
The Grace Programming Language Draft Specification Version 0.8.2

Andrew P. Black Kim B. Bruce James Noble



Contents

1 Introduction 1

2 User Model 1

3 Syntax 2

3.1 Character Equivalencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.3 Newlines, Tabs and Control Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.4 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.5 Identifiers and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.6 Reserved Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Built-in Objects 5

4.1 Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Ellipsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.4 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.5 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.5.1 String Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.5.2 String Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.5.3 Uninterpreted Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.6 Sequence Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.7 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Declarations 9

5.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3.1 Returning a Value from a Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.2 Method Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.4 Type Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.5 Once Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.1 Public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ii



5.5.2 Confidential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.3 Methods, Classes, Traits and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.5 No Private Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Objects, Classes, and Traits 16

6.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2 Class Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.3 Trait Objects and Trait Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.4 Type Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.5 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.5.1 Object Combination and Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.5.2 Abstract Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.5.3 Required Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.5.4 Overriding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.5.5 Overriding Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.5.6 Default Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Method Requests 23

7.1 Self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.2 Outer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Named Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3.1 Delimited Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3.2 Implicit Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.4 Assignments and Assignment Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.5 Binary Operator Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.6 Unary Prefix Operator Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.7 Precedence of Method Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.8 Requesting Methods with Type Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.9 Manifest Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.10 Fresh Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Pattern Matching 30

8.1 Blocks as Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.2 Match . . . case . . . else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



9 Exceptions 32

9.1 Kinds of Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.2 Exception Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.3 Catching Exceptions & Final Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Types 34

10.1 Predeclared Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10.1.1 Type None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.2 Type Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.3 Type EqualityObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.4 Type Self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.5 Types Function, Procedure, and Predicate . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.6 Type Unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.7 Type Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.2 Interfaces and Interface Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.3 Type Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.4 Type Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.5 Composite types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.5.1 Variant Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.5.2 Intersection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5.3 Union Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5.4 Type Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5.5 Nested Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.6 Type Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.6.1 Static Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.6.2 Dynamic Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Modules and Dialects 40

11.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11.1.1 Importing Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.1.2 Executing a Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.2 Dialects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.3 Module and Dialect Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

12 Pragmatics 42

12.1 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

12.2 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



13 Acknowledgements 43

14 Grammar 43

v



1 Introduction

This is a specification of the Grace Programming Language. This specification is notably incomplete, and
everything is subject to change. In particular, this version does not address:

• static type system

• immutable data and pure methods.

• reflection

• assertions, data-structure invariants, pre- & post-conditions, and contracts

• concurrency

• libraries and dialects, including implementations of Number, and

• testing.

Many of the expressions and commands in Grace are actually defined in the Grace standard dialect (and
hence may not be supported in all dialects). Because some of these constructs are used in the examples in
this document, we urge you to have a copy of the documentation for the standard dialect at hand when
reading this document. It should be available in the directory where this document was found.

2 User Model

All designers in fact have user and use models consciously or subconsciously in mind as they work.
Team design . . . requires explicit models and assumptions.
Frederick P. Brooks, The Design of Design.

Grace has been designed with the following users in mind.

1. First year university students learning programming in CS1 and CS2 courses that use object-oriented
programming.

• The courses may be structured objects first, or procedures first.
• The courses may be taught using dynamic types, static types, or both in combination (in either

order).
• Grace offers some (but not necessarily complete) support for “functional first” curricula, primarily

for courses that proceed rapidly to procedural and object-oriented programming.

2. University students taking second year classes in programming, algorithms and data structures, concur-
rent programming, software craft, and software design.

3. Faculty and teaching assistants developing libraries, frameworks, examples, problems and solutions, for
the above courses.

4. Programming language researchers needing a contemporary object-oriented programming language as a
research vehicle.

5. Designers of other programming or scripting languages in search of a good example of contemporary
OO language design.

1



3 Syntax

Much of the following text assumes the reader has a minimal grasp of computer terminology and
a “feeling” for the structure of a program.
Jensen and Wirth, Pascal: User Manual and Report.

Grace programs are written in Unicode. Reserved words are written in the ASCII subset of Unicode.

The context-free syntax of Grace is described by an EBNF grammar. Individual productions are included
in this specification where appropriate. The complete grammar, with all productions in alphabetical order,
appears at the end.

3.1 Character Equivalencies

The following ASCII sequences are treated as equivalent to the corresponding Unicode characters everywhere
except in strings.

ASCII Unicode Codepoint
>= ≥ U+2265
<= ≤ U+2264
!= 6= U+2260
-> → U+2192
]] K U+27E7
[[ J U+27E6

3.2 Comments

Comments start with a pair of slashes // and are terminated by the end of the line. Comments are not treated
as white-space. Each comment is conceptually attached to the smallest immediately preceding syntactic unit,
except that comments following a blank line are attached to the largest immediately following syntactic unit.

Example
// comment, to end of line

3.3 Newlines, Tabs and Control Characters

Newline in Grace programs can be represented by the Unicode line feed (LF) character, by the Unicode
carriage return (CR) character, or by the Unicode line separator (U+2028) character; a line feed that
immediately follows a carriage return is ignored. In the grammar, <newline> denotes a newline.

Tab characters (U+0009) and all other non-printing control characters are syntax errors, even in a string
literal. Escape sequences are provided to denote control characters in strings; see the Table of String Escapes.

2



3.4 Layout

Statements are separated by one or more newlines; it is also permissible, but uncommon, to separate
statements by semicolons. In the grammar, the non-terminal Ss is used to represent a statement separator.

Grammar
Ss ::= ";"

| <newline>
| Ss ( ";" | <newline> )

Grace uses braces to indicate the boundaries of code blocks. Indentation (the number of leading spaces on a
line) must be consistent with these boundaries: indentation must increase after an opening brace, and return
to the prior level with (or after) the matching closing brace.

Here are the precise rules that govern layout.

1. A line containing just spaces, or spaces and a comment, is ignored as far as layout is concerned.
2. All changes in indentation must be by two or more spaces; a change of a single space is treated as an

error.
3. If a line contains an unmatched opening brace, that line is said to open a code block. All lines up to

the matching closing brace comprise the body of the code block, and must be indented more than the
line containing the opening brace.

4. If the closing brace that closes the code block is the first non-space character on a line, then the
indentation of the closing brace must be the same as that of the line containing the matching opening
brace. Otherwise, the line containing the closing brace must be indented like all the other lines in the
code block.

5. An increase in indentation that does not correspond to the start of a code block indicates a continuation
line: the preceding line break is treated as a space and not as a statement separator, and the two physical
lines are treated as a single logical line. Further physical lines at the same (or greater) indentation are
treated as part of the same logical line. The continuation ends either when the indentation decreases,
or when the continuation line contains an unmatched brace.

6. If a line ends with any kind of opening bracket — one of (, [, llbracket, or { — the following line break
is treated as a space, and not as a statement separator.

7. If a line starts with any kind of closing bracket — one of ), ], rrbracket, or } — the preceding line break
is treated as a space, and not as a statement separator.

8. Indentation may be reduced only when ending a code block, or after the end of a continued line. The
indentation must return to that of the line that began the code block, or the continued line, respectively.

Example code with punctuation:
def x =
mumble "3"
fratz 7;

while {stream.hasNext} do {
print(stream.read)

};

Example code without punctuation:
def x =
mumble "3"
fratz 7

while {stream.hasNext} do {
print(stream.read)

}

3



This example defines x to be the result of the single request mumble ("3") fratz (7). Because the second and
third lines are indented more than the first, they continue that line.

Example of if(_)then(_)else(_):
if (condition) then {

doSomething
} else {

doAnotherThing
}

The body of the block that comprises the then action is indented more than the line that contains the opening
{; the closing } is at the same indentation as the the line that contains the opening {. Because there is no line
break after the first }, the else(_) does not start a separate statement.

Alternative Layout for if(_)then(_)else(_):
if (condition)

then { doSomething }
else { doAnotherThing }

theFollowingStatement

Here, the whole if(_)then(_)else(_) is on a single logical line; the indentation indicates that the then and else
lines are a continuation of the if line. This format is appropriate only when the code blocks are small.

Bad Layout for if(_)then(_)else(_):
if (condition)
then { doSomething }
else { doAnotherThing }

This layout shows three separate statements — an if(_), a then(_), and an else(_). It is not a valid way of
formatting a single if(_)then(_)else(_) statement.

Bad Layout for blocks that answer blocks:
def x = if (...) then { {
print "true"

} } else { {
print "false"

} }

This layout for an if(_)then(_)else() that answers a block can’t work: it’s not possible to close two blocks on
the same line, because the second closing brace will violate rule 4.

3.5 Identifiers and Operators

Identifiers must begin with a letter, which is followed by a sequence of zero or more letters, digits, prime (')
or underscore (_) characters. In the grammar, <id> denotes an identifier.

Conventionally, type and pattern identifiers start with capital letters, while other identifiers start with
lower-case letters.

A identifier comprising a single underscore _ acts as a placeholder: it can appear in declarations, but not in
expressions. In declarations, _ is treated as a fresh identifier.

Operators are sequences of unicode mathematical operator symbols and the following ASCII operator characters
! ? @ # % ^ & | ~ = + − ∗ / \ > < : . $ , that are not reserved tokens. So, for example, +, ++ and .. are valid
operators, but . is not, because it is reserved. In the grammar, <operator> denotes an operator.

4

https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode


3.6 Reserved Tokens

Grace has the following reserved tokens:
alias as class def dialect exclude import inherit interface is method object
once outer prefix return self Self trait type Unknown use var where
. ... := = ; { } [ ] ( ) : −> → [[ ]] J K //

4 Built-in Objects

4.1 Done

Assignments, and methods without an explicit result, have the value done, of type Done. The type Done plays
a role similar to void or Unit in other languages. The only requests understood by done are asString and
asDebugString; in particular, done does not have an equality method.

4.2 Ellipsis

The token ... is a valid expression, but evaluating it will lead to a runtime error. It is included in the language
so that programmers can indicate that their code is incomplete.

Grammar
Ellipsis ::= "..."

4.3 Numbers

In Grace, numbers are objects. Grace supports a single type Number, which accommodates at least 64-bit
precision floats. Implementations may support other classes of numbers, and may define types that extend
Number; a full specification of numeric types is yet to be completed.

Grace has three forms of numerals (that is, literals that denote Number objects).

1. Decimal numerals, written as strings of digits.

2. Base-exponent numerals, always in decimal, which contain a decimal point, or an exponent, or both.
Grace uses e as the exponent indicator. Base-exponent numerals may have a minus in front of the
exponent. A decimal point, if present, must not be the first or last character of the numeral

3. Explicit radix numerals, written as a (decimal) number between 2 and 35 representing the radix, a
leading x, and a string of digits, where the digits from 10 to 35 are represented by the letters A to Z, in
either upper or lower case. A radix of 0 is taken to mean a radix of 16.

Grammar
Numeral ::= <decimalNumeral>

| <baseExponentNumeral>
| <explicitRadixNumeral>

Examples

5



1
42
3.14159265
0.25 // leading 0 is required
17.0 // the trailing 0 is required because of the decimal point
17 // same as the above
13.343e−12
414.45e3
16xF00F00
2x10110100
0xdeadbeef // Radix zero treated as 16

Note that there are no numerals for negative numbers; negative numbers can be generated by requesting the
prefix − operator on a positive number.

Examples
−1
−2e4

4.4 Booleans

The predefined constants true and false denote values of Grace’s Boolean type. Boolean operators are written
using && for “and”, || for “or”, and prefix ! for “not”.

