanding E(u,v) in a 2nd order Taylor series, we have, for small shifts, [*u*,*v*], a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u\\v \end{bmatrix}$$

where **M** is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} I_x = \partial I(x,y) / \partial x \\ I_y = \partial I(x,y) / \partial y \end{bmatrix}$$

 $=\partial I(x, y)/\partial y$

Note: Sum computed over small neighborhood around given pixel

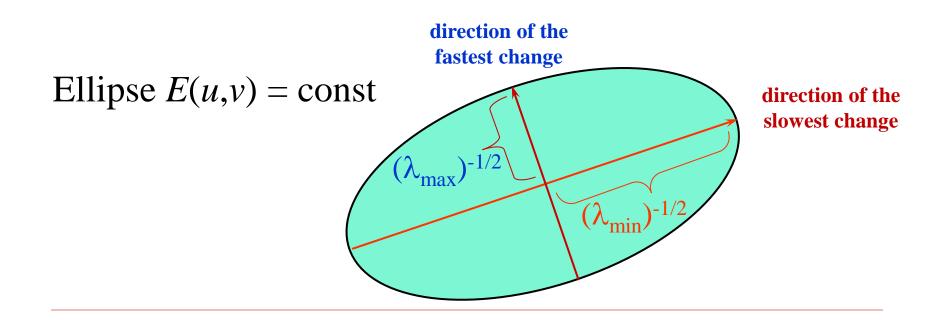
Credit: R. Szeliski

Harris Corner Detector

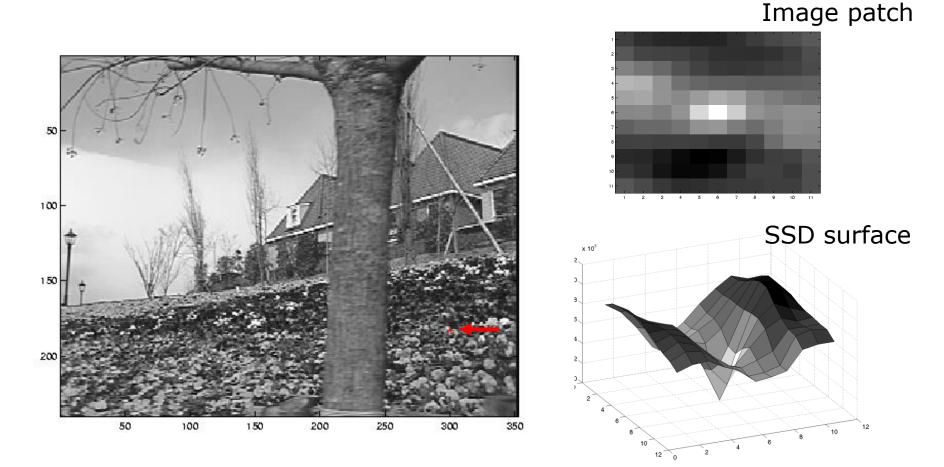
Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u\\v \end{bmatrix}$$

