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Theory of Software Testing With Persistent State

Dick Hamlet

Abstract—Software testing began as an empirical activity, and
remains part of engineering practice without a widely accepted the-
oretical foundation. The overwhelming majority of test methods
are designed to find software errors, termed faults, in program
source code, but not to assess software operational quality. To go
beyond fault-seeking requires a theory that relates static program
properties to executions. In the 1970s and 1980s, Gerhart, Howden,
and others developed a sound functional theory of program testing.
Then Duran and others used this theory to precisely define the
notions of random testing and operational reliability. In the Ger-
hart-Howden-Duran theory, a program's behavior is a pure input-
output mapping. This paper extends the theory to include persis-
tent state, by adding a state space to the input space, and a state
mapping to a program's output mapping. The extended theory is
significantly different because test states, unlike inputs, cannot be
chosen arbitrarily. The theory is used to analyze state-based testing
methods, to examine the practicality of reliability assessment, and
to suggest experiments that would increase understanding of the
statistical properties of software.

Index Terms—Software testing, fundamental theory, persistent
state.

NOTATION

[+ | Cardinality of a set

[-] Ceiling function

[P] Output-function semantics for P

(P) State-function semantics for P

X Set of all finite sequences of values in X
ABBREVIATIONS AND ACRONYMS

GHD Gerhart-Howden-Duran

MTTF Mean Trials To Failure

MTBF Mean Time Between Failures

ART Adaptive Random Testing

FSCS-ART Fixed-size Candidate-set ART

SARTE State Adaptive Random Testing Extension

I. INTRODUCTION

OFTWARE testing has no widely accepted theoretical
basis that can be used to precisely analyze and evaluate
empirical methods. Textbooks [1], [2] name methods and the-
ories, but do not critically compare them. When you are an
experienced tester who knows a good deal about a particular
program and its specification, you just select interesting test

Manuscript received December 30, 2013; revised October 27, 2014 and Jan-
uary 22, 2015; accepted February 03, 2015. Date of publication June 19, 2015;
date of current version August 28, 2015. Associate Editor: C. Smidts.

The author is with the Department of Computer Science, Portland State Uni-
versity, Portland, OR 97207 USA (e-mail: hamlet@cs.pdx.edu).

Digital Object Identifier 10.1109/TR.2015.2436443

scenarios, then follow your nose through the intricacies of ex-
ecution experiments, and stop when you run out of time. This
individualistic intuitive testing approach is often successful at
exposing problems. However, as software comes to dominate
more of daily life, a point is reached at which intuitive testing
isn't enough, even when asserted by the best practitioner. The
testing emphasis must shift from trying to make software fail
to predicting that it will not fail. In short, testing must assess
reliability. Precise analysis requires a theoretical foundation.

The explanatory power of a theory is enhanced by abstrac-
tion. Programs and their behavior are very complicated things,
so unless most real detail is removed, one would not expect
any grand theoretical insights. The Gerhart-Howden-Duran
testing (GHD) theory, reviewed in Section II, treats program
behavior as nothing more than an input-output mapping. It
has been very successful, for example in studying the efficacy
of random testing [3]. However, programs have a dimension
the GHD theory does not capture: their behavior depends
not only on input, but on a persistent external state, which in
turn depends on past program behavior. For example, many
programs in wide use are little more than front ends to database
query-update processes. To test such a program by sampling its
input space is misleading; its real behavior reflects mostly past
database actions. Fortunately, GHD theory can be extended to
programs with state, without compromising its simple, abstract
quality. The concept of state in programming theory has several
disparate meanings; here we have in mind something like the
contents of a disk file external to the program.

This paper presents a natural extension of the GHD theory
to include persistent state, and explores the consequences of
the extended theory. The most surprising result is that state
values cannot be arbitrarily sampled in testing a program. This
means that basic ideas of random testing and reliability require
re-thinking, and measures of state coverage are suspect. The ex-
tended theory is used to analyze existing test methods, and to
propose a new one.

This paperisorganized as follows. Section I reviews the input-
only GHD testing theory for stateless software. Section III ex-
tends the theory by considering a space of persistent state values
in addition to the input space; Section ITI. A presents the basic def-
initions. Section IV describes pitfalls of testing that takes state
into account, and proposes a new state-aware testing method
(SARTE). Finally, Section V explores wider issues of testing that
include state, and its relationship to formal methods, to specifica-
tion, and to engineering.

II. BACKGROUND OF GHD THEORY

This section summarizes the GHD software-testing theory
developed in 1970 through 1980 in Gerhart and Goodenough
[4], Howden [5], and Duran and Ntafos [6], including subse-
quent results and insights. The theory's abstraction is extreme
in that program input-output functions play the only role. Given
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the code for an arbitrary program, it is an unsolvable problem to
mechanically obtain or identify its input-output function.! The
GHD functional theory is therefore seldom helpful in analyzing
particular programs. The strength of its abstraction lies in inves-
tigating the properties of all programs, for which very general
results have been obtained.?

This section begins with a discussion of program failure,
captured in GHD theory as a program output that does not
meet specifications. Section II.LA considers whether there is
always a root cause of failure in some program-source fault.
Section II.B presents an alternate way of viewing the cause.
Section II.C introduces the concept of reliability that depends
on the notion of random test selection from the input space.
Section I1.D gives examples of the successes of GHD theory.

A. Faults and Failures

The business of engineering is the design and construction
of artifacts, which are placed in the world to serve a practical
purpose. Henry Petroski makes a strong case [8] that successful
design results from analyzing failures. When an artifact fails,
engineers look for a root cause and try to correct it. At its
inception, each engineering discipline goes through a time of
little understanding when failed designs are changed haphaz-
ardly, often without effect. Developing software is certainly a
kind of engineering, which has led software engineers to adopt
the model of failure correction so successful in other kinds of
engineering. Unfortunately, software engineering failures often
seem idiosyncratic, and fixes appear haphazard.3

For software, a failure is an event in the input space of a pro-
gram. It is natural to seek the cause in the textual space of the
program, where it seems a fault must lurk. Program faults have
a long intuitive history, but this idea is not well defined,* and is
sometimes counterproductive in dealing with failures.

For this informal presentation, it suffices that there is a spec-
ification, a statement of what software is supposed to do, which
acts as an effective oracle. That is, given any input value z,
and the corresponding software behavior of a program's input-
output function, the oracle decides whether or not that behavior
meets the specification.’ If not, the software fails (at x).

Following the traditional engineering model, when a piece
of software fails, its source code is studied to understand the
failure and eliminate it. Describing this situation is linguistically

Indeed, even some very short programs defeat most attempts to understand
their input-output behavior [7].

2The evident danger in abstraction is that it may remove too much detail, and
thereby create a theory that disagrees with reality. For example, GHD theory
ignores state, so it cannot describe the common situation in which a program
obtains different results on two runs with the same input. Pure input-output func-
tions do not behave in that way.

31t can be argued that the field will never mature because software engineering
is unique in its absence of an underlying empirical science; see Section V.A.

4A mathematical entity is well defined iff it does not depend on parameters
outside its definition, but instead is uniquely determined. The fault that causes
failure f is not well defined because there are many textual changes that fit this
description for any given f. Attempts to frame a definition that singles out one
change as a best fix for the rea/ fault have been unsuccessful.

SThere is an immediate technical difficulty in the case that a program fails to
halt on some input. Specifications are not usually thought to require non-halting
behavior, and in any case there is no effective way to discover that the behavior
is non-halting. It will be assumed that specifications never have undefined cases,
and although programs may fail to halt, it is not the business of the specification
to detect this problem, but only to judge program output values.
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tricky in that it is natural (but as this section shows, sometimes
counterproductive) to attribute the failure to a textual fault in
the source code, a small programming mistake that when found
and corrected will eliminate the failure. The common name for
the fixing process, debugging, also assumes that localized faults
can be found and removed. Failures do sometimes result from
textually localized mistakes, even typos, that intuitively qualify
as software faults, but sometimes this mindset gets in the way.

Two examples of failures that are not the result of textual
faults are incomplete specifications, and misunderstood speci-
fications.

Incomplete specifications. When some case is left out of
a specification, its implementation can be expected to fail®
when an input lies in the omitted case. An important ex-
ample of incompleteness arises from the conjunction of
events. Several situations (each handled in the specifica-
tion and code) can occur simultaneously as a distinct case
[9] not covered in the specification. Failure results because
the code incorrectly treats this case as one of the simpler
component events. To search for a software fault causing
the failure is counterproductive because it will be sought in
that part of the source code that happened to be invoked.
There is no fault there; what's wrong is that code is missing.
Misunderstood specifications. Human beings may mis-
understand what software is supposed to do, even when
specifications are expressed in formal language. The most
pernicious form that misunderstanding takes is a diver-
gence between specification and implementation that only
a complex case exposes. Misunderstanding is almost cer-
tain to arise if a specification is vague and explained by
examples. Searching the source code for faults may well
find them, on the assumption that only a localized change
is needed. But the needed fix is to discard the code as
the wrong program, and reimplement with a better under-
standing of the specifications.

There are two mindsets for debugging, each with merit: 1) to
blame source-code faults, or 2) to ignore the code and think about
failures in a program's input space. The fault view of debugging
necessarily concentrates on a single failure. One failure can be
traced through the control flow of the failing program's code,
and if along the way someone notices a mistake like a typo, it's
a good candidate for a fault. But the fault, a localized mistake that
when corrected will eliminate the failure and others like it, may
not exist; and searching for typos is the wrong way to begin. The
failure view of debugging instead concentrates on the input space,
looking for properties that characterize the failing case. Paradox-
ically, the failure view comes into its own when a program has yet
to fail. This discussion will be continued in Section I1.D, after our
context ofreliability has been defined in Section II.C.

B. Failure Regions

As illustrated at the end of the previous section, faults some-
times poorly describe software failures. Instead, failures them-
selves can be connected to program code through the idea of a
failure region.

®Here the failure is not determined according to the specification, which re-
quires nothing in the omitted case. The failure is judged by real requirements
that the incomplete specification did not capture.
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Frankl et al. ([10], Sections 2.1 and 2.2) describe the process
of changing software to eliminate an observed failure, para-
phrased as follows.

