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Abstract—Today’s projectors are widely used for information
and media display in a stationary setup. There is also a growing
effort to deploy projectors creatively, such as using a mobile
projector to display visual content on an arbitrary surface.
However, the quality of projected content is often limited by the
quality of projection surface, environment lighting, and non-
optimal projector settings. This paper presents a visual quality
assessment method for projected content. Our method assesses
the quality of the projected image by analyzing the projected
image captured by a camera. The key challenge is that the
quality of the captured image is often different from the perceived
quality by a viewer as she “sees” the projected image differently
than the camera. To address this problem, our method employs
a data-driven approach that learns from the labeled data to
bridge this gap. Our method integrates both manually crafted
features and deep learning features and formulates projection
quality assessment as a regression problem. Our experiments
on a wide range of projection content, projection surfaces,
and environment lighting show that our method can reliably
score the quality of projected visual content in a way that is
consistent with the human perception.

Keywords-Image quality assessment, projector-camera sys-
tem, human visual experience

I. INTRODUCTION

Projectors provide a convenient way to display informa-
tion and are now widely used in a wide variety of appli-
cations [1]. Besides standard deployments, such as those in
classrooms and conference rooms, people are now develop-
ing more creative ways to design and deploy projector sys-
tems. For example, projectors are used in augmented reality
applications to display information in various environments
to enrich the visual experience [2], [3], [4]. Projectors are
also deployed on mobile platforms for information display.
In these applications, visual content needs to be displayed
on arbitrary surfaces instead of dedicated projector screens.

The projection quality, however, is often compromised
when projecting visual content onto the less ideal surfaces
such as those with noticeable textures and highly spec-
ular reflections. Furthermore, strong ambient lighting and
directional lighting can also lead to low-quality projection.
Therefore it is important to understand the projection quality
to enable automatic compensation [5] or automatic selection
of a projection surface to support high-quality projection.

This paper aims to develop a quality assessment method
for projected visual content. Like existing work [6], our
method couples a camera with a projector to capture the
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Figure 1. Challenge of projection quality assessment. The camera and the
viewer perceive the projected image on the surface differently.

projected visual content. For simplicity, in the rest of this
paper, we use image to refer to general visual content, such
as photos, illustrations, tables, graphs, and documents. Our
method uses the captured image and the original input image
to evaluate the quality of the projected image. While there
are many image quality assessment [7], [8], [9], [10], [11]
and related aesthetics assessment methods available [12],
[13], [14], [15], [16], [17], [18], [19], these methods cannot
be directly applied due to a unique challenge in projection
quality assessment: the captured image Icp is often not what
a viewer perceives when she looks at the projected image Ip,
as illustrated in Figure 1. The different sensor specifics of the
camera and the human visual system make the viewer and
the camera perceive the same projected image differently.

This paper presents a data-driven approach to bridge the
gap between the quality of the captured projected image Icp
and that of the perceived projected image Ihp by viewers
when they look at the projected image directly. Ideally, if
the perceived projected image Ihp is available, we can use
the input image I as a reference to score the quality of
the projected image. However, we only have the captured
projected image Icp that is different from the perceived
projected image Ihp . Our solution is to use machine learning
algorithms to learn to calibrate the difference between the
captured projected image and the perceived projected image.
To this end, we design a wide range of image features and
then formulate projection quality assessment as a regression
problem that learns from the labelled data to score the
quality of the projected image.

To the best of our knowledge, this paper presents the
first quality assessment method for projected visual content



that addresses the quality gap between the projected im-
age captured by the camera and perceived by the viewer.
Our experiments show that our data-driven approach can
effectively learn to bridge this gap and assess the projected
visual content in a way that is consistent with the human
perception.

II. PROJECTED IMAGE QUALITY METRIC

We develop a projector-camera system to automatically
assess the quality of the projected visual content. As shown
in Figure 1, the projector projects an input image I onto the
surface and produces a projected image Ip. Ideally, given
the input image, we can assess the quality of the projected
image using a state-of-the-art full reference quality metric
as follows

Q(Ip) = Qr(I
h
p , I), (1)

where Qr is a full-reference quality metric like [8], [10]
and Ihp is the perceived projected image by a human. In
practice, a camera is adopted to capture the projected image
and produces the captured projected image Icp, which is
then used to approximate the perceived projected image
Ihp in Equation 1. However, it is difficult to obtain such
a captured projected image that is a good approximation
of Ihp , as the camera and the viewer often see the projected
image Ip differently, as discussed in Section II-A. To address
this problem, we develop a data-driven approach to obtain
a quality metric Q̂ that directly operates on the captured
projected image and the input image and learns to bridge the
gap between the perceived projected image and the captured
projected image.