Grammar
Boolean ::= "true"

| "false"

Examples
p && q
toBe || toBe.not

In addition to && and || taking boolean arguments, they also accept parameterless blocks that return Boolean.
This gives them “short circuit” (a.k.a. “non-commutative”) semantics.

Examples
p && { q }
toBe || { ! toBe }

4.5 Strings

4.5.1 String Literals

String literals in Grace are written between double quotes, and must be confined to a single line. Strings
literals support a range of escape characters; these are listed in the table below.

Individual characters are represented by strings of length 1. Strings are immutable, so an implementation
may intern them. Grace’s standard library supports efficient incremental string construction.

Escape Meaning Unicode
\\ backslash U+005C
\n line-feed U+000A
\t tab U+0009
\{ opening brace U+007B

6



Escape Meaning Unicode
\} closing brace U+007D
\" double quote U+0022
\r carriage return U+000D
\l line separator U+2028
\_ non-breaking space U+00A0
\uhhhh 4-digit Unicode U+hhhh
\Uhhhhhh 6-digit Unicode U+hhhhhh

Examples
"Hello World!"
"\t"
"The End of the Line\n"
"A"

4.5.2 String Constructors

String Constructors are a generalization of String Literals that contain interpolations: expressions enclosed in
braces. The value of a String Constructor is obtained by first evaluating any interpolations, requesting asString
of the resulting object, and inserting the resulting string into the string literal in place of the interpolation.

Interpolations may contain String Literals, but not newlines or String Constructors. (Hence, interpolations
may not contain nested interpolations.) In the grammar, a <stringSegment> denotes a sequence of characters
that does not include unescaped ", newline, or {; it may contain the string escapes.

Example
"Adding {a} to {b} gives {a+b}"

4.5.3 Uninterpreted Strings

String literals can also be written between single guillemet quotation marks, ‹thus›. Between the ‹ and the ›,
characters from the input become characters of the string without interpretation, and without any escapes
(not even for ›). In the grammar, <uninterpretedString> denotes a sequence of any characters except ›.
Example
lexer.lex ‹// This is input for a test of the lexer.
// The input ends with a newline.
def s = "This is a String"
def n = 17
›

Grammar
String ::= StringLiteral

| StringConstructor
| UninterpretedString

StringConstructor ::= <dquote> <stringSegment>? ( "{" Expression "}" <stringSegment>? )+ <dquote>
StringLiteral ::= <dquote> <stringSegment>? <dquote>

7



4.6 Sequence Constructors

A Sequence Constructor is a comma-separated list of expressions surrounded by [ and ].

Examples
[ ] // empty sequence
[ 1 ]
[ red, green, blue ]

When executed, a sequence constructor returns an object of type Sequence. Sequences are immutable; they
are most frequently used to initialize other collections, to control loops, and to pass options to methods.

Examples
set.withAll [ 1, 2, 4, 5 ] // make a set
[ "a", "b", "c" ] // make a sequence
["a", "e", "i", "o", "u"].do { x → testletter(x) }
myWindow.addWidgets [

title "Launch",
text "Good Morning, Mrs President",
button "OK" action { missiles.launch },
button "Cancel" action { missiles.abort }

]

Grammar
SequenceConstructor ::= "[" "]"

| "[" Expression ( "," Expression )∗ "]"

4.7 Blocks

Grace blocks are lambda expressions, with or without parameters. If a parameter list is present, the parameters
are separated by commas and the list is separated from the body of the block by the → symbol. Within the
body of the block, the parameters cannot be assigned. Block parameters may optionally be annotated with
types; omitted type annotations are treated as the type Unknown.
{ do.something }
{ i → i + 1 }
{ i:Number → i + 1 }
{ sum, next → sum + next }

Blocks are lexically scoped, and can close over any visible field or parameter. The body of a block consists of
a sequence of declarations and expressions; declarations are local to the block. An empty body is allowed,
and is equivalent to done. A return statement inside a block returns from the enclosing method.

Blocks construct objects containing a method named apply, or apply(n), or apply(n, m), . . . , where the number
of parameters to apply is the same as the number of parameters of the block. Requesting the apply(...) method
evaluates the block; it is an error to provide the wrong number of arguments. It is a TypeError if an argument
to apply(...) does not match the type annotation of the corresponding parameter.

Examples

The looping construct
for (1..10) do {

i → print i
}

might be implemented as a method with a block parameter

8



method for (collection) do (block) {
def stream = collection.iterator
while {stream.hasNext} do {

block.apply(stream.next)
}

}

Here is another example:
var sum := 0
def summingBlock: Function1JNumber, NumberK = { i:Number → sum := sum + i }
summingBlock.apply(4) // sum now 4
summingBlock.apply(32) // sum now 36

Grammar
Block ::= "{" BlockParameterList "→" Ss? ( Statement ( Ss Statement )∗ )? "}"

| "{" ( Statement ( Ss Statement )∗ )? "}"
BlockParameterList ::= BlockParameter ( "," BlockParameter )∗

5 Declarations

Declarations may occur anywhere within a module, object, class, or trait. Constant and Variable Declarations
may also occur within a method or block body. Declarations are visible within the whole of their containing
lexical scope. It is an error to declare any name more than once in a given lexical scope.

Grace has a single namespace for all identifiers: methods, parameters, constants, variables, classes, traits,
and types. It is a shadowing error to declare a parameter or temporary (but not a method or field) that has
the same name as a lexically-enclosing field, method, parameter or temporary.

Grammar
Declaration ::= VarDeclaration

| DefDeclaration
DefDeclaration ::= "def" Identifier TypeOption Annotations ( "=" Expression )?
VarDeclaration ::= "var" Identifier TypeOption Annotations ( ":=" Expression )?
TypeDeclaration ::= "type" Identifier TypeParameterList Annotations "=" TypeExpression
TypeOption ::= Empty

| ":" TypeExpression

5.1 Constants

Constants are defined with the def keyword; they bind an identifier to the value of an initialising expression.

Constants may be optionally given a type: this type is checked when the constant is initialised. An omitted
type annotation is treated as Unknown.

If the initialising expression is omitted, an annotation is required; in this case the declaration is a marker
declaration. Constant declarations inside an object constructor create fields; others create temporary constants.

Examples
def x = 3 ∗ 100 ∗ 0.01
def x:Number = 3
def x:Number // Syntax Error: x must be initialised
def volatile is annotation // marker declaration

9



5.2 Variables

Variable are introduced with the var keyword. Variables can be re-bound to new values as often as desired,
using an assignment. A variable declaration may optionally provide an initial value; if there is no initial value,
the variable is uninitialised until it is assigned. Any attempt to access the value of an uninitialised variable
is an error, which may be caught either at run time or at compile time. Variables may be optionally given
a type: this type is checked when the variable is initialised and assigned. An omitted type annotation is
treated as Unknown.

Variable declarations inside an object constructor create fields; others create temporary variables.

Examples
var x:Rational := 3 // explicit type
var x:Rational // x must be initialised before access
var x := 3 // x has type Unknown
var x // x has type Unknown, value is uninitialised

5.3 Methods

Methods are declared using the method keyword followed by a name. Methods define the action to be taken
when the object containing the method receives a request with that name. Because every method must be
associated with an object, methods may not be declared directly inside other methods. The body of the
method is delimited by braces.

Specifying the return type is optional; an omitted return type is treated as Unknown. When the method
returns, its result is checked against this type.

If the MethodBody is omitted, an annotation is required; in this case the method declaration is a marker
declaration.

method pi { 3.141592634 }

method greet(user: Person) from(sender: Person) {
print "{sender} sends his greetings, {user}."

}

method either (a) or (b) → Done {
if (random.nextBoolean)

then {a.apply} else {b.apply}
}

method changeSpeedBy(delta) is abstract // marker declaration

Grammar
MethodDeclaration ::= "once"? "method" MethodHeader ReturnTypeOption Annotations MethodBody?
MethodHeader ::= AssignmentMethodHeader

| ParameterizedMethodHeader
| ParameterlessMethodHeader
| BinaryMethodHeader
| UnaryMethodHeader

ReturnTypeOption ::= Empty
| "→" TypeExpression

MethodBody ::= "{" ( Statement ( Ss Statement )∗ )? "}"
Statement ::= Expression

| Declaration
| Assignment
| Return

10



| Import
| <error>

AssignmentMethodHeader ::= Identifier ":=" TypeParameterList SingleMethodParameter
ParameterizedMethodHeader ::= <id> TypeParameterList MethodParameterList ( <id> MethodParameterList )∗
ParameterlessMethodHeader ::= <id> TypeParameterList
BinaryMethodHeader ::= <operator> TypeParameterList SingleMethodParameter
UnaryMethodHeader ::= "prefix" <operator> TypeParameterList
MethodParameter ::= Identifier TypeOption
MethodParameterList ::= "(" MethodParameter ( "," MethodParameter )∗ ")"
TypeParameterList ::= Empty

| "J" TypeParameter ( "," TypeParameter )∗ Where "K"

5.3.1 Returning a Value from a Method

Methods may contain one or more return statements. If a return e statement is executed, the method terminates
with the value of the expression e; a return statement with no expression is equivalent to return done. If
execution reaches the end of the method body without executing a return, the method terminates and returns
the value of the last expression evaluated. An empty method body returns done.

Grammar
Return ::= "return" Expression?

5.3.2 Method Names

To improve readability, method names have several forms. For each form, we describe its appearance, and
also a canonical form of the name which is used in dispatching method requests. A request has the same
name as a method if their canonical names are equal.

1. A method can be named by a single identifier, in which case the method has no parameters; the
canonical name of the method is the identifier.

2. A method can be named by a single identifier suffixed with :=; such a method is called an assignment
method, and is conventionally used for writer methods, both user-written and automatically-generated.
Assignment methods always take a single parameter after the :=, and have a canonical name of the
identifier followed by :=(_). It is an error to declare a variable and an assignment method with the
same identifier in the same scope.

3. A method can be named by one or more parts, where each part is an identifier followed by a parenthesized
list of parameters. In this case the canonical name of the method is a sequence of parts, where each
part comprises the identifier for that part followed by (_, ..., _), the number of underscores between the
parentheses being the number of parameters of the part.

4. A method can be named by a sequence of operator symbols. Such an “operator method” can be a
unary operator, which has no parameters, and which is requested by a prefix operator expression. It can
also be a binary method, which has one parameter, in which case it is requested by a binary operator
expression. The canonical name of a unary method is prefix followed by the sequence of operator
symbols; the canonical name of a binary method is the sequence of operator symbols followed by (_)

Examples of single identifiers
method ping { print "PING!" }
method isEmpty { elements.size == 0 }

Example of an assignment method

11



method value:= (n: Number) → Done {
print "value currently {v}, now assigned {n}"
v := n

}

This declares a method with canonical name value:=(_); such a method cannot be declared in the same scope
as a variable value.

Examples of multi-part names
method drawLineFromOriginTo (destination)
method drawLineFrom (source) to (destination)
method max(v1, v2)

In the first two examples, the canonical names of the methods are drawLineFromOriginTo(_), and drawLineFrom
(_)to(_). The latter comprises two parts: drawLineFrom(_) and to(_). In the third example, the canonical
name of the method is max(_,_).

Examples of operator symbols
method + (other:Point) → Point {

(x + other.x) @ (y + other.y)
}

method prefix− → Point
{ 0 − self }

As a consequence of the above rules, methods max(a, b, c) and max(a, b) have different canonical names and
are therefore distinct methods. In other words, Grace allows “overloading by arity”. (Grace does not allow
overloading by type).