$$\lambda_1, \ \lambda_2 \ - \ eigenvalues \ of \ M$$

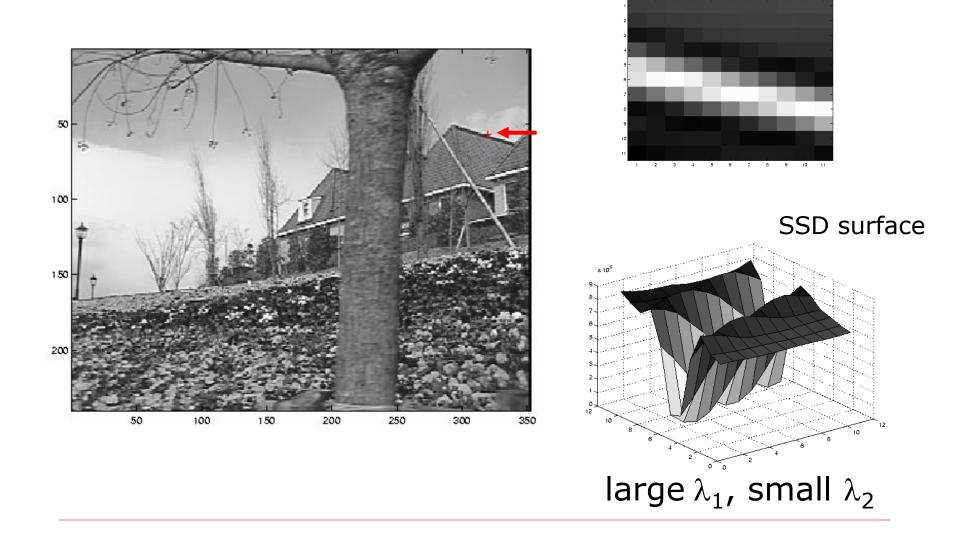


Selecting Good Features

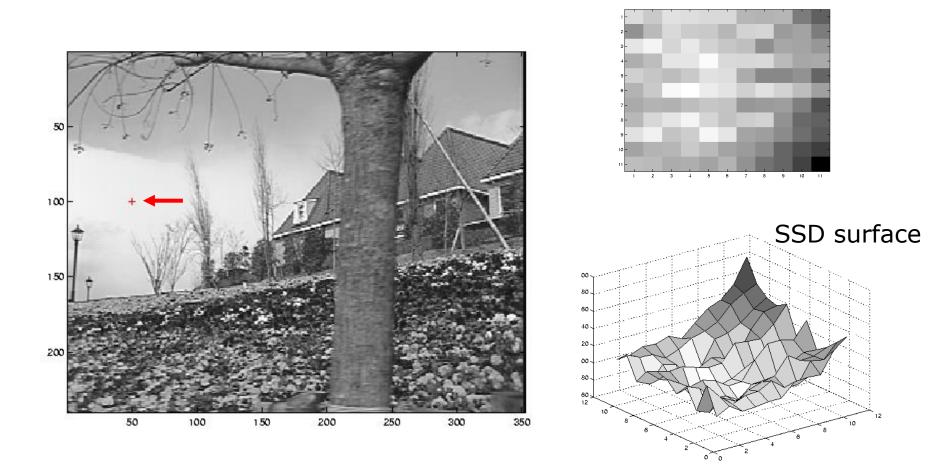


 λ_1 and λ_2 both large

Selecting Good Features

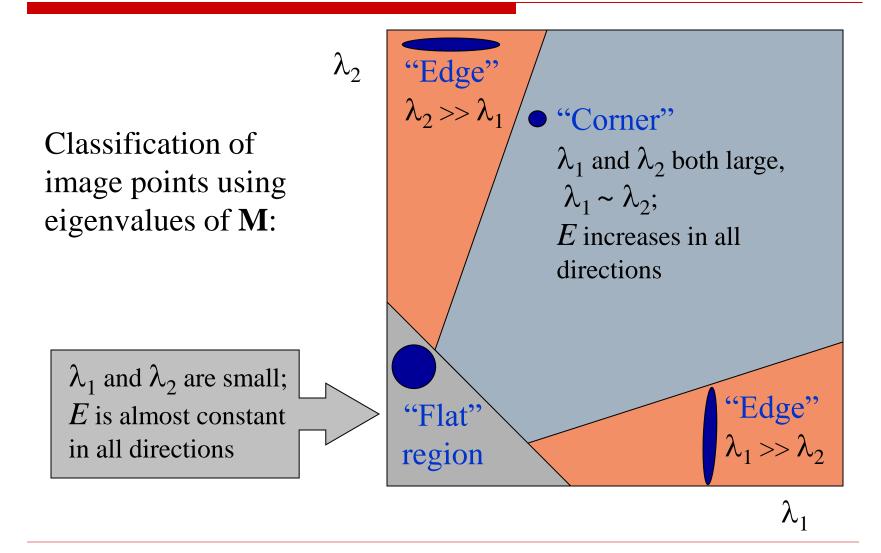


Selecting Good Features



small λ_1 , small λ_2

Harris Corner Detector



Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

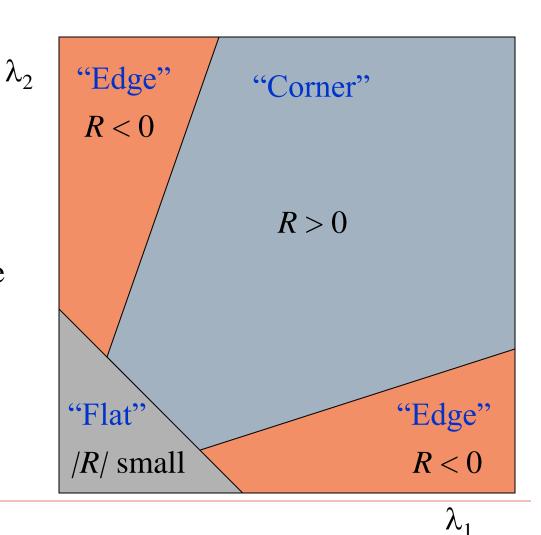
$$\det M = \lambda_1 \lambda_2$$