Suppose that program Py fails on input zy € D, where D
is its input space.” By probing D in light of the discovery of
20, other failure points may be found, perhaps ones easier
to understand or describe, which may or may not be related
to xy. After a time, it is sensible to seek a fix for (perhaps
some of) the failures that have been discovered. The person
doing the fixing may subdivide them into groups that seem
likely to respond to the same change. Let a change Cj in
the code text (creating a new program P;) eliminate the
failure at a2, and perhaps other failure points comprising a
set F1 C D, but Cy must not introduce any new failures.
(That is, P; fails only on points where Fy also fails.) Then
define I as the failure region of Cy. If Cy does not fix a
failure at -y, that is, 1 is a failure point of P; butx; & F},
then x is a basis for seeking another change (*; to P;, with
its own failure region F5. This process continues (suppose
for M steps) until all the known failure points of Py have
been eliminated. Thus the failure regions Fy, Fs,..., Fas
are disjoint, and Pj; is not known to fail.
The textual code changes C;,0 < i < M, may overlap, i.e.,
some parts of C'; may be altered in Cy, j > ¢. The set of failure
points X = {x;|0 < i < MY} has no significance because it is
discovered only accidentally. Finally, neither the failure regions
nor the accumulated changes that make up Py are well defined,
because their definitions depend on the order in which failure
points are chosen, and the changes chosen to try to eliminate
those failures. The advantage of failure regions over textual
faults is that they lie in the input space. Let F' be the set of
all failure points of Fy. The process of isolating failure regions
can be described as moving points from F' to Fy, Fa,..., Fuy.
If F = UM, F;, then Py does not fail.

This formal description suggests a mindset for the successful
tester, because the greatest difficulty in carrying out the process is
in making changes that introduce no new failures. People respon-
sible for the corrective maintenance of large software systems are
well aware of this difficulty, and they try to make changes that
perturb the existing design as little as possible. Theirideal change
can be described as follows. If the software were to fail with this
change, then it would have failed anyway. It may be tempting to
make radical program changes to attack a stubborn failure, butitis
not worth the sacrifice of steady progress.

Failure regions have been the subject of a few empirical
studies, mostly attempting to establish that contiguous regions
exist. Peter Bishop studied real software failures [11], and
found regions that are contiguous blobs. Perhaps the most
pernicious aspect of studying faults in the source code is that it
has kept research attention away from the program input space.
Some recent surprising results are described in Section II.E.

C. Random Testing and Reliability

The reliability of a mass-produced item is often estimated by
life testing, in which K samples are each repeatedly tried until
failure, say at trial V; for sample i, 1 < ¢ < K. The mean trials

It is assumed that D arises from the problem that Py tries to solve, and
remains the same when Fy is changed.
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to failure (MTTF)8 and standard deviation S can be estimated
from life-testing data, with a confidence interval whose size is
proportional to 1/vK.

If we accept input sampling as a source of trials, something
analogous to life testing can be carried out for software. The
most important difference between physical-device life testing
and software testing is that, in the latter, the statistical space is
created by selecting a collection of input values. In principle, any
value in the input space might be selected by auser (if only by mis-
take); but, in a practically infinite space, there must be some limi-
tationto likely valuesifasignificantsampleis to be of manageable
size. The idea of likely inputs is captured by the notion of a user
profile, a probability distribution d over the input space. At input
x,aprofile value d(z) is a probability that 2 will occur as an input
when the software is used. Profiles acknowledge that, to users,
some inputs are more important than others; a profile defines op-
erational testing as having test points selected according to that
profile. If the profile used in operational testing is even roughly
correct, operational testing is far and away the best method for de-
tecting software failures that matter [12],[13].

Precise, accurate profiles evidently do not exist for most soft-
ware, because its many users cannot be expected to agree; in-
deed, a single user may have a different profile from day to day.
John Musa treated the problem of an unknown user profile as a
practical one of approximating the profile with a low-resolution
histogram, obtained empirically by adding rough input proba-
bilities to a program's specification. [14]°

Approximately N test points can be selected randomly ac-
cording to a profile expressed as a finite histogram of B bars. For
each histogram bar of height u, select [uN'| uniform random
points from the input set the bar represents. The total number
of points selected is the sum of the selections for all histogram
bars. The sum is within B of N, as each bar's sample count has
been adjusted by less than 1.

Suppose then that P is in operation, and P is given a sequence
of Ny inputs X selected randomly according to a user profile,
X1 ={x1,22,...,2N,). Let P fail only on z y, . Repeating this
procedure K times gives a multiset M={N;|1 < i < K} of run
counts to failure. Estimates of MTTF and standard deviation can
be obtained from A/ . Confidence in the MTTF can be estimated
using non-parametric methods.

It should be a high priority in software engineering to study
the distribution of failure runs M for different kinds of soft-
ware and testing methods. However, the only explicit case study
found in the literature [10] is artificial, constructed by assuming
a few simple failure regions.

For most physical devices, life testing is a practical proce-
dure, because failures occur in times on the order of a day.
Enough data can be obtained for an acceptable confidence in-
terval. When a device does not fail quickly, it may be possible
to accelerate its use. For example, a vinyl hinge might have a
MTTF of many years in normal use, but it can be made to fail
in minutes when flexed by a motorized jig.

Software testing is easy to accelerate because multiple exe-
cutions can be started in parallel, and inputs can be supplied by
driver programs at high speed, giving a typical acceleration of

8For artifacts in continuous operation, the similar parameter is MTBF.

9His idea worked well enough to qualify as a software-development best prac-
tice at Bell Labs.
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about 1000 times. Thus life testing should also be practical for
software. However, the real bottleneck in testing is not the test
execution time, but the time required to select test cases and
evaluate results. If either of these operations is manual, accel-
eration is lost, and failing test sequences are too long except
in cases of extreme low reliability. Safety-critical applications
are required to be ultrareliable, referring to an MTTF of better
than 10° trials [15]. A popular PC application might have 20
million users (and smart-phone applications far surpass that). If
each user makes five runs a day, and no more than one failure
among all users once a month is acceptable, the required MTTF
is about 3 x 10° trials. Thus, even with acceleration, billions of
runs may be required before any failure would be seen in these
programs, too many for practical life testing [15].

For seldom-failing artifacts, there is a statistical alternative to
life testing. The no-failure case can be described by Bernoulli
trials, in which each test execution results in either success or
failure. The trials must be s-independent, and the probability of
failure mustbethe same foreachtrial. The latter suggeststhateach
bar of a user-profile histogram be treated separately. Consider a
bar of the profile of height © < 1, which is the probability that
a user selects a point in the corresponding input set U for a trial.
If the fraction of failure points in U is f, 0 < f < 1, then in n
Bernoulli trials the probability p; of seeing & failures is given
by the Binomial distribution:

m=( ) rra- e,
po=(1-1)"

A test sequence weighted by the user profile is then a case of
multiple Bernoulli trials, each with its own f; and fraction of
the trials u;, where ¢ ranges over the B histogram bars. The
probability of seeing the multiple event in which there are no
failures in any region is

B

[1a-mr,

i=1
where NV is close to the total number of trials.1® Because there
are no observed failures in the trials, the only estimate of the
failure probability is zero, and there can be no confidence in-
terval. However, an upper confidence bound can be calculated,
the likelihood that if the trials were repeated, the result on one
repetition would be no failures. This bound is just the comple-
ment of the probability that no failures are seen, that is, the prob-
ability that some are seen:

B
1- H (1 fi)leNT,
i=1
For example, for one region,!! the confidence in a failure proba-
bility of 1/N (that is, a MTTF the same as the number of trials)
is about 50%:
1\" N(N -1) N-1
1 (1 N)Nl (1 N/N + e >_1 5N
2N-N+1 N+1 1
2N -

B 2N T2
10As explained previously for histogram-based sampling.

Tn the case of a uniform profile, and all failure rates the same, f; = £, the
boundis 1 — (1 — f)N.
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Fig. 1. Life testing vs. no-failure testing.

The approximation uses the binomial expansion, assuming
N > 1, with three terms.

Life testing and testing without failure can be compared, be-
cause a life test that terminates before the first failure is observed
is a no-failure test. For simplicity, consider a single-region pro-
file. Let there be K copies of the software run in a life test, with
MTTF L, and standard deviation S. The chance is about 95%
that the MTTF lies in the 1.965/+/K confidence interval.

If each of the K run sequences stops at M < L runs without
failure, then the whole is equivalent to a no-failure run of length
K M . The upper confidence bound on a MTTF of L or greater is
1—(1—1/L)XM First, suppose that K M < L. Using the bi-
nomial expansion, the upper confidence bound is approximately
1—-1+ KM/L = 0, as would be expected. At the other ex-
treme, suppose that KM > L. Even for large K, it may still be
likely that each life test ends before failure occurs. For an upper
confidence bound of 95%,

95 =1-(1-1/L)fM
In(.05) = KM1In(1 - 1/L)
—KM(1/L —1/(2L*) +...).
Taking just the first term in the
KM =~ Lln(.05) ~ 3L.

In summary, estimates of a minimum software MTTF L can
be obtained with 95% confidence in life testing by increasing
the number of samples K. But if initial segments of the same
runs are used as a no-failure test of M runs, KA = 3L trials
suffices for an upper confidence bound of 95%. The life test re-
quires about K L trials, and K is usually an order of magnitude
larger than 3. Fig. 1 illustrates the comparison between confi-
dence intervals and upper-confidence bounds. In the figure, a
life-test of K copies of software is shown, ending in failures
distributed around MTTF L, with standard deviation S. A 95%
confidence interval of size 1.965/+/K is shown below the K'th
copy. M is chosen so that none of the copies has a failure in M
runs, but KM > 3L, making the upper confidence bound that
the actual MTTF exceeds L about 95%.