5.3.3 Parameters

Depending on their syntactic form, method declarations may include one or more lists of parameters. Inside
method bodies, parameters are treated as constants: they may not be reassigned. Parameters to a method
may optionally be annotated with types: the corresponding arguments will be checked against those types,
either before execution, or when the method is requested. An omitted type annotation is treated as Unknown.

5.3.4 Type Parameters

Methods (including classes and traits) may be declared with one or more type parameters. If present, type
parameters are listed between J and K after the identifier that forms the first (or only) part of the method’s
name.

The presence or absence of type parameters does not change the canonical name of the method.

Example
method indexOfJWK (pattern:String) ifAbsent (absent:Function0JWK) → Number | W {

// returns the leftmost index at which pattern appears in self;
// applies absent if it is not there.
...

}

method listJTK {
object {

method asString { "the list factory" }
method empty −> ListJTK { listJTK [] }
method with (elem) −> ListJTK { listJTK [elem] }

12



method withAll (elems) −> ListJTK { listJTK (elems) }
}

}

In the first example, the ifAbsent block can return an arbitrary object. If this object has type W, then
the result of the indexOf(_)ifAbsent(_) method will have type Number | W. The second example illustrates a
method list with a single type parameter T, which is used as a type argument within the body of the object
that it returns.

Type parameters may be constrained with where clauses. The reserved word where follows the final type
parameter; if there is more than one where condition, the conditions are separated by commas.

Example
method sumSqJT where T <∗ NumericK(a:T, b:T) → T {

(a ∗ a) + (b ∗ b)
}

The type relation in a where condition can be one of <:, :>,<∗, or ∗>. <: indicates subtyping, while <∗
indicates matching. Matching is like subtyping, except that where Self appears in one argument, it must also
appear in the other. :> and ∗> are the inverses of <: and <∗.

Grammar
TypeParameterList ::= Empty

| "J" TypeParameter ( "," TypeParameter )∗ Where "K"
TypeParameter ::= Identifier
Where ::= Empty

| "where" WhereCondition ( "," WhereCondition )∗
WhereCondition ::= <id> <typeRelation> Type

5.3.5 Once Methods

A once method is declared by prefixing a method declaration with the reserved word once. Such a method
completes execution at most once on each object with a given set of arguments: the first time that the
object receives the corresponding request. The return value is memoized, and subsequent requests of the
method with equal arguments will return the memoized value without re-executing the method. To make the
memoization possible, the arguments must conform to EqualityObject, that is, they must have ==(_) and hash
methods.

If a once method does not return a value, e.g., because it raises an exception on its first execution, then
no value is memoized, and execution of the method will start again if it is requested anew. This process
will repeat until the once method returns normally, at which point the return value will be memoized, and
subsequent executions with equal argument lists will return the memoized value. Once methods can be used
to represent lazily-initialized scalar constants, pure functions, and for any method whose result will not
change once it has been calculated.

A parameterless once method differs from a constant field (declared with def) in that the latter is initialized
as part of the process of creating its containing object, and is consequently uninitialized during part of that
process. Hence, parameterless once methods are convenient for defining constants that may be used during
initialization. They are also useful for defining a group of interdependent constants, because the programmer
need not worry about the initialization order. Moreover, unlike a def, a once method is a method, and can
appear in a trait.

Examples
def o = object {

def nums = 1..100
once method sum {

13



nums.fold {a, b → a + b} startingWith 0
}

}

once method fib(n) {
// computes the nth Fibonacci number
if (n ≤ 2) then { 1 }

else { fib(n−1) + fib(n−2) }
}

The simple recursive definition of fib would take exponential time without the once. Because of the memoization
provided by once, the above code takes linear time.

5.4 Annotations

Any declaration, and any object constructor, may have a comma-separated list of annotations following the
keyword is before its body or initialiser.

Some annotations, like required, abstract and annotation, indicate that the declaration is a marker declaration,
that is, a declaration without an initialiser or a method body.

Grace defines the following core annotations:

Annotation Semantics
confidential method may be requested only on self or outer — see

Encapsulation
abstract a marker declaration for method that must be provided when

this component is reused
required a marker declaration for method that is assumed to exist, but not

provided, by the current class
override method must override another method - see Overriding Methods
public a public method may be requested from anywhere; a public

variable field may be read and written from anywhere; a public
field may be read from anywhere - see Encapsulation

readable field may be read from anywhere - see Encapsulation
writeable variable field may be written from anywhere - see Encapsulation
annotation a marker declaration for a def or method that will be used as an

annotation

Additional annotations can be defined by marker declarations annotated with is annotation. Annotations
are identifiers, i.e., static labels, not runtime values. For example, a def declaration is public because it is
annotated with the identifier public. It is not possible to make another identifier, say secret, mean the same
thing as public by writing
def secret is annotation = public

Examples
var x is readable, writeable := 3
def maxSpeed:Number is public = 80
method foo is confidential { "the method body" }
method idJTK is required // no method body
def annotation is annotation // no initialiser

Grammar

14



Annotations ::= Empty
| "is" AnnotationLabel ( "," AnnotationLabel )∗

AnnotationLabel ::= <id>
| <id> TypeArguments AnnotationArgList ( <id> AnnotationArgList )∗
| <id> TypeArguments
| <id> AnnotationArgList ( <id> AnnotationArgList )∗

AnnotationArgList ::= "(" Expression ( "," Expression )+ ")"
| Numeral
| String
| SequenceConstructor
| SpecialTerm
| "(" Expression ")"

5.5 Encapsulation

Grace has different default encapsulation rules for methods, types, and fields; the defaults can be changed by
explicit annotations. Grace defines two levels of visibility: public and confidential.

5.5.1 Public

Public attributes can be requested by any client that has access to the object that defines them.

5.5.2 Confidential

Confidential attributes can be requested only on self, or on an outer sequence, or in an implicit request (which
must resolve to one of the former cases). Consequently, if m is defined in the object, class, or trait d, it is
accessible to d, to objects that reuse (i.e., inherit or use) d, and to objects lexically enclosed either by d itself,
or by objects that reuse d.

5.5.3 Methods, Classes, Traits and Types

By default, methods (which include classes and traits), and types, are public. If a method or type is annotated
is confidential, it is confidential.

5.5.4 Fields

Variable (var) and constant (def) declarations immediately inside an object constructor create fields in that
object. By default, fields are confidential.

A field declared as var x can be read using the request x and assigned to using the assignment x := .... A field
declared as def y can be read using the request y, and cannot be assigned.

The default visibility can be changed using annotations. The annotation readable, applied to a def or var
declaration, makes the accessor request available to any object. The annotation writable, applied to a var
declaration, makes the assignment request available to any object.

It is also possible to annotate a field declaration as public. In the case of a def, public is equivalent to (and
preferred over) readable. In the case of a var, public is equivalent to readable, writable.

Fields and methods share the same namespace. The syntax for variable access is identical to that for
requesting a reader method, while the syntax for variable assignment is identical to that for requesting an

15



assignment method. This means that an object cannot have a field and a method with the same name, and
cannot have a method x:=(_) as well as a var field named x.

Examples
object {

def a = 1 // Confidential access to a
def b is public = 2 // Public access to b
def c is readable = 2 // Public access to c
var d := 3 // Confidential access and assignment
var e is readable // Public access and confidential assignment
var f is writable // Confidential access, public assignment
var g is public // Public access and assignment
var h is readable, writable // Public access and assignment

}

5.5.5 No Private Attributes

Some other languages support “private attributes”, which are available only to an object itself (and not its
reusers). Grace does not have private fields or methods; all attributes can be accessed from reusers. However,
identifiers from outer scopes can be used to obtain an effect similar to privacy.

Example simulating private fields
method newShipStartingAt (s:Point) endingAt (e:Point) {

// returns a battleship object extending from s to e. This object cannot
// be asked its size, or its location, or how much floatation remains.
assert ( (s.x == e.x) || (s.y == e.y) )
def size = s.distanceTo(e)
var floatation := size
object {

method isHitAt(shot:Point) {
if (shot.onLineFrom (s) to (e)) then {

floatation := floatation − 1
if (floatation == 0) then { self.sink }
true

} else { false }
}
...

}
}

The object returned by newShipStartingAt(_)endingAt(_) can update the variable floatation in the surrounding
scope, even though it is not accessible to anything inheriting from that object. Notice also how the coordinates
of the ship s and e are also inaccessible.

6 Objects, Classes, and Traits

A Grace object constructor generates an individual object. A Grace class declaration defines a method that
generates a fresh object each time it executes; all of these objects have the same structure.

The design of Grace’s reuse mechanism is complete, but tentative. We need more experience before confirming
the design.

16



6.1 Objects

Object constructors are expressions that evaluate to an object with the attributes defined in the constructor.
Each time an object constructor is executed, a fresh object is created. In addition to declarations of types,
fields and methods, object constructors can also contain expressions (that is, executable code at the top
level), which are executed as a side-effect of evaluating the object constructor. All of the declared attributes
of the object are in scope throughout the object constructor.

Grammar
ObjectConstructor ::= "object" Annotations ObjectBody
ObjectBody ::= "{" ( ObjectItem ( Ss ObjectItem )∗ )? "}"
ObjectItem ::= Statement

| MethodDeclaration
| TypeDeclaration
| ClassDeclaration
| TraitDeclaration
| UseStatement
| InheritStatement

Statement ::= Expression
| Declaration
| Assignment
| Return
| Import
| <error>

Examples
object {

def colour:Colour = colours.tabby
def name:String = "Unnamed"
var miceEaten := 0
method eatMouse { miceEaten := miceEaten + 1 }

}

Like everything in Grace, object constructors are lexically scoped.

A name can be bound to the object created by object constructor, like this:
def unnamedCat = object {

def colour:Colour is public = colours.tabby
def name:String is public = "Unnamed"
var miceEaten is readable := 0
method eatMouse { miceEaten := miceEaten + 1 }

}

6.2 Class Declarations

A class is a method whose body is treated as an object constructor that is executed every time the class is
invoked. The class returns the freshly-created object. For example,
class catColoured(c) named (n) {

def colour is public = c
def name is public = n
var miceEaten is readable := 0
method eatMouse {miceEaten := miceEaten + 1}
print "The cat {n} has been created."

}

is equivalent to

17



method catColoured(c) named (n) {
object {

def colour is public = c
def name is public = n
var miceEaten is readable := 0
method eatMouse {miceEaten := miceEaten + 1}
print "The cat {n} has been created."

}
}

This class might be used as follows:
def fergus = catColoured (colours.tortoiseshell) named "Fergus"

This creates an object with fields colour (set to colours.tortoiseshell), name (set to "Fergus"), and miceEaten
(initialised to 0), prints “The cat Fergus has been created”, and binds the name fergus to this object.
Grammar
ClassDeclaration ::= "class" MethodHeader ReturnTypeOption Annotations ObjectBody?

If the MethodBody is omitted, an annotation is required; in this case the class declaration is a marker
declaration.

