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ABSTRACT 

In this paper, we propose a framework to support the 

bridging of applications and computer-vision based sensor 

networks.  We argue that the semantic gap, the difference 

between the data collected in a sensor network and the 

information needed by the application, in video-based 

sensor networks can only be addressed by providing 

systems support in such a way that allows users and 

computing systems to meet in the middle.  We first outline 

the vision of the system that we are working towards.  We 

then describe initial experiments that we have conducted 

using a functional component of the system applied to real-

world video data that is being collected by intelligent 

transportation systems researchers.   
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J.7 [Computer Applications]: Computers Systems 
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1. INTRODUCTION 

Sensor networking technologies are becoming advanced 

enough to support many real applications that can benefit 

society.  Examples of such applications include irrigation 

monitoring and structural monitoring (bridges / buildings). 

While the number of sensor networking applications 

continues to grow, many applications exist that have a 

significant gap between the data a sensor network or set of 

sensor networks can deliver and the information that is 

ultimately useful to the application. We call this gap the 

semantic gap.   

The semantic gap in such systems varies heavily depending 

upon the complexity of the application.  For example, 

simpler applications like counting cars on a highway on-

ramp have little or no semantic gap because the in-road 

loop detectors can provide the necessary information.  That 

is, the necessary information is directly derivable from the 

loop detectors.  Sensor networks with video components 

tend to exhibit larger semantic gaps.  An example of such 

an application is creating actions from video for health care 

or video surveillance where the data needs to be converted / 

interpreted to find the information needed. 

Consider the crosswalk shown in Figure 1.  The crosswalk 

is located in the City of Portland and has large pedestrian 

flows at certain times of the day. The crosswalk is at an 

intersection without a signal light for either vehicles or 

pedestrians. By law, pedestrians have the right of way and 

priority at intersections; hence, vehicles are required to 

yield to pedestrians.  Intelligent transportation systems 

(ITS) researchers are interested in studying pedestrian / 

vehicle conflicts where vehicles either fail to yield to 

pedestrians or stop too close to the pedestrian. This, in turn, 

will allow them to try different mitigation strategies such as 

additional upstream traffic signaling or adaptive lighting in 

order to improve overall safety and efficiency. 

The semantic gap here exists between the video images 

(data) and the information they require.  Examples of 

information they would like to derive include: 

 What is the frequency of pedestrian / vehicle conflict? 

 Which pedestrians are runners, handicapped, or 

elderly? What is their frequency? 

 What percentage of the pedestrians on the far sidewalk 

cross the crosswalk? 
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Figure 1: Crosswalk video example 
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The underlying images from sensor networks, however, are 

a sea of pixels.  While computer-vision algorithms exist 

that can perform rudimentary functions like find all humans 

in a video or detect all cars in a video, separating out 

actions is a much more difficult task.  That is, assigning 

semantics to these actions is where the hard work really is.  

For this example, the computer vision algorithms would 

need to distinguish between pedestrians in the crosswalk 

and other pedestrians on the sidewalks. 

In this paper, we propose a visually interactive interface for 

scalar, audio, and video-based sensor networks, where the 

human and computing system meet somewhere in the 

middle of the semantic gap.  The basic idea is to separate 

out the application-specific semantics from the underlying 

computer vision algorithms.  Thus, users provide some of 

the “meaning” of data within a video, allowing the 

underlying computer vision algorithms to be greatly 

simplified as well as targeted in their execution.  We show 

the design principles of our technique and provide the 

beginning experimentation for an example application of 

counting pedestrians crossing a street.  We believe that 

through simple interactions (i.e., humans providing basic 

semantic information), computer-vision based sensor 

networks can be extended to provide much more useful 

information to the user in a more scalable way. 