trace $M = \lambda_1 + \lambda_2$

k is an empirically-determined constant; e.g., k = 0.05

Harris Corner Detector

- *R* depends only on eigenvalues of **M**
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |*R*| is small for a flat region



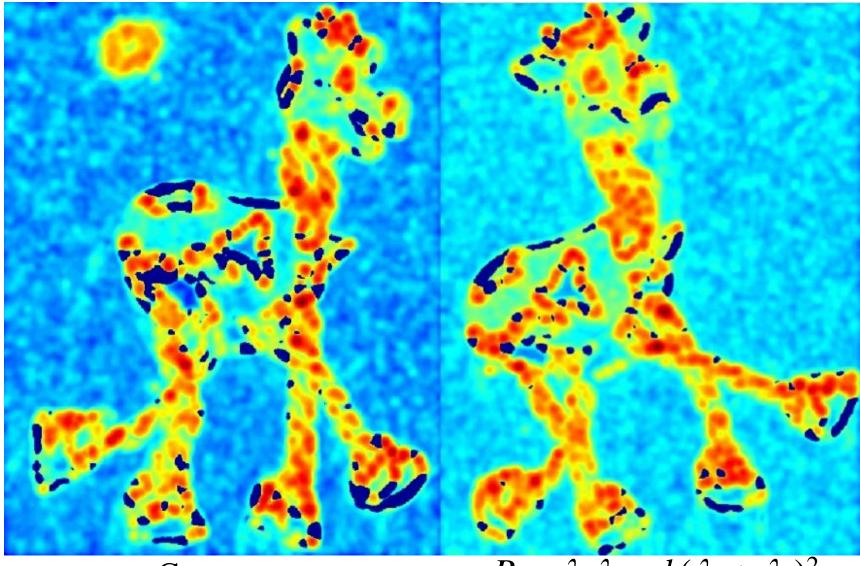
Harris Corner Detector: Algorithm

□ Algorithm:

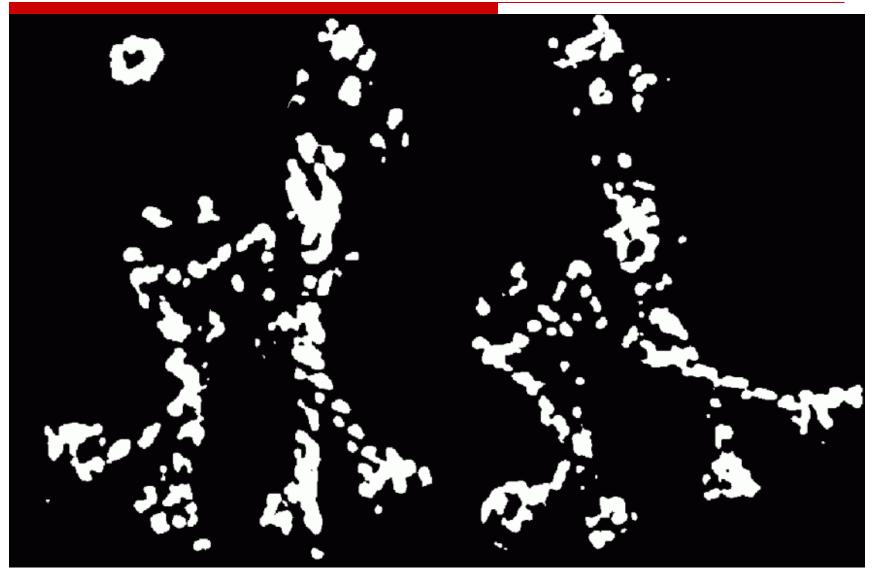
1. Find points with large corner response function *R*