6.3 Trait Objects and Trait Declarations

Trait objects are objects with certain properties. Specifically, a trait object is created by an object constructor
that directly contains no field declarations, inherit statements, or executable code. A trait can use other
traits. Methods in a trait can capture variables in the lexical scope of the trait, so that they can have what
is effectively private state, as illustrated in the Section on private attributes. Note that a trait object can
contain types, traits, and classes; these classes can contain field declarations, and can inherit.
Aside from these restrictions, Grace’s trait syntax and semantics is parallel to the class syntax. In particular,
the reserved word trait defines a method that returns a trait object. Hence, in the following example, emptiness1
and emptiness2 are both methods, and both create and return equivalent traits objects.
Examples
trait emptiness1 {

method size is required
method isEmpty { size == 0 }
method nonEmpty { size 6= 0 }
method ifEmptyDo (eAction) nonEmptyDo (nAction) {

if (isEmpty) then { eAction.apply } else { do(nAction) }
}

}

method emptiness2 {
object {

method size is required
method isEmpty { size == 0 }
method nonEmpty { size 6= 0 }
method ifEmptyDo (eAction) nonEmptyDo (nAction) {

if (isEmpty) then { eAction.apply } else { do(nAction) }
}

}
}

The advantage of emptiness1 is that it makes the programmer’s intention clearer. Moreover, if a field or an
inherit statement were inadvertently added to emptiness1, the implementation would immediately complain.
With the second form, the error would be found only when emptiness2 is used.

18



6.4 Type Parameters

Like methods, classes and traits may be declared with type parameters, and requests on the class or trait
may optionally be provided with type arguments.

Example
class vectorOfSize(size)JTK {

var contents := Array.size(size)
method at(index: Number) → T { return contents.at(index) }
method at(index: Number) put(elem: T) { ... }

}

class sortedVectorJTK
where T <∗ ComparableJTK {
...

}

6.5 Reuse

Grace supports reuse in two ways: through inherit statements and through use statements. Object constructors
(including classes and modules) can contain one inherit statement, while traits cannot contain an inherit
statement; object constructors, classes, modules and traits can all contain one or more use statements. As a
special case, an object with no inherit statements is treated as though it inherited from graceObject (although
this implicit inheritance does not disqualify the object from being a trait).

Both inherit and use introduce the attributes of a reused object — called the parent — into the current object
(the object under construction). There are two differences between inherit and use clauses:

1. the object reused by a use clause must be a trait object; and
2. inherit clauses include methods in the parent that originated in graceObject, while use clauses do not.

The expression parent in an inherit parent and use parent clause must be a Manifest Expression that returns a
Fresh Object; usually this will be a request on a class or trait. The expression parent cannot depend on self,
implicitly or explicitly, because self does not exist until after the reuse statement containing parent has been
evaluated.

If it is necessary for the current object to access an overridden attribute of a parent, the overridden attribute
can be given an additional name by attaching an alias clause to the inherit or use statement: alias new(_) =
old(_) creates a new confidential alias new(_) for the attribute old(_). Attributes of the parent that are not
wanted can be excluded using an exclude clause, which consists of the reserved word exclude followed by the
canonical name of an attribute. It is an object composition error to alias or exclude attributes that are not
present in the object being inherited, or to alias an attribute to its own name.

The set of attributes that is introduced by the reuse statement is determined as follows.

• The set contains all the attributes of the parent, except for those that appear in an exclude clause (and,
in the case of a use statement, except for the attributes obtained from graceObject).

• The set contains all of the new attribute names introduced by the alias clauses. Each of these names is
bound to the attribute to which the old method name is bound in the parent.

The order of the alias and exclude clauses is irrelevant.

Attributes introduced by an alias clause are treated as being introduced by the object under construction,
and thus do not conflict with (and may therefore override) attributes obtained by reuse. They do conflict
with attributes declared in the object under construction.

19



The method names in alias and exclude clauses have the same syntax as method names in method declarations
and interface literals; this means that they can contain both parameter names and type annotations. Such
names and annotations may be useful as documentation, but do not affect the meaning of the program.

Examples
trait t1 {

method x(size:Number) { ... }
method y(name:String) { ... }

}

class c1 {
use t1 alias w(_) = y(_) exclude x(_)
method v { ... }

}

Objects generated by c1 have attributes v, w(_) and y(_), but not x(_)
trait t1 {

method x(size:Number) { ... }
method y(name:String) { ... }

}

class c1 {
use t1 alias w(name) = y(name) exclude x(_)
method w(kind) { ... }

}

This is a trait composition error, because c1 gets a method with canonical name w(_) from two places: an
alias clause, and a method definition.
trait t1 {

method x { ... }
method y { ... }

}

class c1 {
use t1 alias x = y
method y is override { ... }
method w { ... }

}

This is also a trait composition error, because x is defined twice: in t1, and in the alias clause. This can be
corrected by excluding x from t1.
trait compare {

method lessThanOrEqual(a, b) { a.name ≤ b.name }
}

trait moreCompare {
use compare alias greaterThanOrEqual(x, y) = lessThanOrEqual(y, x)

}

In this example, the trait moreCompare has two methods, greaterThanOrEqual(_,_) and lessThanOrEqual(_,_
), but these method are identical, and therefore the names are misleading. If the intension is to make
greaterThanOrEqual(_,_) perform the inverse comparison, this should have been written as
trait moreCompare {

use compare
method greaterThanOrEqual(x, y) is confidential {

lessThanOrEqual(y, x)
}

}

20



Grammar
InheritStatement ::= "inherit" Expression ( ReuseModifier )∗
UseStatement ::= "use" Expression ( ReuseModifier )∗
ReuseModifier ::= ExcludeClause

| AliasClause
ExcludeClause ::= "exclude" MethodHeader
AliasClause ::= "alias" MethodHeader "=" MethodHeader

6.5.1 Object Combination and Initialisation

When executed, an object constructor (or trait or class declaration) first creates a new object with no
attributes, and binds it to self.

Second, the attributes of the superobject (created by the inherit clause, possibly modified by alias and exclude)
are installed in the new object. Fields (defs and varss) thus installed are uninitialised.

Third, the methods of all traits (created by use clauses, possibly modified by alias and exclude, and excluding
those methods inherited unchanged from graceObject) are combined. It is an object composition error for
there to be multiple definitions of a method. This combination of methods is then installed in the new object:
methods in the trait combination override declarations in the superobject.

Fourth, attributes create by local declarations are installed in the new object: local declarations override
declarations from both superobject and traits, except that it is an object composition error for an alias to be
overridden by a local declaration. The term “local declarations” comprises declarations of methods, types
and fields (both defs and varss).

Finally, field initializers and executable statements are executed, starting with the most superior inherited
superobject, and finishing with the initializers of local fields, and local statements. (Note that used objects
must be traits, and therefore contain no executable code.) Initialisers for all defs and vars, and code in the
bodies of parents, are executed once in the order they are written, even for defs or vars that are excluded
from the new object, or aliased to one or more new names. During initialisation, self is bound to the new
object being created, even while executing code and initialisers of parents.

As a consequence of these rules, a new object can change the initialization of its parents, by overriding a
method requested on self by the parents’ initialisers.

6.5.2 Abstract Methods

Methods may be declared to be abstract by annotating the method header with abstract, and omitting the
method body. Abstract methods do not override normal methods. Requesting an abstract method will
generate an error.

6.5.3 Required Methods

Methods may be declared to be required by annotating them as required, and omitting the method body. This
indicates that a normal method with a body must be supplied. Required methods do not conflict with other
methods. In particular, a required local method does not override a method from a parent; instead the parent
is said to supply the requirement. Similarly, a method required by a used trait can be supplied by another
used trait without any conflict. Requesting a required method that has not been supplied will generate an
error.

21



6.5.4 Overriding Methods

A new declaration in the current object overrides a declaration from a parent. Methods may be annotated
with override. A method so annotated must override a method from its parent with the same canonical name.
The override annotation is optional: local methods override parents’ methods with or without the override
annotation. Dialects may require the annotation.

Examples

The example below shows how a class can use a method to override an accessor method for an inherited
variable.
class pedigreeCatColoured (aColour) named (aName) {

inherit catColoured (aColour) named (aName)
var prizes := 0
method miceEaten is override { 0 }

// a pedigree cat would never be so coarse
method miceEaten:= (n:Number) → Number is override { return }

// ignore attempts to debase it
}

Traits are designed to be used as fine-grained components of reuse:
trait feline {

method independent { "I did it my way" }
method move {

if (isOut) then {
comeIn

} else {
goOut

}
}

}

trait canine {
method loyal { "I'm your best friend" }
method move {

if (you.location 6= self.location) then {
self.position := you.heel

}
}

}

In this context, the following object has a trait conflict:
object {

use feline alias catMove = move
use canine alias dogMove = move

}

because the move attribute is defined in two separate traits. In contrast, the following definition is legal:
def nyssa = object {

use feline alias catMove = move
use canine alias dogMove = move
method move {

if (random.choice) then {
catMove

} else {
dogMove

}

22



}
}

Here, the conflict is resolved by overriding with a local move method. This method accesses the overridden
methods from the parent traits using the aliases catMove and dogMove; as a result, nyssa will move either like
a dog or a cat, depending on a random variable.

6.5.5 Overriding Types

If a type declared in the current object has the same name as a type declared in a parent, the two types must
be identical.

6.5.6 Default Methods

All objects implement a number of default methods by inheriting from graceObject. Programmers can override
these implementations with alternative implementations. Type Object contains just the public default
methods.

Method Return value
isMe (other:Object) → Boolean; confidential true if other is the same object as self
myIdentityHash → Number; confidential a hash code characteristic of this object
asString → String a string describing self
asDebugString → String a string describing the internals of self

Notice that graceObject implements neither == nor neq. In the standard dialect, the trait equality is available
to help in their implementation.
trait equality {

method == (other) is required
method hash is required

// should obey invariant (a == b) => (a.hash == b.hash)
method 6= (other) { (self == other).not }
method :: (obj) { binding.key (self) value (obj) }

}

As the is required indicates, an object using this trait must provide an == method, and a corresponding hash
method. One way to define these methods is by combining the equality and hash on the results of all the
observer methods; another is to use the trait identityEquality, which defines == as object identity and hash as
identity hash.
trait identityEquality {

use equality
method == (other) { self.isMe(other) }
method hash { self.myIdentityHash }

}

7 Method Requests

Grace is a pure object-oriented language. All computation proceeds by requesting an object — the target of
the request — to execute a method with a particular name. The response of the target is to execute the
method, and to answer the return value of the method.

23



Grace distinguishes the act of requesting a method (what Smalltalk calls “sending a message”), and executing
that method. Requesting a method happens outside the target object, and involves only a reference to the
target, the method name, and possibly some arguments. In contrast, executing the method involves the code
of the method, which is internal to the target.

Grammar
Request ::= ImplicitRequest

| SelfRequest
| OuterRequest
| DottedRequest

ImplicitRequest ::= RequestPartsWithArguments
SelfRequest ::= "self" <dot> RequestPart
OuterRequest ::= ( "outer" <dot> )+ RequestPart
DottedRequest ::= Term <dot> RequestPart
RequestPart ::= RequestPartNoArguments

| RequestPartsWithArguments
RequestPartNoArguments ::= <id>
RequestPartsWithArguments ::= <id> TypeArguments ArgumentList ( <id> ArgumentList )∗

| <id> TypeArguments
| <id> ArgumentList ( <id> ArgumentList )∗

7.1 Self

The reserved word self refers to the current object. Inside a method, self always refers to the target of the
method-request that caused the method to execute. Elsewhere, self refers to the object being constructed
by the lexically-innermost module, object constructor, class or trait surrounding the word self Hence, the
expression self.x requests x on the current object. Because of inheritance and trait use, this may not be the
definition of x that appears in the current object constructor.

