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ABSTRACT 

This paper describes a synthetically-generated, multi-lens 

stereoscopic video dataset and associated 3D models.  Creating a 

multi-lens video stream requires small inter-lens spacing.  While 

such cameras can be built out of off-the-shelf parts, they are not 

“professional” enough to allow for necessary requirements such as 

zoom-lens control or synchronization between cameras.  Other 

dedicated devices exist but do not have sufficient resolution per 

image.  This dataset provides 20 synthetic models, each with an 

associated multi-lens walkthrough, and the uncompressed video 

from its generation.  This dataset can be used for multi-view 

compression, multi-view streaming, view-interpolation, or other 

computer graphics related research.  

General Terms 

Measurement, Documentation, Performance 

Keywords 

Stereoscopic video, multi-view compression 

1. INTRODUCTION 
As the number of megapixels continues to grow in imaging 

hardware, the use of such higher resolution can be applied to 

enable a host of alternative applications. These applications will 

allow for creating a better user experience, rather than just adding 

more pixels. Fields like stereoscopic imaging, light-field cameras, 

camera arrays and the like promise to allow users to have better 

experiences with their imaging data. 

For multi-lens camera systems, where lenses are placed very near 

to each other allow for a number of scenarios.  Linear arrays of 

lenses can be used for stereoscopic imaging applications where 

the additional lenses can allow for better disparity management of 

the viewing scenario (environment), allowing for a more pleasant 

3D user experience.  Camera arrays such as the Point Gray 

ProFusion 25 capture a two-dimensional array of synchronized 

video streams which can allow for better video stabilization [8]. 

Two such examples are shown in Figure 1. 

There are several limitations to today’s multi-lens video capture 

hardware. In order to tailor stereoscopic videos to a variety of 

display scenarios, various small inter-lens distances are required. 

For example, the standard inter-ocular distance is 2.5”. If we want 

to arrange multiple lenses into a linear array in order to obtain 

multiple inter-ocular distances simultaneously with a distance 

difference like 0.5”, we will require a lens spacing of less than 

0.5”. Unfortunately, very few cameras meet such a requirement.  

Point-of-view (POV) cameras are a possibility but have very 

limited ability to synchronize their streams.  Furthermore, such 

POV cameras, like the ones on the left side of Figure 1, are 

usually very wide-angle with radial distortion. Other cameras like 

the 5x5 lens ProFusion 25, while having the hardware array, have 

images of only VGA quality. This impacts the ability to study 

systems issues such as compression and adaptation.  

To begin the multimedia systems work before the hardware is 

readily available, we have created a synthetically-generated, 

multi-lens video dataset that can be used to explore research such 

as multi-lens video compression algorithms for streaming, the 

effect of non-linearly placed synchronized video lenses, and other 

multi-lens systems problems such as view interpolation. This 

dataset paper describes the creation of the models and the 

rendered video frames for a multi-lens video system.  This will 

allow researchers to study problems brought about by real-world 

multi-lens systems in isolation or in groups including: registration 

between lenses, synchronization, camera noise, and camera 

distortion. At a higher-layer, the dataset will support multi-view 

compression, multi-view streaming, or some computer graphics 

related research. 

Contributions of our work: We have taken 20 publicly available 

3D models and added textures and walkthroughs (panning and 

zooming shots) with multiple-lens. Researchers can then modify 

the models as well as the camera placement and movements as 

they require.  Additionally, for each of the 20 scenes, we have 

generated 300 frames for each lens in an 8-camera array. 

2. CREATING THE DATASET 
Starting with a number of 3D modelled scenes, we created the 

dataset through a number of steps including: shading and 
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Figure 1: Multi-lens Camera Systems 



texturing; lighting; animation and camera control; and rendering.  

We will describe these steps in the remainder of this section. 