The role of a user profile is often dismissed by incorporating a
profile d in software reliability theory but ignoring the practical
fact that results depend crucially on d, yet it may be a poor
approximation. For a simple example, suppose a no-failure test
comprising 30,000 points is conducted for a program P using a
uniform profile. The Bernoulli-trial formula gives a 95% upper-
confidence bound on the failure rate being below 0.0001. But if

Taylor series,
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the actual profile has two regions, one weighted 0.99, and 1/4
the size of the other weighted 0.01, then the 24,000 uniform test
points in the latter contribute almost nothing, while the 6000 in
the former only give 95% confidence in a failure-rate bound five
times as large (0.0005). Evidently, using different profiles can
lead to arbitrarily large changes in the theory's predictions.
Probability models are mathematics, whose theorems are not
subject to experimental error. However, their application to pro-
grams requires justification. Tossing a coin is believed to be a bi-
nomial process only because no mechanism has been suggested
for its success rate to vary, and many experiments match a bino-
mial distribution. Fundamental statistical properties of software
are seldom studied, theoretically or experimentally. At issue is
whether a uniform random selection of input points are each
Bernoulli trials. In a unique study [11], Bishop observed that
they are not: the failure probability changes as tests are selected.

D. Successful Applications of the GHD Theory

GHD theory is the setting for a body of research that precisely
compares the efficacy of testing methods. Joe Duran and Simeon
Ntafos started this research line in the 1980s in a paper [6] that
called for a new appreciation of random testing. They compared
uniform random test selection with selection based on covering
subdivisions of the input space, and found them not very dif-
ferent in their ability to detect failures.!2

Merkel and Chen went much farther, suggesting that no
testing method can detect failures much better than uniform
random test selection can [17]. For example, using the F-mea-
sure, the average number of tests required to detect the first
failure, they showed that no other method is more than twice as
good as random testing.13

Another promising research direction defines a class of new
testing methods, motivated by searching for contiguous failure
regions. So-called adaptive random testing (ART) [18] com-
prises methods in which random test selection is distorted to
favor some kind of coverage of, or diversity in, the input space.
For example, in Fixed-size Candidate-set ART (FSCS-ART)
[19], the distortion favors points farther from those already se-
lected. Many different distortion schemes have been investi-
gated, each with an improvement in (for example) the F-mea-
sure. In fact, the improvement approaches the theoretical max-
imum predicted by Merkel and Chen [17], suggesting that ART
may be the best-possible testing method.

Finally, GHD theory is a good setting for the discussion begun
in Section II.A about when it is appropriate to consider software
failure as caused by a localized fault. The Apple SSL goto bug
is an instructive example [20]. Once it was discovered that there
was a failure in applying the security protocol, conventional de-
bugging by tracing source-code control flow found a spurious
unconditional transfer statement that skipped necessary code,
clearly a software fault. But why did it take so long to notice the

12Their article launched a cottage industry in refining and sharpening the the-
oretical comparison of random testing with other methods, which is still pro-
ducing results [16].

I3Merkel and Chen require a number of strong assumptions to carry out a
complex proof based on analysis of the geometric shapes of failure regions, so
their result is only suggestive.
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failure? More important, what assurance is there that other fail-
ures are not waiting to happen? Here, software faults are of no
use, because there is no theoretical link between the code and
the input space. In terms of GHD theory, one cannot estimate a
program's reliability from its source code.

It is difficult to imagine obtaining such general results in any
theory less abstract than GHD.

E. A Summary of Stateless Testing Theory

The pursuit of software faults is a worthy endeavor. But al-
most everything that can be said about software faults can be
expressed in terms of failures and failure regions.!4 A measure
of testing effectiveness, with which one that can analyze and
compare empirical methods, must be soundly connected to soft-
ware failure. As demonstrated in Section II.A, faults and failures
cannot always be put into correspondence. Nor is a count of fixes
for failure regions an adequate measure; all too often a change
fixes nothing, or fixes failures too infrequent to matter.

Turning to probabilistic ideas, conventional reliability engi-
neering can be applied to software, and its MTTF parameter
(also called the F-measure in testing theory) with confidence
bounds is a good candidate for a quality measure. Life testing
can be used only if the MTTF is small. Bernoulli trials require
fewer test executions, and always assign a confidence bound to
any MTTF, albeit a large MTTF and high confidence together
are impractical. Unfortunately, for the predictions of these mea-
sures to hold, random sampling from the input space must match
the operational distribution under which the software will be
used. At best, the user profile can be approximated by a his-
togram over a handful of sets that divide the input space.

In the next section, it will be a straightforward exercise
to add a state space to the definition of program execution
(Section III.A). However, it is not obvious that deep results
continue to hold in the extended theory. Indeed, in the presence
of state, it will emerge that fundamental ideas like correctness
and reliability are difficult to define. The idea of random test
selection itself will require re-examination.

III. PERSISTENT-STATE THEORY

The GHD theory of programs as pure input-output functions
will be extended to include a state space in addition to the input
space. A program may use this space to write values on one run,
which it may read on a subsequent run. That is, on a sequence
of inputs, the program's behavior may depend not only on input
values, but on state values created earlier in the sequence. In
more concrete terms, a program writes to an external medium
on one input, then reads what it wrote on a subsequent input.
Values stored in a permanent disk file to which the program has
create-, write-, and read-access are a good intuitive model of
such states.

There are other, quite different ideas of state in program-
ming, although all of them refer to some kind of memory that
persists during or beyond the execution of code. In subdisci-
plines of computer science, the word state has its precise tech-
nical meaning, but research results are often presented as if the
concept were universal, leading to confusion. The proponents

14Except, of course, an ill-defined location of the fault in the code.
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of functional programming decry use of state altogether. The
state they mean is the vector of variable values (including the
program counter) that describes program execution in the hard-
ware, step by step. Our state omits all of this detail (the pro-
gram counter in particular). Instead, our state values are ob-
tained at the beginning of a run, and saved at the end, just as
in an input-output function the input occurs at the beginning,
and the output at the end of a run. Finite-state automata (FSMs)
involve a finite number of states as a fundamental idea. An FSM
stores and examines a value with a transition to different states
depending on that value; then different actions can take place
starting in each state. The FSM memory from input symbol to
input symbol lies in patterns of its defining states. This trick
works only with a finite number of input values and states. In
contrast, a conventional program such as we imagine will store
a state value with a disk write, and subsequently read it back for
processing with conditional statements. The conventional code
does not change with the number of state values, which is natu-
rally thought of as unlimited.

In the software testing literature, our idea of state is neglected.
For example, in Mathur's meticulous 697 page textbook Funda-
mentals of Software Testing [2], the word state appears in nei-
ther the index nor the table of contents.!5 There are, however,
competing theories of programs with persistent state, extending
FSM theory to unlimited state sets [21]. These theories do de-
scribe ideas similar to our idea of persistent state, but unlike the
extension of Gerhart-Howden-Duran theory, they usually model
computation with a detailed machine. A machine model makes
them useful in specification, design, and analysis of particular
programs,!6 but less useful for expressing properties of programs
in general.l?

In the remainder of this paper, the unqualified word state
means a value in the state space .S defined in Section III.A.

This section extends Gerhart-Howden-Duran theory to take
account of persistent state.!$ The mathematical theory that be-
gins with these definitions, and describes their consequences
is this paper's major contribution. The extension is straightfor-
ward: state can be included by considering sequences of runs in-
stead of single runs (Section III.A). In extending random testing
to sequences, a theory would be expected to include precise def-
initions of state coverage and state sampling, which are exten-
sions of important input-space ideas. However, the theory in-
stead will show that state sampling is inherently complicated
and indirect (Sections III.B and IV.A).

A. Theory of Program Execution Including State

Consider a program P with an input and output space D of
single values, and a state space S of single values. P's behavior

15Mathur makes a few off-hand mentions of what might be our state. He has a
definitive chapter on testing finite-state machines, but the properties of FSMs are
significantly different from those of conventional programs.

16Section IV.A to follow uses such a model as a specification for a microwave-
oven control program.

17The same remarks apply to the stateless case: stateless programs have many
detailed models, e.g., using an imperative programming language, but the model
detail is a hindrance in seeking general results like those in Section I1.D.

18Preliminary versions of the definitions presented here have appeared in pub-
lished papers [22], [23] and most recently in a monograph [24]. In the cited
works, the subject is an implementation of component-based software develop-
ment. The components have state, but no theory of state is developed.
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on a run depends on values from D x .S, and P may create values
in S.19 By definition, the semantics of P are described by two
semantic mappings20: its input-output mapping, symbolized by
[P], maps inputs and states to outputs

[P]: D xS — D;

and its state mapping, symbolized by (P), maps inputs and
states to states

(Py:DxS—S.

D x S is not necessarily the domain of these mappings; either
or both may be undefined at points of D x S for a particular P.

There is general agreement on the ways in which a program's
input-output mapping can be undefined for a run: for a value
(x,8) € (D x §), P may not terminate, or may terminate
without any output. Failure to terminate also makes the state
mapping undefined, but capturing the proper intuition about
failure to write a state requires more care. It is a good mental
model to think of the state set as the contents of a permanent
disk file available to the program, but with external existence.
Undefined state means that no state value is available; i.e., the
permanent file does not exist. This serves a crucial purpose be-
cause it is the reset condition for the state, which the program
can detect, and to which it can respond by initializing, e.g., by
creating the permanent file. When a program does not set the
state, its state mapping is not undefined. The output state value
is by definition the same as the input state value.

There is another important way in which a program's se-
mantic functions are undefined: state values may be unreach-
able, as described in Section III.B to follow.

Because the undefined state acts like a state value, let each
program P have an initial state sy € S that begins each se-
quence of runs. If (P){x,s) = so, we say that P has reset its
state. The behavior of P is captured by the definition of an ex-
ecution sequence. Let X = xg,21,...,2nx_1, Where x; € D,
for0 < ¢ < N — 1, be any sequence of input values of length
N. Supplying X to P defines a sequence of runs, and a corre-
sponding sequence of states sg, $1,-..,8n8-1,8; €5,0<i< N,
where

$1 = <P>($0550)a
s2 = (P)(1,51),

sN-1 = (P)(xN 2,58 2),
and the execution sequence is

(205 80), (T1,81)5 -+ (TN -1,8N-1), (1
with output [P](2x_1,$n—1). Each initial segment of an ex-
ecution sequence is also an execution sequence. No execution
sequence or output of a sequence can involve points of D x §
where either semantic mapping of P is undefined.