The reserved word Self (capitalised) may appear in an object or in an interface. In an object, it refers to
the type of the object self; in an interface, it refers to the type of which that interface is a part. Because
interfaces can be combined using & and |, the meaning of Self, like that of self, depends on the context in
which it is evaluated.

Examples
self
self.value
self.bar(1,2,6)
self.doThis(3) timesTo("foo")
self + 1
! self

type Copyable = interface { copy → Self }
type Key = interface { unlock(_) → Done }
type CopyableKey = Copyable & Key // the result of the copy method
// in a CopyableKey is also a CopyableKey

7.2 Outer

The reserved word outer refers to the object lexically enclosing the current object; outer.outer (an outer
sequence of length 2) refers to the object enclosing outer, and so on. Note that an outer sequence is not a
request, and that outer is a reserved word, not the name of a message. The expression outer.x requests x on
the object lexically enclosing self.

Grammar

24



Self ::= "self"
Outer ::= "outer"

| ( "outer" <dot> )+ "outer"

Examples
outer
outer.outer.outer.outer
outer.value
outer.bar(1,2,6)
outer.outer.doThis 3 timesTo "foo"
outer + 1
! outer

Because outer is lexical, two methods in the same object may have different outer objects. For example, one
method may be inherited, while the other is defined locally.

7.3 Named Requests

A named method request comprises a receiver, followed by a dot ., followed by a method name, wherein the
parameters have been replaced by expressions that evaluate to the method’s arguments. Note that a request
without arguments does not contain any parentheses.

The receiver is an expression; when evaluated it designates the target of the request. The name of a method,
which determines the position of the argument lists within that name, is chosen when the method is declared
(See Methods). When reading a request of a multi-part method name, you should continue accumulating
words and argument lists as far to the right as possible.

Unlike some other languages, Grace does not allow the overloading of method names by type: the type of the
arguments supplied to the request does not influence the method being requested. However, the number of
arguments in an argument list does determine the method being requested.

Examples
self.clear
self.drawLineFrom (p1) to (p2)
self.drawLineFrom (origin) length (9) angle (pi/6)
self.movePenTo (x, y)
self.movePenTo (p)

7.3.1 Delimited Arguments

Parenthesis may be omitted where they would enclose a single argument that is a numeral, string constructor,
boolean constant (true or false), sequence constructor, block, self or outer sequence. These forms are self-
delimiting, and are readily distinguished from the identifiers that comprise the name of the method being
requested.

Examples
self.drawLineFrom (p1) to (p2)
self.drawLineFrom (origin) length 9 angle (pi/6)
print "Hello World"
while {x < 10} then {

print [a, x, b]
x := x + 1

}

Grammar

25



Request ::= ImplicitRequest
| SelfRequest
| OuterRequest
| DottedRequest

SelfRequest ::= "self" <dot> RequestPart
OuterRequest ::= ( "outer" <dot> )+ RequestPart
DottedRequest ::= Term <dot> RequestPart
RequestPart ::= RequestPartNoArguments

| RequestPartsWithArguments
RequestPartNoArguments ::= <id>
RequestPartsWithArguments ::= <id> TypeArguments ArgumentList ( <id> ArgumentList )∗

| <id> TypeArguments
| <id> ArgumentList ( <id> ArgumentList )∗

7.3.2 Implicit Requests

If the receiver of a method request is self or an outer sequence, the receiver may be left implicit, i.e., the self
or outer sequence, and the following dot, may both be omitted. An implicit request is interpreted as a self
request, or as an outer request on an outer sequence of the appropriate length.

When interpreting an implicit request of a method named m, the usual rules of lexical scoping apply, so a
definition of m in the current scope will take precedence over any definitions in enclosing scopes. However, if
m is defined in the current scope by inheritance or trait use, rather than directly, and also defined directly in
an enclosing scope, then an implicit request of m is ambiguous, and is an error.

Implicit requests are always resolved lexically, that is, in the nested scope in which the implicit request is
written, and not within the scope of any object (class, or trait) that may inherit the method containing the
implicit request.

Examples of Implicit Requests
print "Hello world"
size
canvas

Example of Implicit Request Resolution
method foo { print "outer" }

class app {
method barf { foo }

}

class bar {
inherit app
method foo { print "bar" }

}

class baz {
inherit bar
method barf { foo } // ambiguous − could be self.foo or outer.foo

}

app.barf // prints "outer"
bar.barf // prints "outer"

Grammar
ImplicitRequest ::= RequestPartsWithArguments

26



7.4 Assignments and Assignment Requests

An assignment is a variable followed by := ; an assignment request is a request of a method whose name ends
with :=. In both cases the := is followed by a single argument, which need not be surrounded by parentheses.
Spaces are optional before and after the :=.

An assignment binds the variable to the value of the argument, and returns done. An assignment method
executes the method body; by convention, assignment methods also return done;

Examples
x := 3
y:=2
widget.active := true

Grammar
Assignment ::= Identifier ":=" Expression

| AssignmentRequest
AssignmentRequest ::= Term <dot> <id> ":=" Expression

| "self" <dot> <id> ":=" Expression
| ( "outer" <dot> )+ <id> ":=" Expression

7.5 Binary Operator Requests

Binary operators are methods whose names are <operator>s Binary operators have a receiver and one
argument; the receiver must be explicit.

Most Grace operators have the same precedence: it is a syntax error for two distinct operator symbols to
appear in an expression without parenthesis to indicate order of evaluation. The same operator symbol can
be requested more than once without parenthesis; such expressions are evaluated left-to-right.

Four binary operators do have precedence defined between them: / and ∗ bind more tightly than + and −.

Examples
1 + 2 + 3 // evaluates to 6
1 + (2 ∗ 3) // evaluates to 7
(1 + 2) ∗ 3 // evaluates to 9
1 + 2 ∗ 3 // evaluates to 7
1 +∗+ 4 −∗− 4 // precedence error

Examples

Named method requests without arguments bind more tightly than operator requests.

Grace Parsed as
1 + 2.i 1 + (2.i)
(a ∗ a) + (b ∗ b).sqrt (a ∗ a) + ((b ∗b).sqrt)
((a ∗ a) + (b ∗ b)).sqrt ((a ∗ a) + (b ∗b)).sqrt
a ∗ a + b ∗ b (a ∗ a) + (b ∗b)
a + b + c (a + b) + c
a − b − c (a − b) − c

Grammar
BinaryRequest ::= Factor ( <operator> TypeArguments? Factor )+

27



7.6 Unary Prefix Operator Requests

Grace supports unary methods named by operator symbols that precede the explicit receiver. (Since binary
operator requests must have an explicit receiver, there is no syntactic ambiguity.)

Prefix operators bind less tightly than named method requests, and more tightly than binary operator
requests.

Examples
−3 + 4
(−b).squared
−(b.squared)
− b.squared // parses as −(b.squared)

status.ok := !engine.isOnFire && wings.areAttached && isOnCourse

Grammar
UnaryRequest ::= <operator> TypeArguments? Term

7.7 Precedence of Method Requests

The precedence of method requests is defined by Grace’s Grammar. The grammar implies the following
precedence levels, where lower numbers bind more tightly.

1. Numerals and constructors for strings, objects, collections, blocks, and types; parenthesized expressions.
2. Requests of named methods. Multi-part requests accumulate name-parts and arguments as far to the

right as possible.
3. Prefix operators.
4. Infix operators, whose binding must be given explicitly using parenthesis, except that a repeated

sequence of the same operator need not be parenthesized, and associates to the left.
5. Assignments, and method requests that use := as a suffix to a method name.

There is one exception to the rule that the binding between infix operators must be given explicitly: *
“multiplicative” operators ∗ and / are left-associative, and bind more tightly than * “additive” operators +
and −, which also left associative.

7.8 Requesting Methods with Type Parameters

Methods that have type parameters may be requested with or without explicit type arguments. If type
arguments are supplied there must be the same number of arguments as there are parameters. If type
arguments are omitted, they are assumed to be Unknown.

Examples
sumSqJNumberK(1, 20)

sumSq(1, 20)

7.9 Manifest Expressions

The parent expressions in inherit parent and use parent statements must be manifest. This means that Grace
must be able to determine the fields and methods defined in the object that is being inherited on a module-
by-module basis.

28



If parent is an implicit request, it is first converted to an explicit request by applying the disambiguation rules
for Implicit Requests. Once disambiguated, let the parent expression be r.p1.p2. . . . .pn, where the pi are
canonical names. The expression r.p1.p2. . . . .pn is manifest if the receiver r is

1. bound to a module in an import statement, or
2. an outer sequence that refers to a module

and, for all i, pi is defined in a DefDeclaration a MethodDeclaration, or a ClassDeclaration, and the value bound
to, or returned by, pi is an object.

Note that the arguments to a manifest expression need not themselves be manifest.

Example

Consider a module containing the following code:
class a {

class x {
method one {}
method two {}

}

class b {
inherit outer.outer.a.x

// this uniquely defines x, without the possibility of overriding
method three { ... }

}
}

Suppose that the current module imports the above module with nickname m, and that the current module
defines a class c that inherits m.a and overrides x:
import "module above" as m
class c {

inherit m.a
class x { ... }

}

If class b were to simply inherit x, then c.b would acquire the fields and methods of this overriding x — which
are unknown to m. By writing outer.outer to refer to the module enclosing a the parent expression in b’s
inherit statement is made to refer to x lexically that is, the parent expression becomes manifest (rule 2 above).

7.10 Fresh Objects

The parent expression in inherit parent and use parent statements must return a fresh object, that is, a newly-
created object to which there is no other reference.

1. An object returned from a method that is defined using the class or trait syntax is always fresh.

2. Any method that contains no return statements, and whose final statement is (or returns) an object
constructor, returns a fresh object.

3. Any method that contains no return statements, and whose final statement is (or returns) a Manifest
Expression that yields a fresh object, itself returns a fresh object.

29



8 Pattern Matching

Pattern matching is based on Pattern objects that respond to the matches(subject) request by returning a
Boolean, which is either false if the match fails, or true if the match succeeds.

• All type objects are Patterns, which match objects that have that type.

• Numbers, Booleans and Strings are self-matching: they are patterns that match themselves. So, 5 is a
pattern that matches the number 5, and true is a pattern that matches the Boolean true.

• The prefix operations <, ≤, > and ≥ on numbers return appropriate patterns, so ≥5 is a pattern that
matches any number greater than or equal to 5.

• In addition, libraries supply Patterns, and programmers are free to implement their own Patterns.

• Patterns can be combined with the pattern operators & (for and), | (or), and prefix neg (not).

Example

Suppose that the type Point is defined by:
type Point = {
x → Number
y → Number

}

and implemented by this class:
class x(x':Number) y(y':Number) → Point {
method x { x' }
method y { y' }

}

we can write
def cp = x(10) y(20)

Point.matches(cp) // true
Point.matches(42) // false

8.1 Blocks as Patterns

Blocks are also patterns, that is, they respond to the request matches(_) as well as apply(_). When apply(_)
would raise a type error because the block’s argument would not conform to its parameter type, matches(_)
returns false.

The parameter declarations of a block take the form Identifier PatternOption, rather than Identifier TypeOption.
This means that the annotation after the : can be any Expression that evaluates to a Pattern, and is not
restricted to being a TypeExpression.

