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ABSTRACT
Low-quality videos often not only have limited resolution,
but also suffer from noise. Directly up-sampling a video
without considering noise could deteriorate its visual quality
due to magnifying noise. This paper addresses this prob-
lem with a unified framework that achieves simultaneous
de-noising and super-resolution. This framework formulates
noisy video super-resolution as an optimization problem,
aiming to maximize the visual quality of the result. We con-
sider a good quality result to be fidelity-preserving, detail-
preserving and smooth. Accordingly, we propose measures
for these qualities in the scenario of de-noising and super-
resolution. The experiments on a variety of noisy videos
demonstrate the effectiveness of the presented algorithm.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations

General Terms
Algorithms

1. INTRODUCTION
Super-resolution is the problem of creating high-resolution

(HR) images from low-resolution (LR) inputs. Many meth-
ods have been presented on this topic as surveyed in [4], [17]
and [7]. This paper focuses on generating a HR video from
a single LR input. For this special purpose, most existing
methods can be categorized into two classes: reconstruction-
based methods and learning-based methods. Reconstruc-
tion based methods assume a simplified continuous imaging
process, under which LR images are created, and usually
formulate the imaging process as a linear system. Many
methods, such as maximum likelihood [22], a maximum a
posteriori [19] and projection onto convex sets [20], have
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(a) Bicubic ×3 (b) Ours ×3

Figure 1: Motivating example. Super resolution can
amplify noise. For example, (a) shows a noisy result
created by using bi-cubic interpolation to up-sample
the image indicated by the red rectangle in (a). Our
algorithm achieves de-noising and super-resolution
simultaneously.

been presented to solve the linear system for the HR re-
sult. Reconstruction-based methods require the LR input
to form a good sampling of HR one to obtain a good result.
Assisted with special hardware, these methods can achieve
compelling results [1, 12]. However, most videos are cap-
tured by regular devices. Learning-based super-resolution
methods have recently provided attractive results(c.f. [8, 3,
6, 15]). These methods usually learn a co-occurrence prior
between HR and LR image patches or coefficients, or im-
age feature statistics, and process the LR input along with
appropriate smoothness constraint to generate HR image.
Learning-based methods work well when applied to a specific
domain. A good example is face hallucination(c.f. [6, 15]).
However, for general images/videos, learning-based methods
require a large amount of training data.

Existing approaches did not explicitly consider the issue
of noise in the original video. This is significant because
low-resolution video is often plagued with noise, and super-
resolution techniques can magnify this noise, leading to re-
sults with lower visual quality than the source as illustrated
in Fig. 1. It has been our observation that the requirement
of de-noising and super-resolution is similar. Both aim to
achieve a result with the following three properties. First,
the result should be visually similar to the input as much
as possible. Second, the result should preserve or enhance
the image detail. Third, the result should avoid introducing
undesirable high-frequency content.

Based on these observations, in this paper we present a
unified framework which achieves simultaneous de-noising
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Frame t+1
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Figure 2: Neighboring frames are aligned to frame t.
The big red points are low-resolution pixels in frame
t, and the small red points are high-resolution pixels
there. The blue points are low-resolution pixels in
the neighboring frames.

and super-resolution. We extend our previous work of im-
age super-resolution [14] and formulate noisy video super-
resolution as an optimization problem aiming to maximize
the overall visual quality. While video quality assessment
is generally a difficult task, we approach it in the scenario
of de-noising and super-resolution. Specifically, we measure
the video quality in terms of the three criteria above. The
key to the success of the proposed approach is to design
effective measures for these criteria as detailed in § 2.

2. OUR APPROACH
The goal of this work is to create a high-resolution video

from a noisy low-resolution input. Given only a single low-
resolution noisy video, we necessarily miss important in-
formation to “reconstruct” a physically correct high-quality
video. So instead of trying to create a“correct”high-resolution
result, we aim to create a visually high-quality one.

Measuring visual quality is difficult. Most existing meth-
ods use original images to measure the visual quality of
their transformed counterparts(c.f. [24]). These reference-
based methods are unsuitable for our purpose. Current non-
reference methods focus on measuring distortion caused by
compression, thus unsuitable to our purpose either(c.f. [23]).
We approach this problem in the scenario of super-resolution
and de-noising, and assess the visual quality with respect to
the following three aspects.

• Fidelity preserving. The super-resolution result should
be visually similar to the low-resolution input.

• Detail preserving. The super-resolution result should
keep and enhance details as much as possible.

• Spatial-temporal smoothness. Normally the human
visual system prefers piecewise smooth results, and
is very sensitive to undesirable high-frequency con-
tent, especially to the temporal jittering. The super-
resolution result should avoid introducing and remove
these undesirable high-frequency artifacts.