19Multi-valued spaces and distinguishing an input from an output space
would complicate the notation, but would not change the results.

203, C. Kleene was the first to use this kind of notation [25]; Harlan Mills's
box functions [26] are a variant.
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Fig. 2. Actual and erroneous behavior of a program E1. (a) Actual output behavior. (b) Behavior treating state as an input.

The definition (1) makes clear that the choice of inputs is
arbitrary, but states are computed, not chosen by any outside
agent. The definition also permits P to behave improperly. P
may fail to compute some output or state on input (z, s) because
[P](z, s) or {P){z, s) is undefined.

Software specification and software correctness must be de-
fined for input sequences. A specification relation R is a set of
pairs, R C D> x D.(X,y) € R means that, according to R,
the output y is an acceptable response to the input sequence X .
A specification X must be algorithmically defined everywhere
on D°°_ so that it serves as an oracle to effectively decide if any
(input, output) pairis acceptable. Specifications need not be func-
tions; more than one output may be acceptable forthe same input.

A program P is correct (with respect to specification R) iff the
output of P on input X is acceptable forevery X € D°°. P fails
on input sequence X iff there is an initial sequence of X whose
output is not acceptable to R. According to this definition, a pro-
gram cannot be correct if it fails anywhere within an execution
sequence, even if the output of the whole sequence is correct.

As defined, a specification relation makes no mention of
state, and failure does not involve states except indirectly.
Section V.C to follow considers an alternate definition that
makes more direct use of the state mapping {P).

B. Unreachable States

It is typical of programs P with persistent state values drawn
from a set .S that only a minuscule part of S enters into actual
execution sequences of P. For s € S to occur, it must be either
s = sg, or must be s = (P)(x,s') for some v € D and some
s’ € S that itself occurs. Define the reachable states of P as
those that occur in its execution sequences. There is no similar
idea for input values because there is no way to constrain a user
(or a tester) from selecting any input value in D. It is an unsolv-
able problem to determine the reachable states of an arbitrary
program, or even to determine if some given state is reachable.
The existence of unreachable states fundamentally alters pro-
gram testing because the state space cannot be sampled as if it

were an additional input dimension.2! [P] and (P) are defined
only for reachable states. If an arbitrary state-space value is se-
lected, it may be an unreachable state, and therefore irrelevant
in testing P.

For example, Fig. 2 shows a portion of the output graph for a
program E1 with

(El](z,s) = 220 — (2% + 5%),
and
(E1)(z,5) = {x ifo< x <2bhorbh<ax<6.25 '
s otherwise

(The functions chosen have no significance other than to create
Fig. 2.) Fig. 2(a) displays the actual behavior restricted to reach-
able state values; (b) displays what would appear to happen if
the state is treated as an input. Among other spurious features,
Fig. 2(b) suggests that a tester examine negative state values,
which actually never occur.

Fig. 2(a) illustrates a general feature of unreachable state
values: in the (input X state) space, unreachable states form
bands on the output surface bounded by planes of constant state
across the input dimension. In the figure, there is such a band of
width 2.5 between state values 2.5 and 5. It is impossible for the
output surface to have unreachable state islands or peninsulas
with coastlines crossing these lines of constant state in the input
dimension. That is, if a state is unreachable for one input, it is
unreachable for all inputs.

C. An Example of a Program With State

To illustrate the definitions of Section III.A requires a non-
trivial example, a control program for a simple microwave oven.
The example will also be used to illustrate pitfalls of specifica-
tion-based state testing in Section IV.A.

This oven has three buttons that signal (X)) when touched:

AddTen (A),

Start (B), and

Stop or Clear (E).

21Direct state sampling is the accepted practice in reliability-growth modeling
[27].
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There is a signal (D) when the door is opened or closed.

It has a seconds timer that can be read, set to zero, augmented,
started counting down, or stopped. When the timer counts down
to zero, it signals (T).

The magnetron can be turned on or off.

There is a seconds clock that counts up from 1.

When the unit is powered up, the timer is stopped at zero and
the magnetron is off. If the door is closed, the software is started
and the clock is started at 1. There is no initial (D) signal if the
door is open at power up, then closed.

Although real microwave ovens are not this simple, this
one would be usable. The functionality has been minimized to
shorten the description. Users are expected to open the door,
place something inside, close the door, push the AddTen button
until the necessary time has been accumulated, then push the
Start button. When the magnetron stops, the operation is done.
Operation can be terminated early by pushing Stop or Clear, or
opening the door.

A program P to control the microwave will be given in
pseudocode of an interrupt-servicing language with blocks of
code labeled by the signal that invokes them. This language
has global integer variables with all-cap identifiers, which are
initialized to zero when the program is first run, and thereafter
retain their values from one signal to the next. The special
read-only variable CLOCK is set by the hardware to the current
clock value. OUT is another special variable whose value is
taken as the output of P. The language can issue commands to
the hardware, shown as lower-case in pseudocode.

A:
add 10 to timer

}
B: {

start timer countdown and start
magnetron

RUN < CLOCK

STOP <+ 0

E: :JE
stop magnetron
IF STOP
THEN
set timer to zero <« 0
STOP <+ O
ELSE
STOP <+ 1
OUT <+ OUT + CLOCK - RUN
FI
RUN <« O
stop timer and magnetron

STOP <+ 0
OUT <« OUT 4 CLOCK - RUN
stop timer and magnetron RUN < 0

IF RUN

THEN
stop timer and magnetron
OUT < OUT + CLOCK - RUN
RUN < O

FI

t

The input space D for P comprises the events A B E D T;
the output is the value of OUT, which should be the total time
the magnetron has run since the software was started.
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The state space .S of P is a three-tuple of values of its vari-
ables, OUT, RUN, and STOP, (0,7, $).

Values of [P] and (P) can be obtained from the code. For
example, immediately following startup, [P](A, (0,0,0)) = 0,
and (P)(A, (0,0,0)) = (0,0,0).

Following power-up, the input sequence U = AADDBT
describes the operation of cooking something (placed in the
oven between the two D events) for 20 seconds?2. The time
between signals is arbitrary (except before T, which the user
cannot control), so it is taken to be zero. Then the corresponding
state sequence is (0,0 0), (0,0,0), (0,0,0), (0,0,0), (0,0,0), (0,1,1),
(20,0,0).

The clock is at value 1 second (as initialized by power-up) in
the first six states; its value is 21 seconds in the final state. The
output from U is 20, which is correct according to an informal
understanding of what the microwave should do.

To describe an asynchronous event I occurring in a se-
quence of inputs, the time since the previous event is shown in
curly brackets preceding H. The previous convention of events
spaced at 0 would mean that, when times are omitted, they
are 0, except for the T event. Following power-up, the input
sequence U/ = DD A B {3}D D B {2} ED might
result if food is placed in the oven between the first pair of D
events; between the second pair of D events it is examined,
then the microwave restarted; with five seconds remaining,
the microwave is stopped, and the food removed, leaving the
door open. The corresponding state sequence is (0,0,0), (0,0,0),
(0,0,0), (0,0,0), (0,1,0), (3,0,0), (3,0,0), (3,5,0), (5,0,1), (5,0,1).
[P](D, (5,0,1)) = 5 is the output at the end of this execution
sequence.

D. Failure Regions, Random Testing, and Reliability in the
Presence of State

Each idea in the stateless GHD theory of Section II has a
counterpart in the extended theory of Section III, obtained by
replacing the word input with input sequence, and output with
output of the execution sequence. Unfortunately, the extended
ideas are more difficult to grasp, and it is intuitively unsatis-
factory that the state enters only indirectly as part of execution
sequences. For example, the extended notion of failure region is
a set of input sequences, when intuitively a set in D x . would
be more natural; but the possibility of unreachable states makes
a more intuitive extension impossible.

There is, however, an intuitive precursor to failure that our
formal definitions can clarify: the notion of state error as used in
the software dependability community [1]. Although the latest
IEEE glossary [28] defines error as almost any kind of mistake,
and does not mention state, the dependability community gives
it the narrow meaning of an erroneous state?3 that arises in ex-
ecution, which may lead to a later failure. The theory presented
in Section III.A can capture and analyze this idea. Suppose that
P does not fail on some input sequence X, yet X has a shortest
initial subsequence Z that can be extended to a different input
sequence Y on which P does fail. Intuitively, the execution se-
quence corresponding to Z ends in an error state that sets up
a subsequent failure on input Y. Let the execution sequence

22The user must have forgotten to take it out, because U does not end with a
D event.

23This state probably refers to a vector of values of all program variables.



1106

that results from input sequence 2 end with the (input, state)
pair (2’, ). The next state will be s = (P)(', s'). Suppose as
the simplest case that X adds only input 2 to Z, and Y adds
only y. Then [P](z, s) is correct, but [P](y, s) is wrong; the
idea of an error state would be that s = (P)(2', s') is wrong.
Indeed, changing (P) might fix the failure on input Y, but so
might changing [P]. The flaw in the state-error idea is its tacit
assumption that there is a state specification, so that states like
{P)(a', s'") themselves can be wrong.

The probabilistic ideas of random testing and reliability also
have straightforward extensions to input sequences, but now
these ideas are more difficult to define so that they capture
common intuition. The fundamental difficulty for random
testing is that the selection space (input sequences) is multidi-
mensional.24

The testing literature often describes test selection loosely
using the word random as an antonym for the word system-
atic. The idea is to contrast a deterministic, algorithmic selection
method with unsystematic choices. Duran and Ntafos [6] estab-
lished the value of this approach by showing that a wide class
of systematic methods are no better than pseudorandom selec-
tion. When a space X is discrete and infinite, random choice
can be defined by mapping X one-to-one to a rational interval
from which uniform pseudorandom choices are made. The map-
ping is left vague; of course its details are crucial in establishing
whether or not these so-called random choices are intuitively
without systematic bias. The meaning of the unqualified word
random in this paper follows the somewhat imprecise testing
literature.