If the Identifier in the BlockParameter is _, and the PatternOption is not empty, then the underscore and the
following colon can be omitted, provided that the pattern is not an identifier, that is, if it is parenthesized, or
is a string constructor, a boolean literal, or a numeral. This rule (the delimited argument rule) means that
the pattern can be distinguished from the declaration of a parameter to the block.

Grammar

30



BlockParameter ::= Identifier PatternOption
| NonIdExpression

PatternOption ::= Empty
| ":" Expression

NonIdExpression ::= BinaryRequest
| NonIdFactor

NonIdFactor ::= NonIdTerm
| ObjectConstructor
| UnaryRequest

NonIdTerm ::= DelimitedTerm
| InterfaceLiteral
| UnknownType
| SelfType
| Request
| Ellipsis

8.2 Match . . . case . . . else

Matching blocks and self-matching objects can be conveniently used in the match(_)case(_)...else(_) family of
methods; case may appear multiple times, with a block as argument. The else is optional; if present, it must
be followed by a parameterless block.

If more than one of the case patterns is true, a MatchError is raised. If none of the case patterns is true, the
else block is executed, if there is one; if not, a MatchError is raised.

Examples
once method fib(n:Number) → Number {

match (n)
case { 0 → 0 }
case { 1 → 1 }
case { >1 → fib(n−1) + fib(n−2) }

}

The patterns in the first two blocks use self-matching objects. { 0 → 0 } is short for { _:0 → 0 }. The first
two cases could be combined into { 0|1 → n }. The pattern in the third block uses the prefix > operator to
create a pattern that matches any number greater than 1.

If fib is requested with a negative argument, none of the pattern blocks will match, and a MatchError will be
raised.
{ 0 → "Zero" }

// match against the Number literal 0

{ s:String → print(s) }
// match against the type String, binding s − identical to block with typed parameter

{ (pi) → print "Pi = {pi}" }
// match against the value of an expression − requires parenthesis

{ a → print "did not match" }
// match against the empty type annotation; equivalent to a:Unknown.
// This matches any object, and binds it to `a`, and hence
// is not useful in combination with other case−matching blocks

31



9 Exceptions

Grace supports exceptions (more precisely, exception packets), which can be raised and caught. At the
site where an exceptional situation is detected, an exception is raised by requesting the raise method on an
ExceptionKind object, with a string argument explaining the problem, and an optional data object.

Raising an exception does two things: it creates an ExceptionPacket object of the specified kind, and terminates
the execution of the expression containing the raise request. It is not possible to restart or resume that
execution. Execution continues when the exception is caught.

Examples
BoundsError.raise "index {ix} not in range 1..{n}"
UserException.raise "impossible happened"

9.1 Kinds of Exception

Grace defines a hierarchy of kinds of exception; each kind of exception corresponds to a different kind of
exceptional situation. All exceptions have the same type, that is, they understand the same set of requests. A
hierarchy of exception kinds is used to classify exceptions.
type ExceptionKind = Pattern & {

parent → ExceptionKind
// answers the ExceptionKind that is the parent of this exception in the
// hierarchy. The parent of Exception is defined to be Exception. The parent
// of any other ExceptionKind is the object that was refined to create it.

refine (name:String) → ExceptionKind
// answers a new ExceptionKind object, which is a refinement of self.

name → String
// answers the name given when this ExceptionKind object was created.

raise (message:String) → None
// creates an exception of this kind, terminating the current execution,
// and transferring control to an appropriate handler.

raise (message:String) with (data:Object) → None
// similar to raise(_), except that the object data is associated with the
// new exception.

== (other:Object) → Boolean
// answers true if other is an ExceptionKind such that parent == other.parent
// and name = other.name, otherwise false.

}

The root of the hierarchy of ExceptionKinds is Exception; all other ExceptionKinds are (direct or indirect)
refinements of Exception. The name of Exception is "Exception", and the parent of Exception is Exception itself.

Because ExceptionKinds are also Patterns, they support the pattern protocol (matches, &, and |). This means
that ExceptionKinds can be used as the patterns of the catch blocks in a try(_)catch(_). . . finally(_) construct.
An ExceptionKind object e matches any exception raised from e', and any exception raised by a refinement of
e', for all e' == e.

Grace defines three direct refinements of Exception:

• EnvironmentException: those exceptions arising from interactions between the program and the environ-
ment, including network exceptions, file system exceptions, and inappropriate user input.

32



• ProgrammingError: exceptions arising from programming errors. Examples are IndexOutOfBounds,
NoSuchMethod, and NoSuchObject.

• ResourceException: exceptions arising from an implementation insufficiency, such as running out of
memory or disk space.

Notice that there is no category for “expected” exceptions. This is deliberate; expected events should not be
represented by exceptions, but by other values and control structures. For example, if you you have a key
that may or may not be in a dictionary, you should not request the at method and catch the NoSuchObject
exception. Instead, you should request the at(_)ifAbsent(_) method.

9.2 Exception Packets

Exception packet objects are generated when an exception is raised.
type ExceptionPacket = type {

exception → ExceptionKind // the exceptionKind that raised this exception.
message → String // the message provided when this exception was raised.

data → Object // the data object associated with this exception
// when it was raised, if there was one. Otherwise,
// the string "no data".

lineNumber → Number // the source−code line of the raise request
// that created this exception.

moduleName → String // the name of the module containing the raise
// request that created this exception.

backtrace → ListJStringK
// a description of the call stack at the time that this exception was raised.
// backtrace.first is the initial execution environment; backtrace.last is the
// context that raised the exception.

}

The data field of an ExceptionPacket may be populated with any object by requesting raise(_)with(_) on an
ExceptionKind object. For example:
MyException.raise "A message" with (dataObject)

The dataObject is stored in the exception packet so that it can be used (if desired) when the exception is
caught.

9.3 Catching Exceptions & Final Actions

An exception in expression can be caught by a dynamically-enclosing try(_)catch(_)... or try(_)catch(_)...finally(_)
request, which takes the following form.
try { expression }

catch { e1:Exception_1 → block_1 }
...
catch { en:Exception_n → block_n }
finally { finalBlock }

If an exception is raised during the evaluation of expression, the catch blocks are attempted, in order, until
one of them matches the exception. If none of them matches, then the process of matching the exception
continues in the dynamically-surrounding try(_)catch(_). . . finally(_).

33



The clause finally { finalBlock } is optional. If present, finalBlock is always executed before control leaves the
try(_)catch(_). . . finally(_) construct, whether or not an exception is raised, and whether or not expression, or
one of the catch blocks, executes a return.

The value of a try(_)catch(_)...finally(_) request is the last value in expression, unless an exception is raised, in
which case it is the the last value in whichever catch-block catches the exception. If the finalBlock executes to
completion, its value is ignored.

If finalBlock terminates by raising an exception, or by executing a return, any prior return or raised exception
is forgotten.

Examples
try {

def f = io.open("data.store", "r")
} catch {

e: NoSuchFile → print "{e.message}\nFile does not exist."
} catch {

e: PermissionError → print "Permission denied"
} catch {

_: Exception → print "Unidentified Error"
system.exit(1)

} finally {
f.close

}

A single handler may be defined for more than one kind of exception using the | pattern combinator:
try {

try_block
} case { e:MyError | AnotherError →

handler
}

handler will be run when either MyError or AnotherError is raised inside the try_block.

10 Types

Grace uses structural typing, as do Modula-3 and WhiteOak. Malayeri and Aldrich discuss the differences
between nominal and structural typing.

Types primarily describe the requests that objects can answer. Fields do not directly influence types, except
that a field that is public, readable or writable is treated as the appropriate method or methods.

Type names introduced by type declarations are treated as expressions that denote type objects. All type
objects are also patterns, so they can be used in pattern matching, typically to perform dynamic type tests.

Because type declarations cannot be changed by overriding, the value of a type expression can always be
determined before the program is executed; this means that types can be checked statically. Dialects can
implement a variety of static typing regimes.

10.1 Predeclared Types

A number of types are declared in the standard dialect, and included in most other dialects, including
None, Done, Boolean, Object, Number, String, Functionn, Proceduren, Predicaten, Iterator, Pattern, ExceptionPacket,
ExceptionKind, and Type.

34

https://www.cs.purdue.edu/homes/hosking/m3/reference/
http://doi.acm.org/10.1145/1449764.1449771
http://www.cs.cmu.edu/~donna/public/ecoop08.pdf


10.1.1 Type None

Type None has all methods. It is “uninhabited”, that is, no actual object has type None.

10.1.2 Type Object

In standard, type Object includes just the public Default Methods declared in graceObject.
type Object = interface {

asString → String // a string for use by the client
asDebugString → String // a string for use by the implementor

}

Notice that isMe, and myIdentityHash, although present in graceObject, are not present in type Object, because
they are confidential.

10.1.3 Type EqualityObject

In standard, type EqualityObject adds the family of equality methods to Object:
type EqualityObject = Object & interface {

::(value:Object) → Binding
==(other:Object) → Boolean
6=(other:Object) → Boolean
hash → Number
prefix == → Pattern

}

10.1.4 Type Self

The type Self represents the public interface of the current object. Self is prohibited as the annotation on
parameters, but can be used to annotate results.

10.1.5 Types Function, Procedure, and Predicate

The type Function0JTK describes a block with zero parameters that returns a result of type T. Function1JA1,TK
describes a block with one parameter of type A1 and a result of type T. Function2JA1, A2,TK describes a block
with two parameters of types A1 and A2, and and a result of type T. Function3JA1, A2, A3, TK describes a
block with three parameters of types A1, A2, and A3, and and a result of type T.

The type Proceduren (where n = 0, 1, 2, or 3) is like Functionn, except that the result type is Done. The type
Predicaten (where n = 0, 1, 2, or 3) is like Functionn, except that the result type is Boolean. So, for example,
Predicate1JA1K is the type of an object with an apply method that expects an argument of type A1, and returns
a Boolean.

10.1.6 Type Unknown

Unknown is not actually a type, although it is treated as a type by the type checker. It is similar to the type
label “Dynamic” in C#. Unknown can be written explicitly as a type annotation; moreover, if a declaration
is not annotated, then the type of the declared name is implicitly Unknown. Omitted type arguments are also
equivalent to Unknown.

35



Static type-checking against Unknown will always succeed: any object matches type Unknown, and type Unknown
conforms to all other types.
Examples
var x:Unknown := 5 // who knows what the type is?
var x := 5 // same here, but Unknown is implicit
x := "five" // who cares
x.gilad // almost certainly raises NoSuchMethod

method id(x) { x } // argument and return types both implicitly Unknown
method id(x:Unknown) → Unknown { x } // same thing, explicitly

10.1.7 Type Type

All types have type Type, which is defined as
type TypeJTK = interface {

name → String // the name of this type
isNone → Boolean // true for the type None, otherwise false
matches (value:Object) → Boolean
& (other:Type) → Type
| (other:Type) → Type
+ (other:Type) → Type
:> (other:Type) → Boolean // other conforms to self
<: (other:Type) → Boolean // self conforms to other
:=: (other:Type) → Boolean // (self <: other) && (other :> self)
== (other:Type) → Boolean // object identity
6= (other:Type) → Boolean
hash → Number
interfaces → SequenceJInterfaceK
subject → Type // the parameter T
asString → String
asDebugString → String

}

This type captures the idea that a type is a disjunction of interfaces. The interface literal syntax defines
a type containing a single interface, so the interfaces method of an interface returns a sequence of length 1
containing itself. (The object identity operation is necessary to avoid infinite regress when comparing two
recursive types for conformity.)
type InterfaceJTK = TypeJTK & interface {

methods → DictionaryJString, SignatureK
// keys are the canonical names of the methods,
// and values their signatures

− (other:Interface) → Interface
}

type Signature = interface {
name → String

// the canonical name of the method
arguments → SequenceJTypeK

// the types of the parameters, in order
result → Type

// the type of the result
}

These types say that each interface comprises a mapping from (canonical) method names to method signatures,
and a mapping from type names to type objects. Each Signature comprises the (canonical) name of the
method, the types of its arguments, and the type of its result.

