
Addressing the Semantic Gap Between Video
Sensors and Applications

Wu-chi Feng, Khanh Nguyen, Feng Liu
Portland State University

Department of Computer Science
P.O. Box 751

Portland, OR 97207

{wuchi, fliu}@cs.pdx.edu

Thanh Dang
Washington State University - Vancouver

School of Engineering and Computer Science
Vancouver, WA 98686

thanh.dang@wsu.edu

ABSTRACT

In this paper, we propose a framework to support the

bridging of applications and computer-vision based sensor

networks. We argue that the semantic gap, the difference

between the data collected in a sensor network and the

information needed by the application, in video-based

sensor networks can only be addressed by providing

systems support in such a way that allows users and

computing systems to meet in the middle. We first outline

the vision of the system that we are working towards. We

then describe initial experiments that we have conducted

using a functional component of the system applied to real-

world video data that is being collected by intelligent

transportation systems researchers.

Categories and Subject Descriptors

J.7 [Computer Applications]: Computers Systems

General Terms

Algorithms, Design, Human Factors.

Keywords

Video Sensors, Data Fusion, User Interfaces.

1. INTRODUCTION

Sensor networking technologies are becoming advanced

enough to support many real applications that can benefit

society. Examples of such applications include irrigation

monitoring and structural monitoring (bridges / buildings).

While the number of sensor networking applications

continues to grow, many applications exist that have a

significant gap between the data a sensor network or set of

sensor networks can deliver and the information that is

ultimately useful to the application. We call this gap the

semantic gap.

The semantic gap in such systems varies heavily depending

upon the complexity of the application. For example,

simpler applications like counting cars on a highway on-

ramp have little or no semantic gap because the in-road

loop detectors can provide the necessary information. That

is, the necessary information is directly derivable from the

loop detectors. Sensor networks with video components

tend to exhibit larger semantic gaps. An example of such

an application is creating actions from video for health care

or video surveillance where the data needs to be converted /

interpreted to find the information needed.

Consider the crosswalk shown in Figure 1. The crosswalk

is located in the City of Portland and has large pedestrian

flows at certain times of the day. The crosswalk is at an

intersection without a signal light for either vehicles or

pedestrians. By law, pedestrians have the right of way and

priority at intersections; hence, vehicles are required to

yield to pedestrians. Intelligent transportation systems

(ITS) researchers are interested in studying pedestrian /

vehicle conflicts where vehicles either fail to yield to

pedestrians or stop too close to the pedestrian. This, in turn,

will allow them to try different mitigation strategies such as

additional upstream traffic signaling or adaptive lighting in

order to improve overall safety and efficiency.

The semantic gap here exists between the video images

(data) and the information they require. Examples of

information they would like to derive include:

 What is the frequency of pedestrian / vehicle conflict?

 Which pedestrians are runners, handicapped, or

elderly? What is their frequency?

 What percentage of the pedestrians on the far sidewalk

cross the crosswalk?

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

NOSSDAV ‘13, February 26 – March 1, 2013, Oslo, Norway.

Copyright 2013 ACM 978-1-4503-1892-1/13/02...$15.00.

Figure 1: Crosswalk video example

.

The underlying images from sensor networks, however, are

a sea of pixels. While computer-vision algorithms exist

that can perform rudimentary functions like find all humans

in a video or detect all cars in a video, separating out

actions is a much more difficult task. That is, assigning

semantics to these actions is where the hard work really is.

For this example, the computer vision algorithms would

need to distinguish between pedestrians in the crosswalk

and other pedestrians on the sidewalks.

In this paper, we propose a visually interactive interface for

scalar, audio, and video-based sensor networks, where the

human and computing system meet somewhere in the

middle of the semantic gap. The basic idea is to separate

out the application-specific semantics from the underlying

computer vision algorithms. Thus, users provide some of

the “meaning” of data within a video, allowing the

underlying computer vision algorithms to be greatly

simplified as well as targeted in their execution. We show

the design principles of our technique and provide the

beginning experimentation for an example application of

counting pedestrians crossing a street. We believe that

through simple interactions (i.e., humans providing basic

semantic information), computer-vision based sensor

networks can be extended to provide much more useful

information to the user in a more scalable way.