A random input sequence in D°° can be obtained by making
successive random choices from D, with a random choice of
how many choices. But the states that arise from such input
sequences are mostly of little interest; most of them describe
trivial use cases of the software [30] (and these states appear
over and over for different sequences). It would be more satis-
factory to make random choices in D X S by selection in each
space. But no direct selection from S is possible because of the
unsolvable reachability problem for S (Section II1.B).

It is possible to enumerate the reachable states, by any method
of choosing distinct input sequences. In practice, the difficulties
will be that the same trivial state values arise over and over, and
there is no bound on the input-sequence length needed to reach
some particular state. For each integer m, a subset S,,, C .5 of
reachable states can be generated by trying all input sequences
of length m or less. If D is not finite, then input values in these
sequences will have to be arbitrarily selected, say randomly.
Any S, may omit important reachable states, either because
m is too small, or because of poor choice(s) in an infinite D.
Nevertheless, a test point with some claim to be unbiased?> and
unsystematic can be selected by randomly choosing m, then ran-
domly choosing € D and s € S,,,. This selection satisfies the

241n the stateless case, similar difficulties occur with non-numeric input types
such as strings, but these are usually ignored in the testing literature. In a few
important practical cases, tools have been developed to generate inputs from a
multidimensional space. For example, the Csmith system [29] is a sophisticated
test-case generator for C compilers. But testing with Csmith is selection from
its arcane collection of programs devised by hand to exercise compilers. Csmith
makes many random choices, aided by a partial grammar of C, but there is no
critical discussion of randomness over the input space, and reliability of the
software is not considered.

25The bias always remains that states never selected are hard to reach.
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intuition that the choice from (X x .9) ranges over non-trivial
states. Because the definition of correctness uses only input se-
quences, in this test selection procedure it will be necessary to
retain an input sequence along with each state s in 5,,, say the
shortest sequence that reached s in constructing S,,,. Let this
sequence be ¢,. Then, to decide if a point (z, s) selected from
(D, S,,) has failed, add « to the sequence ¢, and use the spec-
ification for that sequence.

Reliability in the presence of state presupposes a profile,
which is all the more important because of the huge sets to
be sampled. Musa's empirical usage histograms enabled con-
ventional definitions of reliability to apply to software, but
estimation of a plausible profile for input sequences seems
much more difficult. Empirical profiles and the definition of
random selection in an (input X state) space are intertwined.
It is paradoxical that, because profiles are difficult to define,
precision in the definition of random selection may not be
important. For example, the procedure above using an enumer-
ation of reachable states may be intuitively wanting; but if users
were able to assign usage probabilities to subsets of this space,
it could be used to define operational testing, and thus a kind
of intuitive reliability. Section IV explores practical schemes
of this kind.

Attempts to define and use profiles with a large discrete state
space, such as a database, suggest that it may be futile to seek
a measurable notion of reliability. No matter which space is
chosen for sampling, it will be so large and unstructured that
any practical number of samples must fail to represent it.26 Any
piece of software in extensive use does have a MTTF that can be
measured by keeping track of its failures in live operation. The
process generating failures may not be stable, so the MTTF can
poorly predict reliability. In fact, do software systems with large
state spaces behave in this unpleasant way? Despite the preva-
lence of these systems, for example, in on-line Internet mar-
keting, there are no published data; fundamental studies have
not been done.

E. Summary of Testing Theory With State

It is straightforward to extend the Gerhart-Howden-Duran
theory to include the state behavior of a program P by defining
two semantic functions [P] and {P) that map the (input X state)
space to outputs and states, respectively. Particular state values
may be unreachable; hence states cannot be selected arbitrarily
for test. A sequence of input values is the starting point for pro-
gram behavior; the sequence of state values follows, and finally
the output value. Specifications are thus relations defined on the
power set of the input space and the output space. There is no
intuitively acceptable definition of random input selection for
sequences, and even a crude approximation to a sequence pro-
file is unlikely to exist.

IV. PRACTICAL TESTING WITH PERSISTENT STATE

The difficulty in testing any significant piece of software is
the overwhelming size of the space(s) from which test points can
be drawn. Testing is commonly thought to have two purposes:
1) to expose software failures so that they may be fixed, and 2) to

263ection V.D begins a discussion. A more optimistic view is presented in
Section IV.C.
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assess software quality using some measure of reliability. Nei-
ther purpose is served if a few samples are drawn haphazardly
from a huge space; unless the MTTF is near zero, no failures
are seen, and nothing is learned about the software. Debugging
methods will expose some failures for correction, but to improve
reliability requires connecting a software fault to the operational
frequency of its failure. For stateless programs with narrow his-
togram profiles, approximate reliability assessment is possible,
as described in Section II.C. When state is added to the theory,
the testing space of input sequences is vast, and profiles have no
intuitive approximation. The test engineer is left without a valid
sampling strategy. This section uses the framework of extended
GHD theory to analyze a common testing strategy, and suggest
new strategies. These applications of extended GHD theory pro-
vide insights that are the secondary contribution of the paper. It
is important to be wary of confusing testing effort with effec-
tiveness: plausible but erroneous methods (e.g., Section IV.A)
may do little more than keep test engineers busy.

A. Analysis of State-Coverage Methods

Program specifications may include the definition of state
processing as the clearest way to describe requirements
involving past behavior. For example, a state-machine speci-
fication [31] is a natural way to express requirements. In the
simplest case, a state machine is a formal finite-state transducer
(FSM). However, usually state-machine states2’ involve some
arbitrary data storage that makes the specification-state set
infinite. The expressive power of an infinite-state machine is
most evident when its states can be partitioned into a small
number of equivalence classes, each of which is conceptually
a state with a parameter. A state machine is defined by its
transition mapping 7', which maps pairs (input, state) to pairs
(output, state). To find a specified output value on input
(sequence) X € D, one takes the D values from X in order,
and starting in a distinguished initial state, constructs succes-
sive (specification) states with I". The specified output value
corresponding to X is the last output in the result sequence
given by T'. Thus the specification relation defined by a state
machine is a function, very similar in form to the program
semantics defined in Section II11.A.28

T may be defined by a finite directed graph whose nodes
represent states with parameter values, and edge transitions be-
tween states labeled by the inputs that cause them and the re-
quired actions when they occur. The graph can be used to con-
struct input sequences. For example, a traversal of the graph will
yield an input sequence that reaches every specified state (ig-
noring its parameter). When the state machine is not an FSM,
the state parameter values may be used in the edge labels and
nodes. For example, in a transition out of a state with a param-
eter value £, £ may influence the transition.

The similarity of a state-machine specification to a program is
both a strength and a weakness. The specification is easy to un-
derstand, but it is also easy to confuse with an implementation.

27In this subsection the definitions of Section III.A are in abeyance. State ma-
chines are not programs, and although their state sets and mappings are similar
to S and the semantic mappings on D X S in Section IIL.A, they are not the
same.

281n fact, there is a direct correspondence in semantics. For a state machine
M, [M](z, s} is the output from T'(z, s), and (M )(z, s) is the output state.
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The implementer of a state-machine specification may choose
to ignore the details of the specified transition mapping 7' ex-
cept insofar as it dictates what outputs are required.?® Whatever
the implementor's intentions, they may not be realized. It is a
fundamental testing mistake to assume without verification that
some specified or designed action actually occurs in a program
under test. A tester who uses an input sequence derived from
the specification can easily make this mistake as follows.
As inputs are supplied to a program starting in its initial
state, its state-machine specification mapping 7' supplies
a sequence of specified result states, and specified output
values, against which the program output can be checked.
The tester's mental model of program behavior moves from
state to state according to 7', covering these specification
states.
But in reality, nothing is learned about the actual program's ex-
ecution sequences. It may use completely different states de-
scribed in its design; in any case, the program may have arbi-
trary mistaken deviations from specification or design. Thus, al-
though specification states can be explored to obtain input se-
quences, those sequences have an unknown significance, and
may mislead the tester.

The specification mapping T’ is often used to define test-cov-
erage metrics, such as covering all states, all state transitions,
etc. None of these coverage concepts is meaningful for a pro-
gram intending to implement the specification, because its be-
havior may be unrelated to T', either by design or because of im-
plementation mistakes. There can be distinct specification states
not distinguished by the implementation, implementation states
never entered by input sequences derived from 7', and unreach-
able implementation states even though all specification states
may be reachable. It is simply wishful thinking to treat specifi-
ation states as if they exist in the implementation.

To illustrate this discussion, a state-machine specifica-
tion for the microwave control program implemented in
Section III.C will be given. Refer to Section III.C for a de-
scription of the hardware and input-sequence conventions.
Although microwave control is a common example, this one is
unique in requiring an infinite state set in the specification, and
in having an implementation created without reference to the
specification.

The behavior of the software controller is specified by a state
machine using four actions:

* action a means add 10 seconds to the timer,

+ action b means start the magnetron and the timer count-

down,

+ action e means stop the magnetron and the timer, and

* action z means set the timer to zero.

There are four state classes: Init, Add, Run, and Hold.3?
Each state also includes the door position OPEN or CLOSE,
and the time the magnetron has been on since power up. In-
cluding the latter makes the specification state set infinite. How-
ever, eight states defined by class name and door position, and
parameterized by magnetron time, are useful. Fig. 3 defines the
transition mapping. In the figure, circles are states, and arrows

29The opposite implementation plan, faithfully mimicking 7", will be the sub-
ject of Section V.C.

30The elements describing the state machine are set in boldface to make them
easier to distinguish within lines of text.
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Fig. 3. Transition function of a state-machine specifying a microwave controller.

are transitions between them. A state label (S, D,t) has state
class name S, door position D, and magnetron time ¢.

A transition labeled X|y is specified to take place on signal X,
and action y should be taken. The empty action is —, for which
the magnetron time of the new state is set to the magnetron time
of the source state. Let A be the elapsed time since the last
transition. A transition labeled X|y| + A is specified to take
place on signal X with action y, and a new magnetron time
that is A greater than the magnetron time of the source state.
If no transition is labeled Z| | for some signal Z, on that signal
the state machine goes to the same state, does not change the
magnetron time, and takes no action.