36



10.2 Interfaces and Interface Literals

Interfaces characterize objects by detailing their public methods, and the types of the parameters and results
of those methods. A readable field x:T is equivalent to a method x → T, and a writable field y:T is equivalent
to a method y:=(nu:T) → Done. A declaration type N = TypeExpr is represented in the interface by a method
N → TypeJTypeExprK

The various cat object constructors and classes described above (Objects, Classes, and Traits) create objects
that conform to this interface:
interface {

colour → Colour
name → String
miceEaten → Number
eatMouse → Done
asString → String
asDebugString → String

}

Note that the public methods of graceObject, inherited by the cat objects, are included in the interface literal,
but confidential methods are excluded.

For commonality with method declarations, parameters are normally named in interface literals. These names
are useful when writing specifications of the methods. If a parameter name is omitted, it must be replaced by
an underscore, as in method at(_) ifAbsent(_). The type of a parameter or result may be omitted, in which
case the type is Unknown.

10.3 Type Declarations

Types, including parameterized types, may be named in type declarations. By convention, the names of types
start with an uppercase letter.

Types are disjunctions of interfaces; interfaces are sets of methods. An interface literal consists of the keyword
interface followed by an opening brace, a sequence of method signatures, and a closing brace. Type declarations
may not be overridden.

Examples
type MyCatType = interface {
// I care about just names and colours
color → Colour
name → String

}

type MyParametricTypeJA,B
where A <: Hashable, B <: DisposableReferenceK = interface {
at (_:A) put (_:B) → Boolean
cleanup(_:B)

}

Grammar
TypeDeclaration ::= "type" Identifier TypeParameterList Annotations "=" TypeExpression
TypeParameterList ::= Empty

| "J" TypeParameter ( "," TypeParameter )∗ Where "K"
InterfaceLiteral ::= "interface" "{" "}"

| "interface" "{" Signature ( Ss Signature )∗ "}"
TypeExpression ::= Type ( <typeOperator> TypeArguments? Type )∗
Where ::= Empty

37



| "where" WhereCondition ( "," WhereCondition )∗
WhereCondition ::= <id> <typeRelation> Type

10.4 Type Conformance

The key relation between types is conformance. We write B <: A to mean B conforms to A; that is, that
B has all of the methods of A, and perhaps additional methods (and that the corresponding methods have
conforming signatures). This can also be read as “B is a subtype of A”, or “A is a supertype of B”.

We now define the conformance relation more rigorously. This section draws heavily on the wording of the
Modula-3 report.

If B <: A, then every object of type B is also an object of type A. The converse does not apply.

If A and B are interfaces, then B <: A if and only if, for every method with canonical name m in A, there is a
method with the same canonical name m in B such that

• If the method m in A has signature m(P1, ... ,Pk)n(Pk+1, ... ,Pn)... → R, and m in B has signature
m(Q1,...,Qk)n(Qk+1,...,Qn)... → S, then

– parameter types must be contravariant: Pi <: Qi
– results types must be covariant: S <: R

10.5 Composite types

Grace offers a number of operators to compose types.

10.5.1 Variant Types

The expression T1 | T2 | ... | Tn signifies an untagged, retained variant type. When a variable or method is
annotated with a variant type, that variable may be bound to, or that method may return, an object of any
one of the component types T1, T2, . . . , Tn. No objects actually have variant types, only expressions. The
type of an object referred to by a variant variable (as determined by the type annotations in its declaration)
can be examined using that object’s reified type information.

The only methods in the static type of a receiver with a variant type are methods present in all members of
the variant.

Variant types are not equivalent to the object type that describes all common methods. This is so that the
exhaustiveness of match()case( ). . . statements can be determined statically. Thus the rules for conformance
are more restrictive:
S <: (S | T)
T <: (S | T)
(S' <: S) & (T' <: T) ==> (S' | T') <: (S | T)

Example

To illustrate the limitations on conformance of variant types, suppose
type S = {m: A → B, n: C → D}
type T = {m: A → B, k: E → F}
type U = {m: A → B}

Then U fails to conform to S | T even though U contains all methods contained in both S and T.

38

https://www.cs.purdue.edu/homes/hosking/m3/reference/


10.5.2 Intersection Types

An object conforms to an Intersection type, written T1 & T2 & ... & Tn, if and only if that object conforms to
all of the component types. The main uses of intersection types is for augmenting types with new operations,
and as type bounds in where clauses.
(S & T) <: S
(S & T) <: T
U <: S; U <: T; <==> U <: (S & T)

Examples
type ListJTK = SequenceJTK & interface {

add(_:T) → ListJTK
remove(_:T) → ListJTK

}

class happyJTK(param: T) → Done
where T <: (ComparableJTK & Printable & Happyable) {

...
}

10.5.3 Union Types

Structural union types (sum types), written 1 + 2 + ... + Tn, are the dual of intersection types. A union type
T1 + T2 has the interface common to T1 and T2. Thus, a type U conforms to T1 + T2 if it has a method
that conforms to each of the methods common to T1 and T2. Union types are included for completeness;
variant types subsume most uses of unions.

S <: (S + T)
T <: (S + T)

10.5.4 Type Subtraction

A type subtraction, written T1 − T2 has the interface of T1 without any of the methods in T2. The signatures
of the methods in T2 are irrelevant.

10.5.5 Nested Types

Type declarations may be nested inside objects, and hence also inside classes and traits. This allows types to
be declared in, and imported from, other modules. Such declarations can be accessed by making requests on
the containing object. Because type declarations cannot be overridden, such requests are Manifest Requests.

10.6 Type Annotations

When parameters, fields, and method results are annotated with types, the programmer can be confident
that objects bound to those parameters and fields, and returned from those methods, do indeed have the
specified types, insofar as Grace has the required type information. The checks necessary to implement this
guarantee may be performed statically or dynamically.

39



10.6.1 Static Type Checking

When implementing the static type check, types specified as Unknown will always conform. So, if a variable is
annotated with type

interface {
add(Number) → CollectionJNumberK
removeLast → Number

}

an object with type
interface {

add(Unknown) → CollectionJUnknownK
removeLast → Unknown
size → Number

}

will pass the type test. Of course, the presence of Unknown in the type of the object means that a subsequent
type error may still occur. For example, the code of the add(_) method might actually depend on being given
a String argument, or the collection returned from add(_) might contain Booleans.

Static type checking is implemented by dialects; various static typing dialects may impose varied restrictions
on Grace.

10.6.2 Dynamic Type Checking

Currently, the dynamic interpretation of types is shallow, that is, it considers only the methods present in an
interface, and not the types of the arguments or the results of those methods. This is because, in the absence
of type annotations, Grace has no information about the argument types or the return type of a method.
This means that if programmers annotate a declaration
var x:Number

they can be sure that any object assigned to x has a method +(_), but are not assured that this +(_) method
will expect an argument that is also a Number, nor that the result will be a Number, even though these details
are part of the Number interface. Similarly, when the operators <:, :> and == between types are evaluated
dynamically, argument and result types are ignored, even if they are present in the type definitions.

This treatment is types not entirely satisfactory, and is subject to review and change.

Examples
assert (B <: A) description "B does not conform to A"
assert (B <: interface { foo(_) } ) description "B has no foo(_) method"
assert (B <: interface {foo(_:C) → D} ) description "B has no foo(_) method"
assert (B == (A | C)) description "B is neither an A or a C"

11 Modules and Dialects

Grace programs can be divided into multiple modules. A module is typically used to define library functionality.

11.1 Modules

A module is defined in a implementation-dependent fashion, typically by creating a file containing Grace code.
The text of the file is treated as the body of an object constructor, so it may contain both declarations and
executable code. When a module is loaded, this object constructor is executed, resulting in a module object.

40



11.1.1 Importing Modules

Modules may begin with one or more import moduleName as nickname statements, where moduleName is a
string literal that identifies the module to be imported in an implementation-dependent manner. For example,
moduleName may be a file path. In the importing module, nickname is used to refer to the imported module
object; nickname is confidential by default, but can be annotated as public.

Because importing a module creates a module object, public attributes of an imported module are accessed
by requesting a method on the module’s nickname. Confidential attributes are not visible to the importing
module.

Example
import "list" as list is public
import "sparseMatrix" as matrix

Grammar
Import ::= "import" StringLiteral "as" Identifier Annotations

11.1.2 Executing a Module

Grace programs are executed by asking the execution environment to run a particular module, which may be
thought of as the “main” module. Grace loads and initialises all transitively imported modules in depth-first
order, thus executing the “main” module last, after all its dependencies have been loaded. Each imported
module is loaded just once, the first time it is reached: importing the same moduleName multiple times
results in the same module object. Circular module dependencies are errors.

Examples

cat.grace module:
import "animals" as a
print "initialising cat module"
class cat {

inherit a.mammal
method species { "cat" }

}
print "cat module done"

animals.grace module:
print "initialising animals module"
class mammal {

method asString { "I am a {species}" }
method species { "mammal" }

}
print "animals module done"

will print:
initialising animals module
animals module done
initialising cat module
cat module done

11.2 Dialects

Grace dialects support language levels for teaching, and domain-specific “little” languages. A module may
begin with a dialect statement dialect "name", where the dialect keyword is followed by a string literal.

41



The effect of the dialect statement is to import the dialect like any other module, but to nest the module
that uses the dialect inside an enclosing scope that contains the public definitions of the dialect. This means
that Implicit Requests in the module can resolve to the definitions in the dialect.

Many features built in to other programming languages are obtained from dialects in Grace: this includes
intrinsic type declarations, classes, traits, control structures, and even the graceObject trait that defines the
default methods.

Modules that do not declare a dialect are treated as being written in the dialect standard. If a module really
wishes to use no dialect, it should specify dialect "none".

In addition to declarations, a dialect can also define a checker that examines the parse tree or syntax tree of
any module written in the dialect, and generates errors. This enables a dialect to restrict the language of its
modules to a subset of the full Grace language.

Examples

The bcpl.grace module might declare an unless(_)do(_) control structure that is like if, but backwards.

bcpl.grace module:
method do (block: Function0) unless (test: Boolean) {

if (test.not) then (block)
}

A module written in this dialect can use that control structure as if it were built in:

example.grace module:
dialect "bcpl"
...
do { average := sum / count } unless (count == 0)

Grammar
Dialect ::= "dialect" StringLiteral

11.3 Module and Dialect Scopes

The module scope of a Grace module contains all declarations at the top level of the module, including the
nicknames introduced by import declarations.

Surrounding the module scope is the dialect scope, which contains all public declarations at the top level of
the module that defines the dialect. That is, the public names at the top level of the dialect are treated as
being in a scope surrounding that of any module written in that dialect. Confidential names are not visible.

Lexical lookup stops at the dialect scope: it does not extend to the scope surrounding the dialect (which
would contain any other dialects used to implement the current dialect). These rules allow dialects to import
modules, and to be written in other dialects, without those other definitions polluting the language defined
by the dialect.