2. A FRAMEWORK TO SUPPORT 

BRIDGING SEMANTIC GAPS 

Our approach is based upon two observations.  First, 

creating a generic computer-vision based system that can 

be used for a large number of different deployments is 

extremely difficult. In particular, the amount of complexity 

and code necessary to do relatively simple tasks like 

locating a sidewalk in an image, or determining scale can 

become arbitrarily complex.  Second, in many cases the 

video sensor is relatively static and humans could easily 

provide such information if an appropriate interface was 

available to quickly give the system this information.  In 

such cases, with simple input from the user, we believe the 

sensor network can deliver more useful data to the user.  In 

short, we believe that we need to bring the users into the 

computation through a concept we term semantic bridges. 

The goals of our framework include: 

 Providing a simple interface to allow users to instruct 

computer vision algorithms on what to do.  In effect, we 

want to remove application-specific programming from 

the system, but, at the same time, provide users a way to 

provide input into computer vision algorithms. 

 Providing a visual programming interface to allow users 

to construct multi-modal sensor systems.  The idea is to 

provide abstract components with inputs and outputs that 

allow users to connect system components in a data-

centric way.  This is similar to visual programming 

paradigms found in systems like Lego Mindstorms [11]. 

 Providing a refinable system where users can iteratively 

refine the semantic information on collected data.  This 

would enable users have more interactive discovery. 

 Providing a replayable system that allows users to retry 

different inputs in the interface.  Furthermore, having 

replay would also help systems programmers and 

computer vision programmers refine their algorithms. 

We believe that the system would then provide the benefits 

of being (i) much more tailored to the application, (ii) faster 

to implement, (iii) more generic and reusable, and (iv) 

easier to re-deploy (e.g., moving implemented system to a 

new crosswalk). 

2.1 Semantic Bridge Components 

We envision a number of components in our system 

including data sources, processing functions, and operators. 

Recall, we distinguish between data, which come from the 

sensor network, and information, which is the higher-level 

knowledge the user is attempting to extract. 

Sources: Sources generate data that will be used within the 

system.  For scalar sensor networks, we assume that the 

entire sensor network is abstracted or that groups of scalar 

sensors are abstracted into a single component in the 

system.  Because the data from scalar sensors is first order, 

abstracting it at a higher-level will make it less complicated 

for the user.  For audio and video sensors, a stream of time-

stamped data (frames or sets of audio samples) will be 

created.  Finally, we also assume sources can be from live 

or stored sources (for refining the system with the same 

data).  The latter introduces some issues that will be 

discussed in the Section 5. 

Processing Components: To make the construction of 

applications easier on the user, we expect that there will be 

a number of processing components, each with very simple 

interactions but provide application-centric processing of 

data. The guiding principle of each processing component 

is to keep as much of the application layer knowledge out 

of the processing component. For data generated from a 

video sensor, we envision a number of simple components 

the user can select from.  There will eventually be more, 

but we want to give the flavor of the level for which 

processing will be done. 

 Removing video with no movement: removes video 

where no movement is detected. 

 Restrict processing to a sub-region: allows users to 

restrict regions where the computer vision algorithms 

run.  For example, for crosswalk monitoring, this will 

free the computer vision algorithm from having to 

distinguish between humans on a nearby sidewalk and 

the crosswalk without having to implement such 

knowledge in the program itself. 

 Line triggered processing: allows a user to overlay 

lines onto a preview telling the computer vision 

algorithm to either pass on the video or count the 

number of objects that go between the two lines.   



 Object size selection: allows a user to tell the computer 

vision algorithm what the object “size” of interest is. 

Thus, for the crosswalk monitoring example, humans 

and cars can be distinguished by their size without 

having to establish scale within the video, assuming 

the camera placement does not have significant 

amounts of perspective skew. 

As new components are developed, we believe it is 

important to have each as simple and generic as possible. 

Operators:  Because the components are relatively simple 

in design, there will be a need to provide basic operators.  

We envision that the system will have a component that 

allows basic operators such as AND, OR, NOT.  These 

functions will then allow the user to build more 

application-centric, higher-layer tailoring with additional 

generic building blocks. 

We note here that feedback loops are not currently 

envisioned.  Each component represents an if statement 

because it only passes on video that has met the criteria of 

the user (i.e., if object in video meets criteria, pass it on). 