2. A FRAMEWORK TO SUPPORT

BRIDGING SEMANTIC GAPS

Our approach is based upon two observations. First,

creating a generic computer-vision based system that can

be used for a large number of different deployments is

extremely difficult. In particular, the amount of complexity

and code necessary to do relatively simple tasks like

locating a sidewalk in an image, or determining scale can

become arbitrarily complex. Second, in many cases the

video sensor is relatively static and humans could easily

provide such information if an appropriate interface was

available to quickly give the system this information. In

such cases, with simple input from the user, we believe the

sensor network can deliver more useful data to the user. In

short, we believe that we need to bring the users into the

computation through a concept we term semantic bridges.

The goals of our framework include:

 Providing a simple interface to allow users to instruct

computer vision algorithms on what to do. In effect, we

want to remove application-specific programming from

the system, but, at the same time, provide users a way to

provide input into computer vision algorithms.

 Providing a visual programming interface to allow users

to construct multi-modal sensor systems. The idea is to

provide abstract components with inputs and outputs that

allow users to connect system components in a data-

centric way. This is similar to visual programming

paradigms found in systems like Lego Mindstorms [11].

 Providing a refinable system where users can iteratively

refine the semantic information on collected data. This

would enable users have more interactive discovery.

 Providing a replayable system that allows users to retry

different inputs in the interface. Furthermore, having

replay would also help systems programmers and

computer vision programmers refine their algorithms.

We believe that the system would then provide the benefits

of being (i) much more tailored to the application, (ii) faster

to implement, (iii) more generic and reusable, and (iv)

easier to re-deploy (e.g., moving implemented system to a

new crosswalk).

2.1 Semantic Bridge Components

We envision a number of components in our system

including data sources, processing functions, and operators.

Recall, we distinguish between data, which come from the

sensor network, and information, which is the higher-level

knowledge the user is attempting to extract.

Sources: Sources generate data that will be used within the

system. For scalar sensor networks, we assume that the

entire sensor network is abstracted or that groups of scalar

sensors are abstracted into a single component in the

system. Because the data from scalar sensors is first order,

abstracting it at a higher-level will make it less complicated

for the user. For audio and video sensors, a stream of time-

stamped data (frames or sets of audio samples) will be

created. Finally, we also assume sources can be from live

or stored sources (for refining the system with the same

data). The latter introduces some issues that will be

discussed in the Section 5.

Processing Components: To make the construction of

applications easier on the user, we expect that there will be

a number of processing components, each with very simple

interactions but provide application-centric processing of

data. The guiding principle of each processing component

is to keep as much of the application layer knowledge out

of the processing component. For data generated from a

video sensor, we envision a number of simple components

the user can select from. There will eventually be more,

but we want to give the flavor of the level for which

processing will be done.

 Removing video with no movement: removes video

where no movement is detected.

 Restrict processing to a sub-region: allows users to

restrict regions where the computer vision algorithms

run. For example, for crosswalk monitoring, this will

free the computer vision algorithm from having to

distinguish between humans on a nearby sidewalk and

the crosswalk without having to implement such

knowledge in the program itself.

 Line triggered processing: allows a user to overlay

lines onto a preview telling the computer vision

algorithm to either pass on the video or count the

number of objects that go between the two lines.

 Object size selection: allows a user to tell the computer

vision algorithm what the object “size” of interest is.

Thus, for the crosswalk monitoring example, humans

and cars can be distinguished by their size without

having to establish scale within the video, assuming

the camera placement does not have significant

amounts of perspective skew.

As new components are developed, we believe it is

important to have each as simple and generic as possible.

Operators: Because the components are relatively simple

in design, there will be a need to provide basic operators.