Q(Ip) = Q̂(Icp, I), (2)

Below we first briefly introduce our projector-camera
system and then describe technical steps in our projection
quality assessment method, including image rectification,
feature extraction, and data-driven quality metric.

A. Projector-Camera System

We use an Epson 3-LCD projector to project visual
content onto a planar surface in a perpendicular direction
and a Nikon D7200 camera to capture the projected image.
As shown in Figure 2, the camera is positioned next to
the projector on a horizontal platform following a relevant
design [20]. The baseline between them is 3.5 inches in
our system. The projector-camera system is located about
45 inches away from the projection surface. The projection
area is of size 22× 35 inches. Note, the viewing experience
when looking at a projected image depends on the viewing
direction, especially on a surface with strong specular reflec-
tions. We position the camera close to the projector not only
to make the system portable but also to simulate a typical
scenario where the viewing direction for most of the viewers
in a room does not significantly deviate from the projection
direction.

Input Captured Images Rectified Images

Figure 3. Image rectification. Note, the captured and rectified image in
the bottom row appear green because the input image is projected onto a
greenish surface.

Figure 2. Projector-camera system.

We follow Zhao et al.
to disable all advanced
settings of the projec-
tor about brightness, con-
trast, and color enhance-
ment [6]. We use the cam-
era in the manual mode
and adjust all its set-
tings iteratively so that
the captured images are
not either underexposed
or overexposed [6] in order to make the captured projected
image as similar to what a viewer would see about the
projected image as possible. However, we find that when
the environmental lighting changes, it is very difficult to find
a fixed camera setting that matches the captured projected
image to what the viewer would perceive when she looks at
the projected image. We address this problem by learning a
quality metric to bridge this gap.

B. Image Rectification

The first step of our method is to align the captured
projected image Icp and the input image I . Since our method
is targeted for applications such as automatic image compen-
sation and automatic selection of projection surfaces where
the projector-camera configuration may be changed to opti-
mize the projection quality, we perform image rectification
for each individual projected image instead of relying on
pre-calibration for a fixed projector system. Specifically, we
directly establish the correspondence between the captured
projected image Icp and the input image I via image rectifica-
tion. We first detect SIFT feature points in these two images
and then use their feature descriptors to establish the feature
correspondence [21]. Since the projection surface is a plane,
we can robustly estimate a homography between these two
images using a RANSAC approach [22]. This homography
is finally used to warp the captured projected image to obtain
pixel-wise alignment. We denote the rectified captured image
as Ĩcp. Figure 3 shows some rectification examples.



C. Data-driven Quality Assessment
Given the input image I and the rectified version of the

captured projected image Ĩcp, our method extracts a range
of features that reflect the image quality and then uses a
regression method to score the quality of the projected image
Ip. We experimented with several off-the-shelf regression
methods and find that the random forest regression method
works best [23]. Below we detail the image features used in
our method.

1) Deep Learning Features: Deep learning features have
been shown very effective for image quality assessment [18],
[19]. They capture the useful image characteristics that
reflect the aesthetic quality of an image. Therefore, we
include deep learning features into our method. Specifically,
we generate the deep learning features using the deep con-
volutional neural network model shared by Mai et al. [19].
We use this deep neural network to produce two 4096-
dimensional feature vectors for an image, each extracted at
a different image scale. At each scale, we concatenate the
feature vector for the input image and the rectified captured
image and then use PCA to reduce its dimension to 20. We
finally concatenate the two resulting feature vectors into a
40-dimensional deep feature vector.

2) Manually Crafted Photo Quality Features: A vari-
ety of carefully crafted features have been used in image
quality and aesthetics assessment. Our method includes
some relevant ones and also designs some new features
dedicated for projection quality assessment. These features
can be grouped into four categories, including global image
appearance, local image distortion, saliency-based features
and superpixel-based features.
Global Image Appearances. Existing research on image
aesthetics showed that global image statistics can serve as
good indications of image quality [12], [13]. We, therefore,
compute these image statistics as features, including the
average hue, saturation, intensity, and brightness value. We
compute these values for both the input image and the
rectified captured image and concatenate them together.
As shown by Marchesotti et al., the GIST feature, which
captures the global appearance of an image [24], is also
helpful for quality assessment [15]. Thus, our method in-
cludes the GIST feature for the two images. Moreover, our
method considers several other image characteristics that
are particularly affected by projection and models them as
features. We briefly describe them below.
Color transfer. Due to the different optics of the projector
and the camera and the effect of environment lighting, the
projected image as well as its captured and the perceived
version undergo different global color transformations. To
reflect this, we adopt the color transfer method that trans-
forms the color distribution of one image to match the other
and compute the color transfer feature between the input
image and the rectified captured image. Specifically, we
convert the color space of each image from RGB to Lab