We encode violations against each of the above quality as-
pects as cost, and formulate super-resolution and de-noising
as an optimization problem that aims to minimizing the to-
tal cost (equivalently maximizing the visual quality). The
key is to define effective quality measures. We will describe
perception-based measures in the following subsections.

2.1 Fidelity preserving
A straightforward metrics to measure the similarity be-

tween the low-resolution input and its super resolution re-
sult is the sum of the difference between each low-resolution
pixel and its high-resolution counterpart as follows:

Efd =
∑

(x,t)∈Il

‖Ih(x ∗ scale, t)− Il(x, t)‖22

where Efd is the difference between super-resolution result
Ih and its low-resolution input Il, (x, t) is the index of pixel
x at frame t, and scale is the magnification rate. This sim-
ple metrics is problematic and wastes the spatial-temporal
information in the low-resolution video. First, the input
suffers from noise, so this simple method will create a noisy
result, possibly even magnifying the noise. Second, neigh-
boring frames can provide information both for de-noising
and super-resolution.

We have developed a robust motion estimation algorithm
that will be described in the following subsection 2.1.1. Us-
ing the motion estimation result, we can align neighbor-
ing frames to every frame Il(t), as illustrated in Figure 2.
Thus each pixel of the corresponding high-resolution frame
Ih(t) has a certain amount of space-time neighboring pix-
els. These neighboring pixels provide valuable information
both for de-noising and super-resolution. We can estimate
an approximation of super-resolution result from them.

Denote the approximation as Ĩh. We estimate it using
a space-time median-bilateral filer to estimate the noise-
reduced high-resolution video as follows.

Ĩh(x, t) =

∑
(x′,t′)∈Vx,t

w(x′, t′, x, t)I(x′, t′)
∑

x′∈Vx,t
w(x′, t′, x, t)

(1)

where Ĩh(x, t) is value of pixel x at frame t of noise-reduced
high-resolution video and Vx,t is the space-time neighbor-
hood of pixel (x, t) aligned to frame t. w(x′, t′, x, t) is the
adapted space-time bilateral filtering weight, where the im-
pact of each pixel (x′, t′) is related to its distance to (x, t),
its value, and the confidence of motion estimation as follows:

w(x′, t′, x, t) = wmv(x′, t′, t)gs(x
′ − x, σs)gt(t

′ − t, σt) (2)

gv(I(x′, t′)−med(x, t), σv)

where gs, gt and gv are gaussian distributions, wmv is the
motion estimation quality measure defined in Equation 5,
and med(x, t) is the median pixel value in Vx,t.

To keep the fidelity, we encourage the super-resolution
result Ih similar to the above noise-reduced high-resolution

result Ĩh .

Efdv =
∑

(x,t)∈Il

‖Ih(x ∗ scale, t)− Ĩh(x ∗ scale, t)‖22 (3)

Research in visual perception and neuro-science suggests
that the human visual system is more sensitive to contrast
rather than pixel values [9, 16]. For images, local contrast
can be approximated by image gradient. Accordingly, we
encourage the gradient field of the high-resolution image to

be close to that of Ĩh as follows:

Efdg =
∑

(x,p)

‖Gh(x, t)− G̃h(x, t)‖22
‖G̃h(x, t)‖22 + ε

(4)

where Gh and G̃h are the gradient fields of Ih and Ĩh respec-
tively, and ε is a constant. The denominator of this equation
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is used to account for the “masking effect” [11], which states
that changing in high gradient is less obvious than the same
amount of changing in low gradient.

2.1.1 Motion estimation
Accurate and consistent pixel-wise motion estimation is

important both to estimate a sharp noise-reduced high-resolution
image and create temporally jittering-free high-resolution re-
sult. Traditional optical flow methods suffer from noise. We
adopt the idea of the recent piecewise image registration
method to estimate accurate optical flow [2]. The basic idea
is to estimate some motion models in the scene and assign
each pixel to one of the estimated motion model with the
corresponding disparity using a multi-label graph-cut opti-
mization. Since it is a time-consuming process, we simplify
it as follows: We first estimate the global background mo-
tion, and assign it to the pixels that can be well predicated
by the global motion. Then we estimate other pixels’ motion
using block matching method guided by the global motion
model. Besides accuracy, one important advantage of using
this method is that the estimated motion is more spatial-
temporarily consistent than standard optical flow methods.
According to the research in visual perception(c.f. [18]), the
human visual system is very sensitive to local motion con-
trast than the motion itself. The above method provides
consistent motion estimation, avoiding jittering. We mea-
sure the quality of the motion estimation based on the block
matching error residuals as follows:

wmv(x, t, t′) = exp(−
∑

y∈Bx

‖I(y, t)− I(y + Mx,t,t′)‖) (5)

where Mx,t,t′ is the motion vector of pixel x between frame t
and t′, y is a pixel in Bx, the block centered at x, and I(y, t)
is the pixel value at y in frame t. Using these strategies, we
can obtain a robust motion estimation along with its quality
measurement.