We envision that the system will have a component that

allows basic operators such as AND, OR, NOT. These

functions will then allow the user to build more

application-centric, higher-layer tailoring with additional

generic building blocks.

We note here that feedback loops are not currently

envisioned. Each component represents an if statement

because it only passes on video that has met the criteria of

the user (i.e., if object in video meets criteria, pass it on).

Because the processing is expected to distill the data into

information that is more useful for the application rather

than controlling the video sensor network, feedback

upstream is most likely not needed.

2.2 An Example Application

In Figure 2, we have shown a mocked up example of the

proposed system. In this figure, there is one video source

(black box on the left), three processing nodes (Movement,

Crosswalk, and 4
th

 Avenue), one operator (AND), and two

outputs (computer display and conflicts). The four blue

outlined boxes “implement” the application and are briefly

described here:

 Movement removes video with no motion detected.

This marks frames that do not need to be processed by

downstream nodes to limit the amount of heavy-weight

computer vision algorithms that need to be run.

 Crosswalk – detects the presence of pedestrians in the

crosswalk. This is accomplished by editing the node,

which lets the user annotate a sample image used for the

computer vision algorithm. Here, the user can specify

the crosswalk, or area of interest, shown with a red box.

Further, the user instructs the system that it is only

interested in objects that cross the purple lines at the end

of the crosswalks; this has the effect of removing cars.

Finally, the user can input a size of object, if needed.

 4th Avenue – detects cars. Similar to the crosswalk, the

user annotates a red box to indicate area of interest with

purple lines to denote the interest in only objects that

are along the flow of traffic. Thus, the net effect is that

pedestrians are not processed in this node.

 AND – implements the “vehicle / pedestrian conflict”

algorithm by intersecting the detected cars and the

detected pedestrians. The output of this gets replicated

to the computer display for the user and saved to a file

for future reference.

As demonstrated by this example, bringing the user into the

sensor network makes the system more accurate for the

user as well as easier to implement. Specifically, there are

a number of advantages to the proposed approach. First,

application semantics are separated out from the underlying

computer vision algorithms. In this example, the cars and

pedestrians are handled separately and each box represents

the semantics of cars and pedestrians. Second, situational

awareness (e.g., where the crosswalk is) no longer need to

be implemented, removing the code required to generically

Figure 2: Mock-up of Envisioned Semantic Bridge Application Example.

 Video
1

 Movement

Crosswalk Edit

4th Avenue Edit
 AND

 Conflicts

find crosswalks from the code. Yet, because of the visual

interface, a user can quickly define the situation parameters

necessary for the computer vision algorithms to work.

Third, algorithms to determine scale, albeit with

appropriately placed cameras, can be removed assuming

the user has taken some care to have the scale of objects

relatively constant. Here, the user can specify a box that is

the relative size of the object of interest (i.e., the

pedestrian). Finally, once defined for a particular scenario,

the system can be redeployed to another with the user

having to re-specify situational parameters but not the

functional interaction between components.

In the remainder of this paper, we will describe our

experiences with building the video processing component.

2.3 Video Processing Component v.1.0

We have begun the implementation of the video processing

component that has sub-region selection and start / stop

lines. The user is able to enter these via the visual interface

and is then used to guide the computer vision algorithm.

The underlying computer vision system we have

implemented consists of three main steps: moving pixel

detection, moving object detection and object tracking. We

first use the background subtraction method described in

[1] to detect moving objects. Specifically, we use the

Mixture of Gaussians method to model the static

background and then take the difference between the

background and each video frame to detect moving pixel

maps. Rather than re-implementing the algorithm, we used

the library written by Laurence Bender that is available via

sourceforge [8]. The Mixture of Gaussians approach has a

number of advantages. First, it quickly adapts to the

background so it can be done after turning the camera on

and not doing anything special with respect to objects in the

image. Second, it works well for outdoor environments

where the light can be constantly changing due to daylight

or weather. Finally, of some of the systems we tried, it is

relatively fast. We have found through experimentation

that it typically takes 100 frames to initialize the

background model. The main disadvantage we have found

with it (which will also apply to most of other algorithms)

is that if an object is stationary during learning it becomes

part of the background although not intended. This comes

up, for example, if the learning algorithm is started while a

car is at a red light. Once we have the moving pixel maps,

we group the moving pixels into objects. We then track

each object through video frames using a Kalman filter

implemented in OpenCV and resolve the occlusion

problem using a simplified version of the solution

described in [2]. The tracked objects that are returned can

then be displayed to the user.