and then compute the mean and standard deviation of each
channel [25]. We include these measurements for the two
images as features to account for the color transformations
of the projector-camera system.
Hue count. Relevant to the color transfer feature, we also
consider the impact of the projection on the hue count of
the input image as it has been shown to be an important
aspect of image quality. Briefly, we first convert an image
into the HSV color space, then build a 20-bin hue histogram,
and finally compute the hue count based on the histogram.
Please refer to Ke et al. for more details [12].
Contrast and blurriness. Projection often compromises the
contrast of an image, especially with strong ambient lighting.
We follow the method from Ke et al. to compute the
contrast values for the two images as features. Specifically,
we first compute the gray scale histogram and then measure
the width of the middle 98% mass of the histogram as
the contrast [13]. Our method also measures blurriness, a
relevant feature to contrast, of the two images as features
using the blur detection method from Tong et al. [26].
Local Image Distortion. Unlike a dedicated projection
surface, an arbitrary surface in a workspace or living room
is often textured. The texture can often significantly change
the local content of the projected image and compromise
the projection quality. To detect the local distortion caused
by the textured surface, we detect salient feature points,
SIFT in our implementation, in the input image and the
rectified captured image. We then establish the feature
correspondence between these two images and measure the
local image distortion as follows.

fsift =

∑m
k=1 e

−
d2
k

2σ2

mi +mc
(3)

where mi and mc are the numbers of SIFT feature points
in the input image and the rectified captured image, re-
spectively, and m is the number of the pairs of matched
feature points between these two images. dk is the Euclidean
distance between two feature descriptors of each pair of
matched features. σ is a parameter with default value 103.
Visual Saliency-based Feature. Visual saliency is designed
to capture low-level visual stimulation from the images and
has been shown correlated to image quality assessment [10].
Projection should preserve the saliency of the input image
as much as possible. For the input image and the rectified
captured image, we first detect a saliency mask for each
image [27] and then build a color histogram with 20 bins
for each channel using the salient pixels. We include the two
resulting color histogram as features.
Superpixel-wise Image Similarity. As shown in existing
full-reference quality assessment methods, pixel-wise rela-
tionship between the input image and the distorted image is
indicative for the quality of the distorted image. However,
although our rectification algorithm can align the captured



Figure 4. Sample input images.

projected image and the input image well, it sometimes still
cannot achieve pixel-wise alignment due to various reasons.
For example, the projection surface is not a perfect plane
and thus the transformation between two images cannot be
perfectly modeled by a homography, which makes it difficult
to measure the pixel-wise relationship between these two
images. Based on the observation that the misalignment
between the input and the rectified captured image is often
small, we extract superpixels in the images and measure
superpixel-based similarity between these two images. We
first extend the SLIC method [28] to extract superpixels from
the two images simultaneously. Specifically, we superimpose
the input image onto the rectified captured image and create
a 6-channel image, with the first three channels coming from
the input image and the next three channels from the rectified
captured image. We then apply SLIC to this 6-channel image
and obtain a set of superpixels. We measure the similarity
between the two images by computing the correlation score
of the intensity histograms of superpixels in the two images.
We finally build a 20-bin histogram of these correlation
scores as a feature for our algorithm.

III. EXPERIMENTS

Since there is currently no large-scale benchmark for
projected image quality assessment, we developed a bench-
mark to evaluate our method. We first collected a set of 40
images from SlideShare1. These images cover a variety of
projection content, such as photos, graphics, text, and data
visualization, as shown in Figure 4. We also collected 13
different projection surfaces that are common in the office
or living room environment, as shown in Figure 5. These
surfaces cover a wide range of color, texture, and material
properties. We further simulate five different environment
lighting conditions, including full ambient light, half ambient

1http://www.slideshare.net/

Figure 5. Sample projection surfaces.

light, no ambient light, and two configurations with direc-
tional light pointing toward the projection surface. Overall,
each image was projected under 65 different configurations.
In total we have 2600 captured projected images.

We conducted a study to obtain the subjective quality
score of each projected image. Specifically, we projected
each image onto a surface and concurrently showed the same
image on a 27-inch Apple monitor. The image shown on the
monitor serves as a reference of a high-quality display of the
input image. We recruited three participants and asked them
to score the quality of the projected image that they saw on
the surface by comparing it to the input image displayed on
the monitor. Note, the observers did not see the projected
images captured by the camera. They only looked at the
projection results. The score ranges from 1 to 9 (from worst
to best). We average the subjective scores for the projected
image as its quality score. In our experiments, we uniformly
scale the user score to the range of [0, 1]. Figure 6 reports
the score distributions of our benchmark. In our work, all the
participants need to score images by looking at the projected
images on the surfaces during the projecting and capturing
process, which makes it difficult for us to recruit a large
number of them to stay in the lab at the same time to score
for 2600 times. We examined the quality of the labelling
data. As shown in Figure 7, the standard deviations of scores
for most images are low, which shows that they were rated
by three participants consistently.