Because the processing is expected to distill the data into 

information that is more useful for the application rather 

than controlling the video sensor network, feedback 

upstream is most likely not needed. 

2.2 An Example Application 

In Figure 2, we have shown a mocked up example of the 

proposed system.  In this figure, there is one video source 

(black box on the left), three processing nodes (Movement, 

Crosswalk, and 4
th

 Avenue), one operator (AND), and two 

outputs (computer display and conflicts). The four blue 

outlined boxes “implement” the application and are briefly 

described here: 

 Movement removes video with no motion detected.  

This marks frames that do not need to be processed by 

downstream nodes to limit the amount of heavy-weight 

computer vision algorithms that need to be run. 

 Crosswalk – detects the presence of pedestrians in the 

crosswalk.  This is accomplished by editing the node, 

which lets the user annotate a sample image used for the 

computer vision algorithm.  Here, the user can specify 

the crosswalk, or area of interest, shown with a red box.  

Further, the user instructs the system that it is only 

interested in objects that cross the purple lines at the end 

of the crosswalks; this has the effect of removing cars.  

Finally, the user can input a size of object, if needed.    

 4th Avenue – detects cars.  Similar to the crosswalk, the 

user annotates a red box to indicate area of interest with 

purple lines to denote the interest in only objects that 

are along the flow of traffic.  Thus, the net effect is that 

pedestrians are not processed in this node. 

 AND – implements the “vehicle / pedestrian conflict” 

algorithm by intersecting the detected cars and the 

detected pedestrians.  The output of this gets replicated 

to the computer display for the user and saved to a file 

for future reference. 

As demonstrated by this example, bringing the user into the 

sensor network makes the system more accurate for the 

user as well as easier to implement.  Specifically, there are 

a number of advantages to the proposed approach.  First, 

application semantics are separated out from the underlying 

computer vision algorithms.  In this example, the cars and 

pedestrians are handled separately and each box represents 

the semantics of cars and pedestrians.  Second, situational 

awareness (e.g., where the crosswalk is) no longer need to 

be implemented, removing the code required to generically 

Figure 2: Mock-up of Envisioned Semantic Bridge Application Example. 
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find crosswalks from the code.  Yet, because of the visual 

interface, a user can quickly define the situation parameters 

necessary for the computer vision algorithms to work. 

Third, algorithms to determine scale, albeit with 

appropriately placed cameras, can be removed assuming 

the user has taken some care to have the scale of objects 

relatively constant.  Here, the user can specify a box that is 

the relative size of the object of interest (i.e., the 

pedestrian). Finally, once defined for a particular scenario, 

the system can be redeployed to another with the user 

having to re-specify situational parameters but not the 

functional interaction between components. 

In the remainder of this paper, we will describe our 

experiences with building the video processing component. 

2.3 Video Processing Component v.1.0 

We have begun the implementation of the video processing 

component that has sub-region selection and start / stop 

lines.  The user is able to enter these via the visual interface 

and is then used to guide the computer vision algorithm. 

The underlying computer vision system we have 

implemented consists of three main steps: moving pixel 

detection, moving object detection and object tracking. We 

first use the background subtraction method described in 

[1] to detect moving objects.  Specifically, we use the 

Mixture of Gaussians method to model the static 

background and then take the difference between the 

background and each video frame to detect moving pixel 

maps. Rather than re-implementing the algorithm, we used 

the library written by Laurence Bender that is available via 

sourceforge [8]. The Mixture of Gaussians approach has a 

number of advantages. First, it quickly adapts to the 

background so it can be done after turning the camera on 

and not doing anything special with respect to objects in the 

image.  Second, it works well for outdoor environments 

where the light can be constantly changing due to daylight 

or weather.  Finally, of some of the systems we tried, it is 

relatively fast.  We have found through experimentation 

that it typically takes 100 frames to initialize the 

background model.  The main disadvantage we have found 

with it (which will also apply to most of other algorithms) 

is that if an object is stationary during learning it becomes 

part of the background although not intended.  This comes 

up, for example, if the learning algorithm is started while a 

car is at a red light. Once we have the moving pixel maps, 

we group the moving pixels into objects. We then track 

each object through video frames using a Kalman filter 

implemented in OpenCV and resolve the occlusion 

problem using a simplified version of the solution 

described in [2].  The tracked objects that are returned can 

then be displayed to the user. 