3. Experimentation

For experimentation, we have obtained several hours of

video footage from the Intelligent Transportation Systems

(ITS) Lab at Portland State University. One of the interests

of the lab is in vehicular, bicyclist, and pedestrian safety.

One particular problem of interest is pedestrian / vehicle

conflicts, which are defined as cars not yielding to

pedestrians as is required by Law. They have deployed a

camera system outside the Engineering Building to collect

data. For their research, it is fairly typical to have paid

undergraduate students either sit at an intersection or sit in

front of a computer monitor and manually count and

annotate such events. An example image from the

deployed camera is shown in Figure 1. We note here that

this is a fairly typical deployment used by the ITS

researchers. The researchers also use similar images for

bicycle adherence studies; the City of Portland has special

bicycle markings with green boxes for cyclist safety and

the researchers are interested in evaluating the effectiveness

of different solutions.

For the purposes of our studies, we have selected two

sequences, each 10 minutes in length. Both sequences are

from the same camera but under different lighting

conditions. The easier data set, which we call overcast,

was taken on an overcast day (shown in Figure 3). The

second data set, which we call sunny, was taken when the

sun was out (shown in Figure 1). The big difference

between these two sample videos is that overcast has very

little shadows on the cars and people while sunny has

shadows that are both large and very well-defined. As we

will show, this has significant impact on the algorithms’

performance.

3.1 Testing Pedestrian Crossing

To test the efficacy of the video component, we set out to

test the counting of pedestrian crossings from the video set.

We first set the area of interest in the video and then

demarcated the two ends. Any object that was in the

crosswalk and tracked across between the start and finish

lines caused a count event to be created. The annotations

from the user drawn for the camera are shown in Figure 3.

The blue line indicates the sub-region selection around the

crosswalk, while the green and purple lines at the ends of

the crosswalk signify the end lines.

Figure 3: User annotations for the pedestrian crossing

experiments.

Figure 4 shows two examples of objects that were tracked

during the running of the algorithm. The left images show

the object number that the system is currently tracking,

while the right images show the video frame corresponding

to the left images.

For the sequences, the number of pedestrians counted by

hand and by the video component is shown in Table 1. As

shown in the table, the object tracking on the overcast data

set worked fairly well while the results for the sunny data

set were not that great. The errors from the overcast data

set were from two people being counted as one (-1), a car’s

object mask covering a pedestrians (-1), and a person’s

body mask being separated into two (+1). We should note

that the object mask from the car covering the pedestrian

(i.e., a failed yield) is of great interest to the ITS

researchers. For the sunny data set, the computer vision

algorithm had difficulty in two main areas: occlusions and

shadows. For the occlusions, because an object and its

corresponding shadow were larger, keeping track when

occlusions occurred in their masks caused issues. For the

shadows, the computer vision algorithms had trouble

managing its mask. Sometimes, pedestrians would be

counted as two objects (person and shadow) instead of a

single object. This just demonstrates some of the

difficulties that the computer vision community faces. The

most important part, however, is that no cars were counted

as pedestrians, even under difficult lighting.

We expect that for situations where the lighting and

movement is a little bit more controlled that the system will

be more useful. Nevertheless, we found that the

implemented system can help bring semantics into the

processing; in this case, being able to separate cars and

pedestrians. Thus, using fairly generic computer vision

algorithms and a simple interface, we can provide the

semantics that are necessary for the application.