A. Evaluation

We experimented with our method and compared it to
the state of the art full-reference quality metrics on our
benchmark. All these methods take a rectified captured
image and its corresponding input image as input and output
a quality score. The rectification algorithm described in
Section II-B was used to align each captured projected image
and its corresponding input image. Our test showed that this
rectification method failed on 2.2%, namely 57 out of 2600
captured projected images. We removed these 57 captured
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Figure 6. Mean opinion score distribution of the benchmark.
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Figure 7. Standard deviation of opinion scores of the benchmark.

projected images during our evaluation.
We randomly partitioned our dataset into ten folds. Each

fold contains four groups of captured projected images, in
which, each group contains captured images of the same
input image. For each fold, we trained our algorithm using
the rest nine folds and tested its prediction performance
on that fold. As shown in Figure 8, our predicted scores
are well-correlated with the ground-truth subjective scores.
Figure 9 shows an example where our method accurately
scores the quality of projected images on different projection
surfaces.

It is interesting to examine how the deep learning features
(DL) and manually crafted features (MC) work in our
method. As reported in Table I, MC features contribute
most to the performance of our method. DL features alone
are not sufficient, as these are optimized for assessing the
quality of photos instead of projected visual content. We
did not fine tune the deep neural network due to the lack of
a sufficiently large training set. In future, we will develop
a larger benchmark to fine tune the deep neural network.
Nevertheless, DL features can still slightly improve our
method when combined with MC features, as shown in
Table I.

Since this is the first work on predicting the quality
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Figure 8. Our predicted scores.
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Figure 9. Our results for an image on various surfaces.

of projected images, we select several state-of-the-art full-
reference image quality metrics as references to examine
the performance of our method. These methods include
SSIM [8], GSM [29], FSIM [30], VSI [10], MS-SSIM [9],
IW-SSIM [31], VIF [11], and SRSIM [32]. We adopted
four popular performance metrics, including Spearman rank-
order correlation coefficient (SROC), Kendall rank-order
correlation coefficient (KROC), Pearson linear correlation
coefficient (PLCC), and root mean squared error (RMSE).
SROC and KROC measure the correlation between the
predicted ranking order and the ground truth quality ranking
order for all the captured images of the same input image.
For PLCC and RMSE, previous work recommended that
we first apply a non-linear regression function to map the
objective scores predicted by the reference methods in our
experiments to the subjective scores before computing the
PLCC and RMSE values. We followed [10] and used the
non-linear mapping function from [11] in our experiments.
Figure 10 shows the scatter plots of the ground truth sub-
jective quality scores and objective scores predicted by the
reference methods, as well as the corresponding non-linear
mapping functions. These mapping functions are used to
map the predicted objective quality scores to the subjective
scores, which are used to compute the PLCC and RMSE
values reported in Table I. Since our method directly predicts
the quality scores of the projected images, no mapping is
needed. As reported in Table I, our method consistently
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Figure 10. Scatter plots of the predicted objective scores using existing full-reference quality metrics.

Table I
COMPARISON AMONG DIFFERENT QUALITY METRICS.

Method SROC KROC PLCC RMSE
PSNR 0.6141 0.4472 0.5938 0.1896
SSIM 0.5349 0.3816 0.6159 0.1666
GSM 0.6134 0.4410 0.6192 0.1762
FSIM 0.7532 0.5851 0.7538 0.1535
VSI 0.7395 0.5529 0.7198 0.1602
MS-SSIM 0.7360 0.5680 0.7543 0.1494
IW-SSIM 0.7468 0.5766 0.7572 0.1477
VIF 0.7128 0.5425 0.6929 0.1728
SRSIM 0.7226 0.5607 0.7329 0.1551
Ours MC 0.8871 0.7492 0.8979 0.1008
Ours DL 0.5494 0.4160 0.6126 0.1864
Ours 0.8935 0.7570 0.9010 0.0994

outperforms these reference methods.

IV. CONCLUSION

This paper presented a quality metric to evaluate the
visual quality of projection content. A major challenge in
evaluating the projection quality is that the camera and
viewer “see” the same projected image differently, making
it difficult to apply existing reference-based quality metrics.
This paper addressed this challenging problem using a data-

driven approach that learns to bridge this gap and score the
quality of the projected image. Our experiment showed that
our method can assess the projection quality in a way that
is consistent with the human perception.
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