(i.e., *R* > threshold)

2. Take the points of local maxima of *R* (for localization) by non-maximum suppression



Credit: C. Dyer Compute corner response $R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$



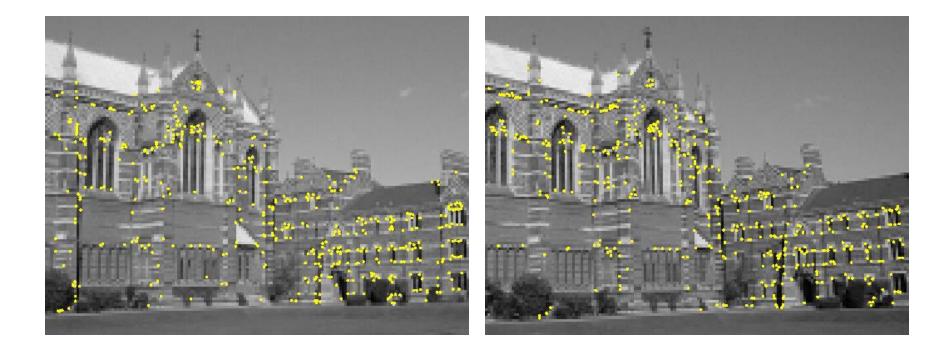
Credit: C. Dyer Find points with large corner response: R > threshold

· · · ·

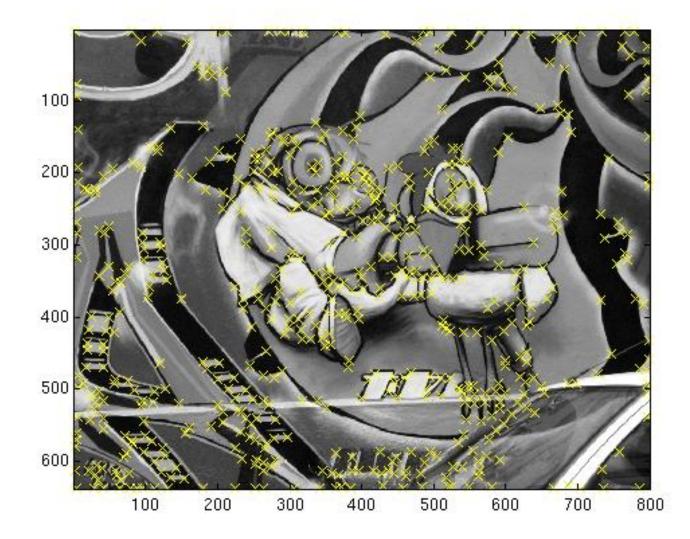
•

.

Credit: C. Dyer Take only the points of local maxima of R



Interest points extracted with Harris (~ 500 points)



Harris Detector: Summary

Average intensity change in direction [*u*, *v*] can be expressed in bilinear form:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u\\v \end{bmatrix}$$

Describe a point in terms of eigenvalues of M: measure of corner response:

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2$$

A good (corner) point should have a *large intensity change* in *all directions*, i.e., *R* should be a large positive value

Student paper presentation

Color harmonization

D. Cohen-Or, O. Sorkine, R. Gal, T. Leyv, and, Y. Xu ACM SIGGRAPH 2006

Presenter: Gerendasy, Daniel R

Colorization Using Optimization

A. Levin, D. Lischinski, and Y. Weiss ACM SIGGRAPH 2004

Presenter: Nguyen, Henry

Next Time

Panorama

- Feature and matching
- Student paper presentations
 - 04/26: Li, Chi G
 - Color Conceptualization
 X. Hou and L. Zhang, ACM Multimedia 2007
 - 04/26: Liu, Jiawei
 - Photographic tone reproduction for digital images E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, SIGGRAPH 2012