The specified initial state is (Init, CLOSE, 0).

The output specified for a transition is the magnetron
time of the destination state. For example, with input
A B {3}E B {1} A {2}D, the output3! should be 6, the
magnetron time of the last state. For this input, the specification
state-sequence is (Init, CLOSE,0), (Add, CLOSE,0),
(Run, CLOSE, 0), (Hold, CLOSE,3), (Run, CLOSE,3),
(Run, CLOSE, 1), (Hold, OPEN, 6).

The explanatory power of Fig. 3 lies in grouping the infinite
set of states into eight representative states with the same name
and door position but different magnetron times.

An input sequence that covers all seven reachable
specification states shown in Fig. 3 is DD ADDB
{7T}E D (output 7). To cover all transitions shown in
the diagram, again ignoring magnetron times, D D A A
DADBTAB{2JADEDAB{3lEB {4}EE
(output 39).

31There is a sequence of outputs, of which the output of the sequence is the
final element. In this example, following the 3-second wait, the intermediate
output should be 3.
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Ala
(/;;:\i D|- Add
—
CLOSE | ( OPEN Ala
t D|- t
T|e|+A
B|b
Ala|+A

Now consider the code of Section III.C as an implementation
of this state-machine specification.32 It fails to meet this specifi-
cation on many sequences, including A B {1}E A AB T
(output should be 10 but is 30), and A D B {9}D (output
should be 0, but is 9), where the magnetron has run with the
door open!

However, the code gives correct output for the signal se-
quences above that cover specification states and transitions.
Thus there is no guarantee that any sequence selected by the
coverage of specification states will detect implementation fail-
ures.33 The intuition that specification-state coverage is signifi-
cant (as in Mathur's textbook [2]) is valid only for an FSM M
implemented by another FSM M’, where M and M’ are almost
the same. That is, M’ differs from M by a fault.

B. A State-Aware Version of ART

This subsection describes a plausible testing method called
State Adaptive Random Testing Extension (SARTE), which
includes the program state. SARTE is a straw man, a simple
example of how the concept of state could be brought into a
stateless method. Its implementation in testing tools would be
straightforward, because it uses only random choices in the
input space, and algorithmic modification of those choices.
It could be empirically evaluated. However, the difficulty
of defining random selection in the wider context of input
sequences, and the impracticality of obtaining even an approx-
imate user profile for sequences, as suggested in Section II1.D,

32The code was written without reference to the specification.

33That is, there is no guarantee except of course for coverage that exhausts
the input-sequence space. Coverage algorithms that guarantee to detect FSM
equivalence, although they do not terminate for infinite state spaces, usually do
eventually try any given input sequence.
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make theoretical analysis of SARTE or any such method
problematic.

The distortions of random selection in adaptive random
testing ART are intended to achieve better coverage of the
input space. Creating and sampling a collection of reachable
states serves the same purpose, but the separation is introduced
in the state space. The point of using randomness is to avoid
test-selection bias that could hide failures. We want to believe
that a random test fairly represents an arbitrary use of some
software. To force state spread does not seem to compromise
this goal.

The idea behind SARTE is to use random test selection in the
input space, but to do so for a series of reachable states, which
is itself a random sample. To incorporate the adaptive aspect of
ART, the random choices are replaced with ART choices.

A SARTE test sequence is controlled by two parameters: the
number of input values N selected with each state, and the
number of states M selected. Furthermore, multiple SARTE test
sequences may be used, perhaps varying N and M. It is ex-
pected that the balance between N, M, and the number and va-
riety of test sequences will be studied by testers using SARTE.
Here are the steps of the SARTE procedure a test engineer fol-
lows, first without ART.

Choose N and M. Beginning in the software's reset state
sp, select a random input value (as in Section 3.4), then
execute the software, which goes into a state s;. The tester
counts down V.
Repeat several list-adding steps so long as NV > 0: return to
the current state, make a uniform-random input selection,
execute the software, count down IV, and if the state s’ into
which the software goes is not already present in the list of
next states, then add s’ to the list.
(Thus far, the test engineer has randomly executed the soft-
ware N times starting in state sg.)
Repeat the restoration-loop steps M — 1 times: restore NV,
and repeat the above loop, but starting in a state s 4 that is
randomly selected from the list of next states. Make s 4 the
current state.
To incorporate ART, the two random choices of next input and
next state are replaced by choices using ART algorithm(s). For
example, when selecting a new state, the random choice could
be weighted to favor states in the next-state set that are farther
from the current state, as in FSCS-ART.

In one test sequence, SARTE uses N x M input values, all
but the first selected using ART, and between 1 and M state
values,34 each selected using ART.

C. Extremes in State-Set Size

This section suggests practical testing ideas for two extreme
cases: very small state spaces, and very large state spaces.

In interactive programs, users set persistent-state parameters,
called preferences, which serve one important function of state:
they store values that customize the software for a user. When
preference possibilities are limited to a finite set, it makes sense

34t is reasonable to suppose that the input set is very large. However, the state
set might be exhausted. In the limit that there is no state, s, is the only choice,
and SARTE reduces to stateless ART.
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to test each variant as a separate, stateless program. Preference
values classify different users; it may happen that, once these
values are given, a rough profile can be found using Musa's
methods. Each stateless program in a collection described by
preference values is brought into existence by a short execution
sequence that sets them. Once this state is established, conven-
tional testing methods apply. For example, random choices for
subsequent tests can be made from the input space alone. To
maintain the separation into distinct programs for each prefer-
ence, the state must be checked after each test to see that it has
not changed.

At the other extreme from a small set of preferences is soft-
ware that might be called data driven: its behavior arises almost
entirely from values in a large persistent-state space such as a
database. The permanent file(s) comprising a database are large,
but only a very sparse set of values is valid. Most databases con-
tain discrete, clearly discontinuous values. In a clothing-store
inventory, for example, there is no sensible, continuous pro-
gression from (say) red wool socks to blue nylon jackets. The
input-space possibilities of data-driven programs may be lim-
ited to a small set of choices, and these often occur in a few
common sequences. For example, in an inventory, items go out
to sales, are queried for current supply, and come in through
restocking. An order clerk using the database has a stable user
profile emphasizing query-sell pairs. It appears that data-driven
programs might be easier to test operationally than most com-
plex software, but only by ignoring the database itself. Will
an operational test (say a day's work by the order clerk) touch
enough of the database to allow a reliability estimate?

In a programmer's naive view, a database is just a persistent
file with an over-elaborate scheme for reading and writing it.
But it may be that an application using a popular database can
be adequately tested in practice, while a direct implementation
will prove intractable to test. The essence of this argument is
that a database is an encapsulated software component whose
integrity can be established apart from the program using it.

A database implementation is a non-trivial program, but its
specification is much better than for most programs because it
operates on formalized data structures using formalized queries.
Testing a database implementation is also non-trivial, because
there are two inter-related dimensions: the schema design that
declares the relational structure, and the queries that rely on it,
both unbounded. However, a database in wide use is the subject
of a huge, ongoing operational test. Even across different ap-
plications using the database, user profiles that reach the data-
base component are similar, and can be made more similar by
dividing testing into three logically independent spheres, each
with its own profile: 1) structure declarations, 2) pre-loading
values, and 3) production operation. It is sensible to measure
reliability for the database itself, and to believe that it will hold
approximately for any application.

This view of a database leads us to stipulate that the database
engine executes an arbitrary query against arbitrary declared
database structures with only a small probability of failure, sta-
tistically independent of the application.

The reliability of a program using the database can be sta-
tistically independently assessed by taking its output to be the
query sent to the database engine. Hence, an application is just
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a filter mapping one formal language (describing the input se-
quences) to another (sequences of queries).35 Jackson [33] and
others have described ways to use grammar for the languages
to automatically create correct filters as finite-state transducers.
A pre-load application, for example, is particularly simple: an
input pair (attribute, value), (a, v}, is mapped to query UPDATE
a tov.

V. DISCUSSION

This section investigates some wider issues for discussion
using the theoretical framework of Section III.

A. Software Has No Science

In a traditional engineering discipline, science and mathe-
matics play crucial roles. Empirical observations of physical re-
ality are the basis for the design rules that engineers use; the
engineering is only as good as the science on which it is based.
Applied mathematics is the handmaiden of science, providing
the intellectual tools to apply scientific knowledge to each de-
sign. For example, civil engineering is based on the sciences of
mechanics, and the strength of materials. When an engineering
artifact fails in the physical world, the cause may be errors in
the design rules based on weak science. In an immature branch
of engineering, designs fail without apparent cause. As the dis-
cipline matures, root-cause analysis is able to pinpoint scientific
mistakes. Among others, Harlan Mills noted the youth of soft-
ware engineering. He believed that in 50 or 100 years3¢ the sci-
ence of software will catch up with (say) civil engineering.

This rosy view uncritically supposes that there can be an un-
derlying science for software engineering, whose laws will be
duly discovered and applied to software design and implemen-
tation. Everyone looks forward to this science, but in fact there
can be none [34]. The laws of programming are not science, but
mathematics.37 The mathematics of software is not the applied
analysis essential to engineering calculations and physics, but
abstract in the sense of a body of definitions, axioms, and theo-
rems that comprise a mathematical theory [37].

Software is by definition artificial, a human invention from
whole cloth. If one chooses to use Hoare's definition, a program
means nothing more than the logical predicate obtained from his
axioms and proof rules. Because this mathematical definition of
a program P is precise, it is possible to establish its properties
by mathematical proof, for example that P satisfies a mathe-
matical specification. What then are the root causes of software
failure? There can be but one: the person developing the soft-
ware made a mistake using the defining mathematics. How does
that happen? One explanation is that software is called upon to
solve difficult, complicated problems, so mistakes are bound to
be made. But it may also be that the defining mathematics is

33Separating a program design into physically independent components that
communicate through a little language [32], which is output by one of them to
be processed by the other, is a powerful problem-solving technique.

36If the discipline dates from the NATO conference that first used the term,
50 years are gone already.