2.1 Modeling 
Creating models of realistic scenes is quite difficult and time 

consuming.  To get the models for the scenes, we used the 

Autodesk Maya 2014 software.  We leveraged other artists’ Maya 

models to serve as the basis of our work so that we did not need to 

build the 3D scenes from scratch. The models can be downloaded 

from 3Drender [3].  The data files downloaded are 3D models 

either with no shaders, textures, or videography.  An example of a 

single scene is shown in Figure 2.  The Maya models can serve as 

the base scene for which realism needs to be added.   

For the 20 models downloaded, we edited the source files to add 

shaders, textures, and lighting properties.  We spent a significant 

amount of time providing the right textures to be mapped onto 

each of the 3D models within the scene. For example, the blanket 

has a more realistic texture to provide for more realism. For 

shading, Maya provides different shader types such as the 

Lambert shader and Phong shader.  The Lambert shader is an 

evenly diffused shading type that creates dull or matte surfaces.  

The Phong shader allows surfaces to have specular highlights and 

reflectivity. Depending upon the reflexivity requirement of each 

object we assigned either a Lambert shader or Phong shader to 

each object.  For example, the leaves on the plant use the Phong 

shader, while the blanket uses the Lambert shader.  This creates 

the appropriate matteness or reflectivity for each object within the 

scene. To do advanced texturing, we can also set up UV mappings 

and assign advanced textures, such as a real wood floor material 

to the ground.  

To create a sense of depth and the perception of color and 

materials, we need to set up CG lighting for the 3D scenes. Maya 

provides several light types including spot lights and point lights. 

Spot lights place light in specific areas.  Point lights cast light 

from a single specific point in space. In addition to these light 

types, Maya also has the advanced mental ray lighting option 

which can simulate an open-air sunlight effect for the entire scene. 

This is the easiest way to create a nice-looking view, which we 

used for most of our scene rendering.  An example of the scene 

from Figure 2 after we have added shaders, textures, and lighting 

is shown in Figure 3. Please refer to the Maya tutorial for a more 

detailed introduction [4]. 

2.2 Camera Placement and Movement 
To make dynamic videos, we need to add object animation or 

camera movement to the static scenes. Each of our videos has 300 

frames. Among the frames, we set several keyframes to establish a 

movement scheme for an object or the camera.  Maya can then 

create the animation curves automatically between keyframes.  

For each scene, we created several keyframes to make the 

resultant video stream more interesting and to introduce some 

motion for any compression research that might use the dataset.   

In order to create 8 view videos, we used the stereo camera rig 

provided by Maya to simulate the parallel multi-camera setting. 

Maya provides a stereo camera rig that contains three cameras: a 

left camera, a center camera, and a right camera.  The center 

camera is used solely for positioning of the camera, while the left 

and right cameras are used for the actual generation of frames.  To 

create 8 linearly-aligned lenses, we needed 4 synchronized 

streoescopic camera rigs for our videos. To align all cameras 
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Figure 4: Relationship and Placement of Cameras for 8-lens Stereoscopic Video 

Figure 2: Base Maya Model Example Figure 3: A Final Scene Example 



parallel with each other with the same interaxial separation, the 

positions of the center cameras of all 4 stereo camera rigs are set 

to be exactly same. With 8 cameras (numbered 1 to 8 from left to 

right), if we assume cameras 4 and 5 have a baseline of x, then 

cameras 3 and 6 should have a baseline of 3x.  Furthermore, 

cameras 2 and 7 have a baseline of 5x, and cameras 1 and 8 have a 

baseline of 7x.  The baseline value can then be adjusted according 

to the required spacing of the cameras for a particular application.  

An example of this for the example scene is shown in Figure 4. 

The last step is to render the 8 view videos for each scene. To 

accomplish this, we need 8 Maya binary files each containing one 

camera setting to render one camera view. Instead of rendering the 

videos to video files, we rendered each video frame into PNG 

format so that there are no pre-biased DCT artifacts in the video 

dataset.  An example of a rendered scene is shown in Figure 5.  

3. DESCRIPTION OF THE DATASET 
The contributed dataset consists of twenty different scenes, each 

consisting of two primary components: additions to publicly 

available 3D Maya data models to make them look realistic 

(including camera videography) and a rendered set of multi-view 

imaging data.  The scenes will provide a breadth of different 

scenes for use in experimental evaluation.  In the remainder of this 

section, we describe the specific details of the datasets.   