2.2 Detail preserving
Preserving and enhancing image details are one of the ma-

jor focuses of image super-resolution and de-nosing methods.
Many existing methods enhance image details by sharping
image edges [10, 13, 21, 5]. Edge directed methods [10, 21]
estimate high-resolution edges from the low-resolution in-
put, and use the edge information to guide super-resolution
operations, such as interpolation and image reconstruction.
The performance of these methods are subject to the quality
of high-resolution edge estimation. A fundamental problem
with edge-guided methods is that edges are often not good
representations of image details. For example, details in im-
age regions with rich fine textures are hard for edges.

According to the research in visual perception, details
manifest themselves through local contrast to the low-level
human visual system. Hence, we preserve/enhance image
details by enhancing local contrast instead of edges. We cal-
culate the local contrast in each image patch as the sum of
difference between every two pixels. We define the following
measure to encourage enhancing the detail:

Edt = −
∑

patchk∈Ih

wk

∑

xi,xj∈patchk

‖Ih(xi)− Ih(xj)‖22 (6)

where patchk denotes an image patch in the high-resolution
image Ih. wk is a weight. There are several options to set
the weights. wk can be a binary variable, set as 1 when

there is an edge passing through the patch. The edge is

estimated from the noise-reduced high resolution image Ĩh.
To set wk, no accurate information about the edge location
inside the patch is required, which improves the tolerance of
our method against error in edge estimation and is robust
to noise.

2.3 Smooth
Smooth results are often favored by the human visual

system. We encourage minimizing the modified space-time
Laplacian of the high-resolution result to achieve smooth-
ness:

Esm =
∑

(p,t)

‖∂2Ih

∂p2
x

+
∂2Ih

∂p2
y

+ wmv(p, t, t + 1)
∂2Ih

∂p2
t

‖22 (7)

where wmv(p, t, t + 1) is the motion estimation quality mea-
sure to accounting for the accuracy of motion estimation as

defined in Equation 5, and ∂2Ih

∂p2
t

is calculated in the video

where adjacent frames are aligned to t to account for the
dynamics of the scene.

2.4 Optimization
Based on the quality measures defined in the above sub-

sections, we formulate video de-noising ad super-resolution
as an optimization problem by linearly combining all the
measures as follows:

E = λfidvEfidv + λfidgEfidg + λdtEdt + λsmEsm (8)

where λ? is weight for each term. We calculate image gra-
dient and Laplacian using finite difference methods. Since
all the measures are at most quadratic, the above problem
is a quadratic minimization problem, and can be solved ef-
ficiently using a standard sparse linear system solver.

3. RESULTS
We experimented with our algorithm on some videos recorded

by amateur users. To evaluate the performance of our al-
gorithm against noise, we manually added white noise into
these videos. Typical examples are shown in Figure 3. We
did an informal user study to further evaluate our algorithm
by comparing our results to those of the bicubic upsam-
pling and the recent soft-edge algorithm [5]. Totally 6 users
participated the study. Each user was shown 8 pairs, and
was asked to select the one they consider better. The feed-
backs from the participants consistently show that our algo-
rithm creates more visually pleasant high-resolution videos
than the traditional bicubic method and the recent soft-edge
method [5]. Particularly, our results are much temporally
smoother and less noisy than the others.

4. CONCLUSION
In this paper, we presented a unified framework that achieves

simultaneous de-noising and super-resolution. This frame-
work formulates noisy video super-resolution as an optimiza-
tion problem, aiming to maximize the visual quality of the
result. We consider a good quality result to be fidelity-
preserving, detail-preserving and smooth. Accordingly, we
presented measures for these qualities in the scenario of de-
noising and super resolving. Our experiment shows the ini-
tial success of our method.
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(a) Bicubic ×3 (b) SoftEdge ×3 (c) Ours ×3

(d) Bicubic ×3 (e) SoftEdge ×3 (f) Ours ×3

Figure 3: Examples. The top row shows a frame from a video where the camera pans around, and the bottom row

shows a frame where the camera follows the skier.

Acknowledgements. The copyright of original videos in
Fig.1 and the top row of Fig. 3 belongs to Youtube users:
Michal2cze and yacro respectively.
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