12 Pragmatics

The distribution medium for Grace programs, objects, and libraries is Grace source code.

Grace source files should have the file extension .grace. If, for any bizarre reason a trigraph extension is
required, it should be .grc

Grace files may start with one or more lines beginning with #: these lines are ignored by the language, but
may be interpreted as directives by an implementation.

42



12.1 Garbage Collection

Grace implementations should be garbage collected. Garbage collection may occur at any backwards branch,
at any method request, and at any point where an object is constructed. Grace does not support finalization.

12.2 Concurrency

The core Grace specification does not describe a concurrent language. Various concurrency models may be
provided as dialects. The details remain to be specified.

13 Acknowledgements

We thank Michael Homer and Tim Jones for working on early implementations of Grace, and Josh Bloch,
Cay Horstmann, Michael Kölling, Doug Lea, Ewan Tempero, Laurence Tratt, and the participants at the
Grace Design Workshops and IFIP WG2.16 on Programming Language Design meetings for discussions about
the design of Grace.

14 Grammar

The following extended BNF defines the context-free syntax of Grace. Productions are arranged in alphabetical
order.

• A star ∗ indicates zero or more repetitions of the previous item,
• a plus + indicates one or more repetitions, and
• a question mark ? indicates that the previous item is optional.
• Parenthesis ( and ) group terminals and non-terminals.
• Terminal symbols are enclosed in "quotes"; the following additional terminals are in <angle brackets>:

– <id> is an identifier: a sequence of letters, digits, single quotes ' and underscores, starting with a
letter, as described in the Section on Identifiers

– <newline> is a line break, as described in the Section on newlines
– <dquote> is a double-quote character "
– <dot> is a full stop (also known as a period)
– <operator> is a sequence of operator characters
– <decimalNumeral>, <baseExponentNumeral>, and <explicitRadixNumeral> are described in the Section

on Numbers
– <stringSegment> is a sequence of characters that does not include an unescaped ", newline, or {; it

may contain the string escapes.
– <uninterpretedString> is a sequence of any characters except ›, the closing guillemet quotation mark;

see the Section on Uninterpreted Strings
– <typeRelation> is one of <:, :>,<∗, or ∗>

AliasClause ::= "alias" MethodHeader "=" MethodHeader

AnnotationArgList ::= "(" Expression ( "," Expression )+ ")"
| Numeral
| String
| SequenceConstructor
| SpecialTerm
| "(" Expression ")"

43



AnnotationLabel ::= <id>
| <id> TypeArguments AnnotationArgList ( <id> AnnotationArgList )∗
| <id> TypeArguments
| <id> AnnotationArgList ( <id> AnnotationArgList )∗

Annotations ::= Empty
| "is" AnnotationLabel ( "," AnnotationLabel )∗

ArgumentList ::= DelimitedTerm
| "(" Expression ( "," Expression )+ ")"

Assignment ::= Identifier ":=" Expression
| AssignmentRequest

AssignmentMethodHeader ::= Identifier ":=" TypeParameterList SingleMethodParameter

AssignmentRequest ::= Term <dot> <id> ":=" Expression
| "self" <dot> <id> ":=" Expression
| ( "outer" <dot> )+ <id> ":=" Expression

BinaryMethodHeader ::= <operator> TypeParameterList SingleMethodParameter

BinaryRequest ::= Factor ( <operator> TypeArguments? Factor )+

Block ::= "{" BlockParameterList "→" Ss? ( Statement ( Ss Statement )∗ )? "}"
| "{" ( Statement ( Ss Statement )∗ )? "}"

BlockParameter ::= Identifier PatternOption
| NonIdExpression

BlockParameterList ::= BlockParameter ( "," BlockParameter )∗

Boolean ::= "true"
| "false"

ClassDeclaration ::= "class" MethodHeader ReturnTypeOption Annotations ObjectBody?

Declaration ::= VarDeclaration
| DefDeclaration

DefDeclaration ::= "def" Identifier TypeOption Annotations ( "=" Expression )?

DelimitedTerm ::= Numeral
| Block
| String
| SequenceConstructor
| SpecialTerm
| "(" Expression ")"

Dialect ::= "dialect" StringLiteral

DottedRequest ::= Term <dot> RequestPart

Ellipsis ::= "..."

Empty ::=

44



ExcludeClause ::= "exclude" MethodHeader

Expression ::= BinaryRequest
| Factor

Factor ::= Term
| ObjectConstructor
| UnaryRequest

Identifier ::= <id>

ImplicitRequest ::= RequestPartsWithArguments

Import ::= "import" StringLiteral "as" Identifier Annotations

InheritStatement ::= "inherit" Expression ( ReuseModifier )∗

InterfaceLiteral ::= "interface" "{" "}"
| "interface" "{" Signature ( Ss Signature )∗ "}"

MethodBody ::= "{" ( Statement ( Ss Statement )∗ )? "}"

MethodDeclaration ::= "once"? "method" MethodHeader ReturnTypeOption Annotations MethodBody?

MethodHeader ::= AssignmentMethodHeader
| ParameterizedMethodHeader
| ParameterlessMethodHeader
| BinaryMethodHeader
| UnaryMethodHeader

MethodParameter ::= Identifier TypeOption

MethodParameterList ::= "(" MethodParameter ( "," MethodParameter )∗ ")"

Module ::= Ss? ( Pragma Ss )∗ ( Dialect Ss )? ( ObjectItem Ss )∗ ObjectItem?

NonIdExpression ::= BinaryRequest
| NonIdFactor

NonIdFactor ::= NonIdTerm
| ObjectConstructor
| UnaryRequest

NonIdTerm ::= DelimitedTerm
| InterfaceLiteral
| UnknownType
| SelfType
| Request
| Ellipsis

Numeral ::= <decimalNumeral>
| <baseExponentNumeral>
| <explicitRadixNumeral>

ObjectBody ::= "{" ( ObjectItem ( Ss ObjectItem )∗ )? "}"

45



ObjectConstructor ::= "object" Annotations ObjectBody

ObjectItem ::= Statement
| MethodDeclaration
| TypeDeclaration
| ClassDeclaration
| TraitDeclaration
| UseStatement
| InheritStatement

Outer ::= "outer"
| ( "outer" <dot> )+ "outer"

OuterRequest ::= ( "outer" <dot> )+ RequestPart

ParameterizedMethodHeader ::= <id> TypeParameterList MethodParameterList ( <id> MethodParameterList )∗

ParameterlessMethodHeader ::= <id> TypeParameterList

PatternOption ::= Empty
| ":" Expression

Pragma ::= "#pragma" <id>

Request ::= ImplicitRequest
| SelfRequest
| OuterRequest
| DottedRequest

RequestPart ::= RequestPartNoArguments
| RequestPartsWithArguments

RequestPartNoArguments ::= <id>

RequestPartsWithArguments ::= <id> TypeArguments ArgumentList ( <id> ArgumentList )∗
| <id> TypeArguments
| <id> ArgumentList ( <id> ArgumentList )∗

Return ::= "return" Expression?

ReturnTypeOption ::= Empty
| "→" TypeExpression

ReuseModifier ::= ExcludeClause
| AliasClause

Self ::= "self"

SelfRequest ::= "self" <dot> RequestPart

SelfType ::= "Self"

SequenceConstructor ::= "[" "]"
| "[" Expression ( "," Expression )∗ "]"

Signature ::= MethodHeader ReturnTypeOption
| Ellipsis

46



SingleMethodParameter ::= "(" MethodParameter ")"

SpecialTerm ::= Self
| Outer
| Boolean

Ss ::= ";"
| <newline>
| Ss ( ";" | <newline> )

Statement ::= Expression
| Declaration
| Assignment
| Return
| Import
| <error>

String ::= StringLiteral
| StringConstructor
| UninterpretedString

StringConstructor ::= <dquote> <stringSegment>? ( "{" Expression "}" <stringSegment>? )+ <dquote>

StringLiteral ::= <dquote> <stringSegment>? <dquote>

Term ::= NonIdTerm
| Identifier

TraitDeclaration ::= "trait" MethodHeader ReturnTypeOption Annotations ObjectBody?

Type ::= UnknownType
| SelfType
| InterfaceLiteral
| Identifier TypeArguments?
| Type <dot> RequestPartNoArguments TypeArguments?
| "(" TypeExpression ")"

TypeArguments ::= "J" Type ( "," Type )∗ "K"

TypeDeclaration ::= "type" Identifier TypeParameterList Annotations "=" TypeExpression

TypeExpression ::= Type ( <typeOperator> TypeArguments? Type )∗

TypeOption ::= Empty
| ":" TypeExpression

TypeParameter ::= Identifier

TypeParameterList ::= Empty
| "J" TypeParameter ( "," TypeParameter )∗ Where "K"

UnaryMethodHeader ::= "prefix" <operator> TypeParameterList

UnaryRequest ::= <operator> TypeArguments? Term

UninterpretedString ::= "‹" <uninterpretedString>? "›"

47



UnknownType ::= "Unknown"

UseStatement ::= "use" Expression ( ReuseModifier )∗

VarDeclaration ::= "var" Identifier TypeOption Annotations ( ":=" Expression )?

Where ::= Empty
| "where" WhereCondition ( "," WhereCondition )∗

WhereCondition ::= <id> <typeRelation> Type

48


	Introduction
	User Model
	Syntax
	Character Equivalencies
	Comments
	Newlines, Tabs and Control Characters
	Layout
	Identifiers and Operators
	Reserved Tokens

	Built-in Objects
	Done
	Ellipsis
	Numbers
	Booleans
	Strings
	String Literals
	String Constructors
	Uninterpreted Strings

	Sequence Constructors
	Blocks

	Declarations
	Constants
	Variables
	Methods
	Returning a Value from a Method
	Method Names
	Parameters
	Type Parameters
	Once Methods

	Annotations
	Encapsulation
	Public
	Confidential
	Methods, Classes, Traits and Types
	Fields
	No Private Attributes


	Objects, Classes, and Traits
	Objects
	Class Declarations
	Trait Objects and Trait Declarations
	Type Parameters
	Reuse
	Object Combination and Initialisation
	Abstract Methods
	Required Methods
	Overriding Methods
	Overriding Types
	Default Methods


	Method Requests
	Self
	Outer
	Named Requests
	Delimited Arguments
	Implicit Requests

	Assignments and Assignment Requests
	Binary Operator Requests
	Unary Prefix Operator Requests
	Precedence of Method Requests
	Requesting Methods with Type Parameters
	Manifest Expressions
	Fresh Objects

	Pattern Matching
	Blocks as Patterns
	Match … case … else

	Exceptions
	Kinds of Exception
	Exception Packets
	Catching Exceptions & Final Actions

	Types
	Predeclared Types
	Type None
	Type Object
	Type EqualityObject
	Type Self
	Types Function, Procedure, and Predicate
	Type Unknown
	Type Type

	Interfaces and Interface Literals
	Type Declarations
	Type Conformance
	Composite types
	Variant Types
	Intersection Types
	Union Types
	Type Subtraction
	Nested Types

	Type Annotations
	Static Type Checking
	Dynamic Type Checking


	Modules and Dialects
	Modules
	Importing Modules
	Executing a Module

	Dialects
	Module and Dialect Scopes

	Pragmatics
	Garbage Collection
	Concurrency

	Acknowledgements
	Grammar