The Maya modeling data includes a number of components 

including, the 3D models for the actual scenes, the lighting and 

shader information, the camera rigs, and the animation path.  

Figure 5: An Example Multi-lens Camera Array: This figure shows an example of the 8 linear camera array views.  The individual 

camera views are arranged from left to right. 



Maya data files contain MEL scriptings language code [1]. MEL 

is a scripting language similar to the style of PERL or TCL.  This 

makes the format fairly easy to modify.  The dataset contains the 

original files so that users can then try out different camera angles, 

camera placements, and other options.  While data files can be 

either ASCII or binary, our files are in ASCII to maximize the 

extensibility and usability of the data. One ASCII Maya scene 

saved with all components mentioned above (shaders, textures, 

lighting, animation, cameras) is approximately 100 Mbytes.  The 

entire Maya 3D dataset is approximately 2 GBytes in size. 

For each of the scenes we have rendered an animation with a 

camera panning and zooming.  For each video, we used the Maya 

software to generate 300 frames with resolution 1280x720 (i.e., 

720p).  While the dataset could have been generated with more 

frames and/or higher image quality (e.g., full HD @ 1920x1080 

or 4K), this has a significant impact on the ability to store the 

dataset.  The dataset including the 20 scenes, 8 linearly-aligned 

views, and 300 frames per camera array yields a dataset that is 

approximate 45 GBytes in size. Each of the frames is numbered 

by view and frame number, with each scene consisting of 2400 

frames.  We have compressed the data using PNG in order to 

minimize the artifacts in the dataset.  Researchers that do not need 

to adjust the number of frames or the placement of cameras can 

just use the video frames in the set.  The 20 scenes that are in the 

dataset are shown in Figure 8 at the end of this paper. 

3.1 Dataset Discussion 
Synthetically generated datasets are a bit different than their real-

world counterparts for a number of reasons.  In the remainder of 

this subsection, we briefly describe the impact of this choice. 

First, using a synthetically generated set of video frames means 

that the frames are perfectly synchronized.  For our stereoscopic 

video compression work, we require both a very small inter-lens 

spacing as well as accurate synchronization.  Unfortunately, it is 

very difficult to build such hardware.  Without fine 

synchronization, the disparity calculation (distance between the 

“same” points of two views in the camera array) and the motion 

vector calculation will be impacted.  Using the synthesized dataset 

allows us to remove synchronization issues and to study the 

effects of synchronization in isolation if so required. 

Second, the video frames are devoid of noise, have no lens 

distortion, and are perfectly aligned.  Without noise or lens 

distortion, compression, computer vision algorithm, and motion 

compensation all become easier.  We believe this makes it easier 

to understand the impact of using multiple video lenses in 

isolation.  Real-world issues like lens distortion and noise can 

independently be added in through CCD noise and lens distortion 

can also be added [7][12]. 

Third, the video frames are not truly realistic.  We have made the 

shaders, textures, and lighting as realistic as possible; however, 

they are still computer generated.  We expect that even though 

they are computer generated that it will not negatively impact or 

bias compression performance. 

For the 20 scenes generated, we have taken the 300 frames from 

the leftmost lens and compressed them into H.264 format to see 

how the synthetically generated videos compress.  For this, we 

used the reference H.264/AVC reference encoder to compress the 

data [2][11].  We then compressed it at a number of quantization 

values and calculated the resulting PSNR values.  The resulting 

rate distortion curves are shown in Figure 6.  As shown in the 

figure, the rate distortion curves are similar to traditional rate 

distortion curves.  In particular, there is a comparison paper that 

shows the differences in using different H.264 encoders.  Our 

compression results are within the range of their published results 

[13]. As a result, we expect that the proposed dataset can be used 

for experimentation and have it at least be representative of results 

compared to real-world videos. The one outlier is the video scene 

that achieves 52 dB PSNR at 2.5 Mbps.  This scene is the 

relatively simple scene with the plate of fruits sitting on a blanket. 