3. Experimentation 

For experimentation, we have obtained several hours of 

video footage from the Intelligent Transportation Systems 

(ITS) Lab at Portland State University.  One of the interests 

of the lab is in vehicular, bicyclist, and pedestrian safety.  

One particular problem of interest is pedestrian / vehicle 

conflicts, which are defined as cars not yielding to 

pedestrians as is required by Law.  They have deployed a 

camera system outside the Engineering Building to collect 

data.  For their research, it is fairly typical to have paid 

undergraduate students either sit at an intersection or sit in 

front of a computer monitor and manually count and 

annotate such events.  An example image from the 

deployed camera is shown in Figure 1. We note here that 

this is a fairly typical deployment used by the ITS 

researchers.  The researchers also use similar images for 

bicycle adherence studies; the City of Portland has special 

bicycle markings with green boxes for cyclist safety and 

the researchers are interested in evaluating the effectiveness 

of different solutions. 

For the purposes of our studies, we have selected two 

sequences, each 10 minutes in length.  Both sequences are 

from the same camera but under different lighting 

conditions.  The easier data set, which we call overcast, 

was taken on an overcast day (shown in Figure 3).  The 

second data set, which we call sunny, was taken when the 

sun was out (shown in Figure 1). The big difference 

between these two sample videos is that overcast has very 

little shadows on the cars and people while sunny has 

shadows that are both large and very well-defined.  As we 

will show, this has significant impact on the algorithms’ 

performance.  

3.1 Testing Pedestrian Crossing 

To test the efficacy of the video component, we set out to 

test the counting of pedestrian crossings from the video set.  

We first set the area of interest in the video and then 

demarcated the two ends.  Any object that was in the 

crosswalk and tracked across between the start and finish 

lines caused a count event to be created.  The annotations 

from the user drawn for the camera are shown in Figure 3.  

The blue line indicates the sub-region selection around the 

crosswalk, while the green and purple lines at the ends of 

the crosswalk signify the end lines.  

Figure 3: User annotations for the pedestrian crossing 

experiments. 



Figure 4 shows two examples of objects that were tracked 

during the running of the algorithm.  The left images show 

the object number that the system is currently tracking, 

while the right images show the video frame corresponding 

to the left images.   

For the sequences, the number of pedestrians counted by 

hand and by the video component is shown in Table 1. As 

shown in the table, the object tracking on the overcast data 

set worked fairly well while the results for the sunny data 

set were not that great.  The errors from the overcast data 

set were from two people being counted as one (-1), a car’s 

object mask covering a pedestrians (-1), and a person’s 

body mask being separated into two (+1).  We should note 

that the object mask from the car covering the pedestrian 

(i.e., a failed yield) is of great interest to the ITS 

researchers.  For the sunny data set, the computer vision 

algorithm had difficulty in two main areas: occlusions and 

shadows.  For the occlusions, because an object and its 

corresponding shadow were larger, keeping track when 

occlusions occurred in their masks caused issues.  For the 

shadows, the computer vision algorithms had trouble 

managing its mask.  Sometimes, pedestrians would be 

counted as two objects (person and shadow) instead of a 

single object.  This just demonstrates some of the 

difficulties that the computer vision community faces.  The 

most important part, however, is that no cars were counted 

as pedestrians, even under difficult lighting.   

We expect that for situations where the lighting and 

movement is a little bit more controlled that the system will 

be more useful. Nevertheless, we found that the 

implemented system can help bring semantics into the 

processing; in this case, being able to separate cars and 

pedestrians. Thus, using fairly generic computer vision 

algorithms and a simple interface, we can provide the 

semantics that are necessary for the application. 

4. Related Work 

We very briefly touch on some of the related work to ours.  