37C.A.R. Hoare is one of the founders of this mathematics, yet even he speaks
of it as science [35]. Juris Hartmanis is more careful: “. . .theories do not com-
pete. . .for which better explains the fundamental nature of information. Nor are
new theories developed to reconcile theory with experimental results. . . there
are no experiments. . .which could resolve. . .problems [like P = NP7?7]...”
[36, p. 40]. “[Computer science] is the engineering of mathematics” [36, p. 41].
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hard to understand, inelegant, etc.; that is, bad mathematics.38
Popper's widely accepted criterion for a scientific theory, that it
be falsifiable [38], technically rules out mathematical theories
as scientific.39 No one searches for the largest prime number
in an attempt to disprove Euclid's theorem. Objective scientific
theory can be improved by observation; the subjective quality
of a mathematical theory is a matter of expert opinion. Only
long, successful experience using a mathematical theory proves
its worth. By this standard, the mathematics defining software
is certainly lacking.

Mathematical theories can die of neglect if their results are
not elegant or not useful. When a theory fails to yield useful re-
sults, when its definitions are hard to frame and work with, or
do not match intuition, as in Section II1.D, it signals that some-
thing is wrong. The deficiency may lie in the definition of a pro-
gram, or with the attempt to apply reliability. Past experience
indicates that more abstraction can help. Breakthrough theories
like Turing's formalization of computation [39], or Floyd's proof
theory [40], succeed because their authors formalized some-
thing simple.

B. Program Proofs, Invariants, and Testing

In formally verifying that a stateless program P meets its
specification, input-variable values of P are universally quanti-
fied. Sometimes local variables of P can be eliminated by sym-
bolic substitution in favor of input variables. But when P has
potentially unbounded constructions like loops or recursion, the
proof requires a predicate expressed in the variables that con-
strains them to values that actually arise in P's execution, an in-
variant. The strongest possible invariant captures exactly what
P does at the point where it is placed; however, a weak invariant
may be easier to discover. In any proof of a program property,
there is a balance between the difficulty of finding and estab-
lishing a strong invariant and the difficulty of proving the pro-
gram with a weaker one.

The definition of correctness for programs with state in
Section III.A applies to sequences of input values for a program
P, with state values carried from one execution to the next in
the sequence. There is nothing within P itself to describe run
sequences or to restrict its use to sequences. A conventional
definition of P's semantics (say using Hoare's axioms) would
treat state variables as inputs, because their values are obtained
outside P. As demonstrated in Section IV.A, Fig. 2, state values
are not inputs, so the Hoare semantics incorrectly describe the
actual behavior, instead describing behavior as in Fig. 2(b).
Because P's specification may describe the narrower behavior
of Fig. 2(a), it may be impossible to prove that P is correct
according to the definition in Section II1.A.

One way to restore the applicability of Hoare semantics to
P is to create a stateless program ) that duplicates the real be-
havior of P. A conventional Hoare proof of ¢} will then prove
that P is correct according to the definition in Section IIL.A. It is

38Certainly a case could be made that it is a mistake to define programs to
have universal-Turing-machine power, because it makes many important pro-
gram properties undecidable. Similarly, among many others, pointers and dy-
namic storage allocation are programming conveniences that we perhaps cannot
afford.

39A mathematical theorem that is part of a theory can of course be false, not
a theorem, if there is a mistake in the proof. But proofs are mechanically check-
able, and the accepted definition of a theory is that there are no such mistakes.
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not surprising that the construction will introduce the need for
an invariant in ). () takes as input a list of values, and its output
on a list is the same as P's output on the input sequence of those
list elements. ¢} has a local variable Sy, initialized to the reset
value of P's state. Then () enters a loop over its input list, whose
body is a slightly modified P, say P’. Where P reads or writes
state values, P’ accesses or sets the variable §,. Where P reads
input, P’ accesses the @ list element that indexes its loop. In P’
output values of P are not written, but after the loop, ¢ writes
as its output value the last output from P’. In the execution of
(), each time P’ terminates to end one iteration of the loop, Sy
will have the state value that P would have had at that point
in its input sequence.4? A conventional proof of ) with respect
to P's sequence behavior will require a loop invariant J for the
loop in @, which describes the actual relationship between S
and the other variables of P/, which are just those of P. That is,
the strongest .J describes the reachable values of S, and hence
the reachable state values of P.

A kind of invariant also arises in testing a program P, a pred-
icate that holds at a point of P, but not universally for all in-
puts, as it holds merely over a strict subset of its executions. We
call these formulas fest invariants. The DAIKON system [41]
uses execution instrumentation to generate a heuristically de-
fined subset of test invariants. For any collection of test execu-
tions, DAIKON can list some predicates that hold across the col-
lection. For example, if it should happen that for all the test exe-
cutions the values of two program variables XX and YY at some
point are the same, DAIKON will list a test invariant XX = YY at
that point. DAIKON test invariants are not predictions, and do
not use a program's semantics; they merely express observations
about a finite set of values seen during a test. The complexity of
relationships that DAIKON tries as test invariants is severely
limited: at most, it will check if two variables are related by a
linear equation. For a detailed discussion of test invariants, see
Hamlet [42].

Because DAIKON uses runtime instrumentation, it handles
state variables like any other. Using considerable manual con-
trol, DAIKON could be presented with a collection of input se-
quences, from which it would produce test invariants for the
state behavior of a program P, as defined in Section II1I.A. The
same result would be obtained by giving DAIKON the program
() derived from P as described above. Each test invariant gener-
ated in this way does describe a set of reachable states, namely
the ones that arose in the test executions.

C. Explicit-State Specification

In the formal-methods software verification community, there
is no consensus about explicit state specification. Historically,
people who write specifications have viewed state variables as
implementation choices, just as are transitory local variables.
There is a long-standing prejudice against the over-specifica-
tion of software: the best specifications should not dictate any
decisions that could be left to the software designers. However,
for a complex specification, the designers may not have the ex-
pertise needed to define and manipulate state values unless the

40Details of this construction depend on the particular input functions avail-
able in the programming language used to write €, but it is evident that ) can
be mechanically derived from any given P.
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specification is prescriptive. In addition, it is usually easier to
specify explicit state values and required state transformations
than to describe sequence requirements implicitly. Then a case
can be made for requiring a faithful implementation of this ab-
stract state. The detailed proofs of substantial programs usually
use explicit-state specifications, which are supported by spec-
ification languages like Z notation [43]. In this section, an al-
ternate definition of program correctness is formulated using
specified state values, and compared to the original definition
in Section III.A. To distinguish these definitions, the new one
will be called the state definition as opposed to the original se-
quence definition.

Formally, the connection between states of a specification and
states of an implementation is described by a mapping similar
to the mapping between concrete and abstract worlds in an ab-
stract data type. Abstract (specification) state values are drawn
from a set U, while in a concrete implementation a collection of
program-variable values S = {1, 82, ..., 8x } encodes a state.
(As usual, we take K = 1 for simplicity without loss of sub-
stance.) The connection is captured by an abstraction mapping
A: S — U.s € S is called a representative of A(s) € U4
It is a fundamental property of A that each element of U must
have at least one representative. The definition of A is part of
program design, but not part of the implementation code, which
can mean that it is not carefully checked [30].

The new state definition of correctness requires a new kind
of specification, two relations on (D x U) x D (for [ ]), and on
(D x U) x U (for { )). These comprise a state specification in
contrast to the previously defined sequence specifications that
are relations on D* x D. A state specification associates two
values with each element of D x U the specified state, and the
specified output. Then (state definition of correctness), { P} is
(state) correct iff for all x € D (not sequences, now) and
all concrete state values s € S, A((P)(x,3s)) is a specified
output state for input (x, A(s)). [P] is (state) correct iff for all
2 € Dandall s € S, A([P](z, s)) is a specified output value
for input (2, A(s)). Program P is correct iff both [P] and (P}
are correct.

It is often stipulated that all states U of a state specification
must be reachable, so that the difficulties of Section III.B do
not occur at the specification level. Of course, mistakes can
occur, but it is perhaps better to treat an unreachable specifi-
cation state as something to be corrected, than to define cor-
rectness in the presence of the mistake. Unfortunately, it re-
mains an unsolvable problem to recognize abstract states that
can be reached according to a specification. This puts soft-
ware developers who want faithful implementation of state
specifications in a bad position. Either the exact set of states
specified must be worked out, which is not always possible,
or it is necessary to specify state results that may never arise,
and furthermore to specify outputs and subsequent states that
would result from being in these spurious states. Then in
turn an implementer will be required to faithfully implement
phantom states and outputs, and at the end of the line a tester
will be given the impossible task of trying them. It should be

4ITechnically, the specification may also involve an abstract input space V/,
and another abstraction mapping A’ : X — V. The clarity of this discussion is
enhanced by using only an informal notion of specification, and by pretending
that A’ is an identity: X = V.
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obvious that the situation provides a wide scope for human
mistakes and confusion.

Using a data structure to implement state creates a further
reachability problem. The correspondence A between an imple-
mentation (concrete) state and an (abstract) specification state is
usually many-to-one; that is, more than one value of the imple-
mented structure corresponds to a single specified state. The def-
inition requires that the semantic mappings be correct for all im-
plementation state values, some of which may be unreachable.
Implemented values cannot be selected arbitrarily for testing
even if it is known that the corresponding specification state is
reachable, because it may happen that only another value in the
implemented values is the reachable one. Coverage of imple-
mented states may not mean attaining all possible variants of
the data structure for one abstract value. The tester has no way
of knowing which variant(s) will actually occur.42

The result specified for an input sequence X &€ D can be
worked out by finding the corresponding sequence of specified
states, and then the output specified for (a4, 1}), where x; is the
final input value in X, and u, € U is the next-to-last speci-
fied state in the sequence; the construction is very similar43 to
the definition of program semantics in Section III.A, (1). Given
a state specification, it is thus possible to work out the equiv-
alent sequence specification. Nothing similar is possible in the
other direction: a sequence specification contains no informa-
tion about states. Thus the sequence definition cannot imply the
state definition. However, the state definition does imply the se-
quence definition, in the sense that any state-correct implemen-
tation returns correct (by the equivalent sequence specification)
outputs on all input sequences.