4. APPLICATIONS OF THE DATASET 
There are a number of uses of the dataset that we envision for the 

multimedia systems community.  We will describe some of these 

in the remainder of this section.   

4.1 Multi-view Compression and Streaming 
Multi-view video coding is an important problem for the 

multimedia systems community.  Multi-view video can come in a 

number of flavors.  It can mean an array of linearly aligned 

cameras or a grouped set of cameras that are roughly pointed to 

the same area.  In such cases, the ability to take advantage of 

inter-camera redundancy for use in compression is useful 

[10][14]. Multi-view compression, while great for compression 

efficiency, makes it not so amenable to streaming.  If a particular 

view is required by the user, the entire multi-view set needs to be 

transmitted.  Obviously, this can place a tremendous overhead to 

view just a single stream.  Unfortunately, most multi-view codecs 

are set-up to maximize inter-lens compression. A standard 

example given in the MVC reference coder is shown in Figure 7. 

This dataset will allow for the exploration of the inter-dependency 

between compression and streaming [5].  There are several such 

threads of research that could be pursued with this dataset.  First, 

for stereoscopic multi-lens video, understanding the relationship 

between motion estimation and disparity calculation (the 

difference in pixels of a single point between the left and right 

eyes) is unknown.  Motion estimation typically finds the best 

visual color (luminance) match, whereas disparity calculations for 

stereo video are object matching. Still, the underlying algorithms 

may benefit from each other to improve compression speed.  

Second, in the adaptation and streaming of multi-view video 

streams (either stereoscopic or not), understanding the overhead  

Figure 6: Rate Distortion Curves:  This figure shows the 

rate distortion curves for the 20 videos compressed with the 

H.264 reference code. The Y channel PSNR value is shown. 



of using inter-lens compression and adaptation is still not well 

understood.  For example, should all lenses be kept separate for 

streaming purposes or are there efficient mechanisms to limit the 

amount of data needing to be transmitted when only a sub-set is 

required?  Third, with the synthetic dataset, we can begin to 

explore how important camera placement is for the capture and 

compression of depth images (e.g. [6]).  This requires a scene that 

is readily repeatable which means that synthetic is most like the 

best prospect for such research. 

4.2 View Interpolation 
This multi-view video dataset will provide a useful benchmark for 

view interpolation research.  View interpolation is a classic topic 

in computer graphics and computer vision.  It is useful for a wide 

variety of applications, such as multi-view video synthesis and 

editing, video stabilization, high frame-rate video synthesis, and 

virtual reality.  View interpolation takes images taken at multiple 

viewpoints and synthesizes a new image from as if it were viewed 

by the camera from a new viewpoint.  A large amount of view 

interpolation algorithms have been developed over the past 

decades [9].  However, view interpolation is still a challenging 

task and faces a few challenges.  First, it is still difficult to 

“correctly” or visually plausibly handle occlusion and dis-

occlusion especially in the region with significant depth 

discontinuity that some region visible from the new viewpoint is 

occluded from existing viewpoints.  Second, non-Lambertian 

reflection and semi-transparent surfaces are difficult to render 

correctly.  Third, while novel views can be interpolated sometimes 

in a visually plausible way, it is challenging to create a novel 

video as it requires interpolating frames in a temporally coherent 

way.  This large multi-view video dataset will be useful to 

evaluate existing and forthcoming view interpolation methods, 

and identify new problems and research opportunities on this 

topic. 

5. CONCLUSION 
In this dataset paper, we have introduced a Maya 3D model data 

set that includes realistic shaders, textures, lighting, animation, 

and a linear array of cameras, creating a set of 20 synthetically 

generated video streams.  We have also, for each model, generated 

a set of 300 frame x 8 camera video data set.  This dataset can be 

used to study compression of multi-view videos and can also be 

used for computer vision work.   
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Figure 7: Typical Multi-view Frame Dependencies 
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Figure 8: The 20 scenes created for the dataset 

   

    

   

    

   

    

  
 