4. Related Work

We very briefly touch on some of the related work to ours.

A number of abstractions have been designed and

implemented for sensor networks with abstractions

occurring at differing levels. For applications, construction

kits have been proposed in SenseTK [14] and SNACK [7]

for video and scalar sensor networks, respectively. In these

systems, interaction is managed through programmatic

interfaces; thus, users are still required to have significant

programming skills to construct applications. In addition,

these kits focus more on reusability where prewritten

software components can be reused to construct

applications. There is no support for representing as well as

expressing semantics in sensor data.

Many software development environments provide visual

interactive interfaces for building applications or

controlling devices. Lego Mindstorms, for example, has

basic blocks that users can select and connect them to build

an application [11]. Support for semantic expression,

however, is very limited. Similar to Lego Mindstorms,

systems like Supervisory Control and Data Acquisition

(SCADA) also provide block-based application

construction [5]. They focus more on expressing logic and

control. Our work somewhat intersects with work in this

area. We, however, address unique challenges in bridging

semantics in multi-modal sensor data itself.

Finally, several programming abstractions have been

proposed for sensor networks such as [4][12][15][16].

These abstractions hide the details of networking and

storage interactions and expose users to only necessary

interfaces for data collection. Among the first was Directed

Diffusion which provides a framework for distributed event

detection and propagation [9]. In TinyDB, a sensor network

is viewed as a database. Users query data declaratively by

providing SQL-like queries through an interface without

worrying about low-level detail operations of individual

nodes [12]. Hood [16] and Logical Neighborhoods [13]

provide a notion of neighborhood as programming

primitives. A neighborhood is identified using constructs

based on application criteria and to share state with them.

While these approaches are successful in providing

communication and programming abstractions, they do not

provide support for non-expert users to construct

applications for sensor networks.

5. Discussion

There are a number of issues that arise when using our

framework that we briefly describe here.

Limitations of scale: The user needs to be aware of

perspective scale if the user is going to specify an object

Figure 4: Object tracking examples

 Manually Counted Algo Counted

Overcast 12 11

Sunny 15 39

Table 1: Pedestrian crossing results

size of interest. In the crosswalk example, given the size

differential between cars and walker is quite large, using

size as a distinguishing trait is not affected as much by

perspective scale.

Bringing real-time into computer vision: The framework is

currently data driven (i.e., not real-time). As such, it

cannot be used in a real-time processing application. To

move towards real-time processing, we need to understand

the trade-off in accuracy versus processing time. For

example, one could use a lower-resolution image but would

then have less accurate results. Similarly, one could use a

lower frame rate but it would heavily impact tracking.

Synchronization: In conjunction with real-time, we

currently have not designed explicit synchronization into

the system. Applications that could benefit are ones with

triggers; for example, using audio to listen for the presence

of an event to trigger the video.

Parallel processing: Given that each processing box has a

relatively small amount of work, a system with multiple

components will end up repeating some work (i.e.,

tracking). It may be possible that our paradigm might be

amenable to mapping onto multi-core systems.

Control structures: The system also does not support

“control” structures like if /then statements, for loops, or

while loops. Inclusion of such structures would be possible

at the expense of simplicity for the user. Because of

potential feedback loops, users would then have to manage

time and what feedback means within the application.

6. Conclusion and Future Work

We have described a framework for helping to enable

building more complex computer-vision based sensor

systems that can allow users to introduce semantic based

processing into the system. Through visual programming,

our framework can alleviate the requirement of the user

being a computer programmer. We have implemented and

tested a single video component of our system in a

pedestrian crossing scenario. While some of the limitations

of computer vision algorithms manifest themselves, we

believe that using a system like ours can make it more

scalable and less complex from a programming standpoint.

We are currently working toward implementing the

interconnections for the components in the framework and

understanding the impact of real-time computer vision

algorithms on accuracy.

7. REFERENCES
[1] T. Bouwmans, F. El Baf, B. Vachon, “Background Modeling

using Mixture of Gaussians for Foreground Detection - A

Survey”, Recent Patents on Computer Science, Volume 1,

No 3, pages 219-237, Nov. 2008.