A number of abstractions have been designed and 

implemented for sensor networks with abstractions 

occurring at differing levels. For applications, construction 

kits have been proposed in SenseTK [14] and SNACK [7] 

for video and scalar sensor networks, respectively. In these 

systems, interaction is managed through programmatic 

interfaces; thus, users are still required to have significant 

programming skills to construct applications. In addition, 

these kits focus more on reusability where prewritten 

software components can be reused to construct 

applications. There is no support for representing as well as 

expressing semantics in sensor data.  

Many software development environments provide visual 

interactive interfaces for building applications or 

controlling devices. Lego Mindstorms, for example, has 

basic blocks that users can select and connect them to build 

an application [11]. Support for semantic expression, 

however, is very limited.  Similar to Lego Mindstorms, 

systems like Supervisory Control and Data Acquisition 

(SCADA) also provide block-based application 

construction [5]. They focus more on expressing logic and 

control. Our work somewhat intersects with work in this 

area. We, however, address unique challenges in bridging 

semantics in multi-modal sensor data itself.  

Finally, several programming abstractions have been 

proposed for sensor networks such as [4][12][15][16]. 

These abstractions hide the details of networking and 

storage interactions and expose users to only necessary 

interfaces for data collection. Among the first was Directed 

Diffusion which provides a framework for distributed event 

detection and propagation [9]. In TinyDB, a sensor network 

is viewed as a database. Users query data declaratively by 

providing SQL-like queries through an interface without 

worrying about low-level detail operations of individual 

nodes [12]. Hood [16] and Logical Neighborhoods [13] 

provide a notion of neighborhood as programming 

primitives.  A neighborhood is identified using constructs 

based on application criteria and to share state with them.  

While these approaches are successful in providing 

communication and programming abstractions, they do not 

provide support for non-expert users to construct 

applications for sensor networks.  

5. Discussion 

There are a number of issues that arise when using our 

framework that we briefly describe here. 

Limitations of scale: The user needs to be aware of 

perspective scale if the user is going to specify an object 

Figure 4: Object tracking examples 

 Manually Counted Algo  Counted 

Overcast 12 11 

Sunny 15 39 

 
Table 1: Pedestrian crossing results 



size of interest.  In the crosswalk example, given the size 

differential between cars and walker is quite large, using 

size as a distinguishing trait is not affected as much by 

perspective scale. 

Bringing real-time into computer vision: The framework is 

currently data driven (i.e., not real-time).  As such, it 

cannot be used in a real-time processing application.  To 

move towards real-time processing, we need to understand 

the trade-off in accuracy versus processing time.  For 

example, one could use a lower-resolution image but would 

then have less accurate results.  Similarly, one could use a 

lower frame rate but it would heavily impact tracking. 

Synchronization: In conjunction with real-time, we 

currently have not designed explicit synchronization into 

the system.  Applications that could benefit are ones with 

triggers; for example, using audio to listen for the presence 

of an event to trigger the video. 

Parallel processing:  Given that each processing box has a 

relatively small amount of work, a system with multiple 

components will end up repeating some work (i.e., 

tracking).  It may be possible that our paradigm might be 

amenable to mapping onto multi-core systems. 

Control structures: The system also does not support 

“control” structures like if /then statements, for loops, or 

while loops.  Inclusion of such structures would be possible 

at the expense of simplicity for the user.  Because of 

potential feedback loops, users would then have to manage 

time and what feedback means within the application. 

6. Conclusion and Future Work 

We have described a framework for helping to enable 

building more complex computer-vision based sensor 

systems that can allow users to introduce semantic based 

processing into the system.  Through visual programming, 

our framework can alleviate the requirement of the user 

being a computer programmer. We have implemented and 

tested a single video component of our system in a 

pedestrian crossing scenario. While some of the limitations 

of computer vision algorithms manifest themselves, we 

believe that using a system like ours can make it more 

scalable and less complex from a programming standpoint.  

We are currently working toward implementing the 

interconnections for the components in the framework and 

understanding the impact of real-time computer vision 

algorithms on accuracy. 
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