Using the state definition resolves the difficulty in defining
so-called state errors, encountered in Section III.D. Because a
program P is defined to fail on any pair (2, s) € (D x .S) where
{P)(z, s) isnot correct (as well as where [ P] (2, $) is not correct),
the failure regions include cases where the output from an input
sequence is correct, but along the way the state is incorrect. [t may
be that a bad state value can lead (in different input sequences) to
incorrect output, but strictly speaking P fails by the state-correct-
ness definition evenifastate errornever leadstoa failure.

The practical advantage to explicit-state specification is that
an important part of software development is shifted from im-
plementation design to requirements. The implementer does not
have to invent state, but merely needs to represent and manip-
ulate it according to specification. Furthermore, the tester need
not use sequences for inputs, but can choose points directly in
the (input x state) space.** Unfortunately, a tidy specification,
and a clear requirement to implement it faithfully, do not tech-
nically help to determine if the implementation is correct ac-
cording to the state definition; all the usual undecidable prob-
lems of testing remain. The quality of formal methods used in
specification may even be a hindrance, because it is that much
easier to commit the testing sin of assuming that an implementa-

42In fact, it may be that no variants occur. One must always remember that
implementers and specifiers make mistakes, and no specification-based state-
ment, even if true, transfers to the implementation without verification. See Sec-
tion IV.A.

4Indeed, this similarity is probably the reason the state-machine specification
is confused with an implementing program, as in Section 4.1.

44This condition is subject to the difficulty of selecting one of many repre-
sentation values as reachable.
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tion possesses specified properties that have not been verified, as
in the microwave-controller example of Section IV.A. On bal-
ance, because the intuitive purpose of software is to map input
sequences to outputs, perhaps the advantages of the state defini-
tion are dubious, which may account for the widespread belief
that the sequence definition of correctness is the better.

D. Usage Profiles, and Safety Factors

If there is little agreement on specifying explicit, prescribed
state, there is even less support for including usage-profile
information in software specifications. Yet all probabilistic
testing revolves around a profile, and the huge advantage over
other methods that Cobb and Mills [12] describe for opera-
tional testing is realized only if the testing profile is similar to
actual usage. If constraints on the usage profile were part of
specifications, software engineering would be following almost
universal engineering practice. No other branch of engineering
is expected to produce artifacts that work to specification in any
environment. Paradoxically, environmental constraints usually
act to narrow the available choices and make design easier.

The most important contribution the operating environment
makes to traditional engineering designs is in calculating safety
factors. Whenever a design choice is made, values of its parame-
ters can be adjusted to handle not only the required environment,
but a more extreme one. One way to look at the resulting de-
sign is that it compensates for unavoidable flaws in construction
materials. But the most compelling way to think of safety fac-
tors is suggested by Bill Addis [44]: they are the hedge against
design mistakes. Engineering can be no better than the science
relating environmental forces to the response of real-world ob-
jects; safety factors cover the gaps.

As a mathematical object (see Section V.A), the only envi-
ronment a program faces is the input choices of its users, as
reflected in user profiles. However, the analogy between user
demands and forces of nature is a pretty good one. A dam must
not wash out in (say) a 200-year flood; a program must not crash
(say) when a flood of inputs concentrate in a small region of its
input space. In building the dam, an environmental extreme dic-
tates a great deal of the design. There is no analogous use of pro-
file extremes in software design. Perhaps the reason is that, in
principle, software can be proved correct [35]. A program proof
applies to all inputs, so with a proof of correctness in hand, there
is no need to consider particular extreme inputs. Unfortunately,
the possibility of later proving correctness does not suggest a
design, nor does it help in evaluating design choices. It may not
be too extreme to say that, because the abstract mathematics of
software has been so successful, software engineering is left to
flounder, without the constraints that make other kinds of engi-
neering work.

Software has no defective construction materials, and no un-
derlying science to improve by experiment. Nevertheless, its de-
signs can address failure.

Events thought to be impossible. As the final step in de-
velopment, software testing has the dual role of seeking to
exhibit failures for correction, and assessing reliability. In a
safety-factor mindset, the designer should also be thinking



HAMLET: THEORY OF SOFTWARE TESTING WITH PERSISTENT STATE

of things that might go wrong, and providing for them, even
though part of the design is devoted to seeing to it that they
do not go wrong. For example, in a real-time system that
dispatches tasks in a cycle by priority, under heavy load
the cycle time might be inadequate, so low-priority tasks
would go unaddressed.

Of course the designers will have considered the worst case
and provided enough time for it. But the design can be
made safer by separating out schedule requests that can
tolerate an error return, and keeping them out of a busy
queue.

Redundant, self-correcting code. The only sure-fire
means of improving code is to detect and handle failures
during a program's execution. With physical devices,
statistically independent replicas are unlikely to have the
same flaws, so parallel-connecting identical systems is a
standard method of improving reliability. Unfortunately,
it is all too easy for redundant computation to produce
identical but failing results. Here are two examples. First,
the initial implementation of the Airbus 330 flight-con-
trol systems claimed to achieve a MTBF of 10° hours
by duplicating software in three computers, each with
a tested 10%-hour MTBF. Surely, no one except the
Federal Aviation Authority believed that the duplicates
were independent in any sense. Second, the Ariane 5
launch-vehicle control program failed in its first use.
An identical backup system was started automatically,
and failed within milliseconds [45]. In N-version pro-
gramming, two or more implementation teams work
information-independently (each without knowledge of
the other) from the same specification. It is plausible that
there will be no correlation between the failure sets of
the programs they produce [46], but one study has shown
common failures [47].

Sometimes redundant computation need not be instituted
until trouble is detected. For example, if a data structure
B should not change under operation ), B can be copied
before ) is applied, then checked after @ is complete. If
B changed, an alternate version of ¢ can be used on the
copy.

Although it has limited applicability, Manuel Blum [48]
has invented a technique that is the epitome of self-correc-
tion. If there is an easy way to determine how the output
of a program will be distorted when the input is changed,
random input variations can serve as statistically indepen-
dent trials. The same program is used redundantly, but
on a range of uniformly pseudorandom inputs. The corre-
sponding outputs are adjusted to see if they agree, and if so,
even if the reliability of the program is poor, the whole can
be made arbitrarily reliable. Not the least surprising prop-
erty of Blum's technique is that it works for an arbitrary
user profile.

Redundant methods incur extra cost in development- and ex-
ecution-time; they are not routinely used even in safety-critical
applications. Extremes in a user profile could suggest imple-
mentation that concentrates on the most frequent situations first.
It might be objected that neglected low-frequency cases would
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then be more likely to fail; still, by definition, they won't arise
very often, and reliability should improve.

When a persistent state is involved, it exacerbates the diffi-
culty of identifying important failure situations. It seems unrea-
sonable to expect a specification to assign frequencies to ex-
pected input sequences.

E. FSM States, Model-Checking States, and Testing

The most promising new technology for testing programs
is model checking, a technique that evaluates a logical predi-
cate throughout a program's execution. The predicate expresses
a desirable or specified property of the program; it is evalu-
ated on an MC state, the vector of all variable values in exe-
cution, including the program counter. MC states are not the
states defined in Section III, which omit the execution detail. If
the predicate fails to hold for some MC state h, an implemen-
tation failure5 has been detected, and A is the counterexample.
Using sophisticated algorithms, it has become practical to ex-
amine huge MC-state spaces, leading to the hope that some-
thing approaching exhaustive testing can be added to the ver-
ification toolbox. And indeed there have been some remark-
able model-checking verification proofs in communication-pro-
tocol design [49], operating-system device-driver implementa-
tion [50], and others. However, these successes have not been
extended to proofs of imperative programs in general, because
of a MC-state-space explosion that overwhelms even the most
capable, scalable tools.

The MC states examined by model checkers were originally
those of finite-state machines. For a formal FSM A with its
FSM state set S and input alphabet Z, a trial (run) from s € S
on input z € Z is a state transition and output symbol. An M
execution sequence results from an input string starting in the
initial state of M. Thus, in the terms of Section IIL.A, (M) is the
state-transition function of M, and [M] is its alphabet-symbol
output mapping.

For the finite state- and input-spaces of an FSM, all inter-
esting problems of testing and verification are solvable in prin-
ciple by exhaustive testing up to a bound related to the number
of states.#6 Model-checking technology expands the size of fi-
nite MC-state sets that are tractable in practice. However, for
conventional programs, the MC-state set is in general infinite,
for two reasons: 1) input-variable values may be drawn from
an infinite set, and 2) iteration and recursion on a single input
can lead to an unbounded set of MC-state vectors. The latter
increase in MC states is called the MC state explosion. To illus-
trate the difference between MC states and the states defined in
Section III.A, with a finite state space and a finite input space,
there can still be an MC-state explosion.

To control MC-state explosion, an abstraction (or model,
hence the name) can be substituted for the real execution.
Devising a successful model is a highly creative process. The
model must have a finite set of MC-states, or its MC-state

45The anomaly may not be strictly a failure, if the predicate does not express
a correctness property.

46These problems are all variations on the program-equivalence problem,
which is solvable for FSMs.
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set must at least grow slowly, but at the same time the model
must be safe. If a safe model has no counterexample, then
the software cannot fail. The payment for safety is a lack of
completeness: it may happen that a counterexample in the
MC-states corresponds to no real failure. The most successful
model-checking is tailored to a particular problem domain,
whose properties help in finding a model [51].

When the MC-state set is infinite, there is no necessary virtue
in model checking, because selecting a subset of MC states is
subject to the same difficulties as choosing test points from a
too-large input space.

VI. SUMMARY AND CONCLUSIONS

A mathematical theory of testing in the presence of persis-
tent state is presented, extending the 1970s and 1980s work of
Gerhart, Howden, Duran, and others, based on elementary ab-
stract ideas of software semantics. Program behavior is defined
by two partial-function mappings on a (input X state) space; cor-
rectness and reliability are defined for sequences of inputs. The
extended theory is used to critique existing testing methods, to
propose new methods that take account of state, and to suggest
relationships with formal methods and theoretical software en-
gineering.
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