[2] D. Conte, P. Foggia, G. Percannella, M. Vento,

“Performance Evaluation of a People Tracking System on

PETS2009 Database”, in Proceedings of the 2010 Seventh

IEEE International Conference on Advanced Video and

Signal Based Surveillance, Fisciano, Italy, pp 119-126,

August, 2010. DOI=http://doi.acm.org/

10.1109/AVSS.2010.87

[3] C. Cotton, D. Ellis, A. Loui, “Soundtrack Classification by

Transient Events”, ICASSP, pp 473-476, 2011

http://dx.doi.org/10.1109/ICASSP.2011.5946443

[4] T. Dang, W. Feng, N. Bulusu, H. Tran, “Demo: Zoom: a

Multi-resolution Tasking Framework for Crowd-sourced

Geo-spatial Sensing”, in Proceedings of the 9th ACM

Conference on Embedded Networked Sensor Systems

(SenSys '11). ACM, New York, NY, USA, 391-392.

[5] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, D. Culler,

“sMAP: a Simple Measurement and Actuation Profile for

Physical Information”, in Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems

(SenSys '10). ACM, New York, NY, USA, 197-210.

[6] J. Fernandez, A. Fernandez, “SCADA Systems:

Vulnerabilities and Remediation”, J. Comput. Small Coll. 20,

4 (April 2005), 160-168.

[7] B. Greenstein, E. Kohler, D. Estrin, “A Sensor Network

Application Construction Kit (SNACK)”, in Proceedings of

the 2nd International Conference on Embedded Networked

Sensor Systems (SenSys '04). ACM, New York, NY, 69-80.

[8] http://scene.sourceforge.net/models.html

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed

Diffusion: a Scalable and Robust Communication Paradigm

for Sensor Networks”, in Proceedings of the 6th Annual

International Conference on Mobile Computing and

Networking (MobiCom '00). ACM, New York, NY, 56-67.

[10] K. Lee, D. Ellis, “Audio-based Semantic Concept

Classification for Consumer Video. Trans. Audio, Speech

and Lang. Proc. 18, 6 (August 2010), 1406-1416.

DOI=10.1109/TASL.2009.2034776

[11] Lego MINDSTORMS, http://mindstorms.lego.com/en-

us/Software/Default.aspx

[12] S. Madden, M. Franklin, J. Hellerstein, W. Hong, “TinyDB:

an Acquisitional Query Processing System for Sensor

Networks”, ACM Trans. Database Syst. 30, 1 (March 2005),

122-173. DOI=10.1145/1061318.1061322

http://doi.acm.org/10.1145/1061318.1061322

[13] L. Mottola, G. Picco, “Programming Wireless Sensor

Networks with Logical Neighborhoods”, in Proceedings of

the First International Conference on Integrated Internet Ad

hoc and Sensor Networks (InterSense '06), New York, NY,

USA, Article 8.

[14] P. Sitbon, W. Feng, N. Bulusu, T. Dang, “SenseTK: a

Multimodal, Multimedia Sensor Networking Toolkit”, in

Proceedings of Multimedia and Computing Networking

2007, San Jose CA, January 2007.

[15] M. Welsh, G. Mainland, “Programming Sensor Networks

using Abstract Regions”, in Proceedings of the 1st

conference on Symposium on Networked Systems Design and

Implementation - Volume 1 (NSDI'04), Vol. 1. USENIX

Association, Berkeley, CA, USA.

[16] K. Whitehouse, C. Sharp, E. Brewer, D. Culler, “Hood: a

Neighborhood Abstraction for Sensor Networks”, in

Proceedings of the 2nd International Conference on Mobile

Systems, Applications, and Services (MobiSys '04). ACM,

New York, NY, USA, 99-110. DOI=10.1145/990064.990079

http://doi.acm.org/10.1145/990064.990079

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

