
Energy Consumption of TCP Reno, Newreno, and SACK in
Multi-Hop Wireless Networks∗

Harkirat Singh
Department of Computer Science

Portland State University
Portland, OR 97207

harkirat@cs.pdx.edu

Suresh Singh
Department of Computer Science

Portland State University
Portland, OR 97207

singh@cs.pdx.edu

ABSTRACT
In this paper we compare the energy consumption behavior of three
versions of TCP – Reno, Newreno, and SACK. The experiments
were performed on a wireless testbed where we measured the en-
ergy consumed at the sender node. Our results indicate that, in
most cases, using total energy consumed as the metric, SACK out-
performs Newreno and Reno while Newreno performs better than
Reno. The experiments emulated a large set of network conditions
including variable round trip times, random loss, bursty loss, and
packet reordering. We also estimated the idealized energy for each
of the three implementations (i.e., we subtract out the energy con-
sumed when the sender is idle) and here, surprisingly, we find that
in many instances SACK performs poorly compared to the other
two implementations. We conclude that if the mobile device has a
very low idle power consumption then SACK is not the best imple-
mentation to use for bursty or random loss. On the other hand, if
the idle power consumption is significant, then SACK is the best
choice since it has the lowest overall energy consumption.

1. INTRODUCTION
Today, sophisticated wireless devices are gaining popularity as the
platform of choice for deploying a range of mobile applications.
Since these devices operate on battery power alone, it is impor-
tant to ensure that energy-efficiency considerations are incorpo-
rated into the design of their hardware and software. Data com-
munication plays a key role in many mobile applications and ac-
counts for a large proportion of the cost in running these applica-
tions on handhelds. For example, many applications require ac-
cess to remote file systems or databases (e.g., electronic record-
keeping in hospitals) and are thus heavy datacom users. Likewise,
some mobile applications require real-time communication for au-
dio/video/streaming media and are also communication-heavy. We
therefore believe that it is important to understand and character-
ize the energy cost of wireless communications and use this infor-
mation in the design of the communications component of these

∗This work was supported by DARPA under contract number
F33615-C-00-1633.

devices.

In this paper we focus our attention on the energy efficiency of
three variants of TCP for connections running over wireless links.
Our goal is to characterize the energy consumption as well as the
throughput of these versions of TCP for a variety of wireless net-
work conditions including loss (random as well as bursty), variable
round trip times (RTT), and packet reordering. We used a testbed
consisting of wireless laptops and measured the energy consumed
by the sender. Our results are interesting and can be summarized as
follows:

• TCP SACK consumes the lowest total energy in most sce-
narios and has the highest throughput.

• However, if we discount the energy consumed by the sender
in idle state (i.e., when the sender is awaiting ACKs prior to
transmitting more packets), SACK appears to have the high-
est energy cost in many cases. This is due to the fact that
SACK introduces additional computational complexity at the
sender thus resulting in a higher energy consumption.

This difference is interesting in mobile computing because it points
to the need for a careful selection of protocols for the handhelds. If
the idle energy for a handheld is very small then SACK is probably
not a good choice for that device. On the other hand, if the handheld
has a high idle energy cost, then SACK is a good choice since it
completes the data transmission the earliest.

The remainder of this paper is organized as follows. In section
2, we define the energy metrics used to compare the energy cost
of TCP. Section 3 summarizes the key differences between Reno,
Newreno, and SACK. In section 4 we discuss the current state-of-
the-art in energy and other performance studies of these protocols.
Section 5 describes our experimental hardware and software setup
and we discuss the experimental parameters used. The results are
presented in section 6 and we discuss the implications of this work
in section 7.

2. ENERGY CONSUMPTION IN TCP
Consider the case where a node in an ad hoc network needs to trans-
mit B bytes of data reliably. It transmits a window of packets and
waits to receive ACKs. Upon reception of ACKs, it moves its win-
dow and transmits more packets. Figure 1 shows the evolution in
time of a sender where we plot the current drawn by the sender (as-
suming a fixed voltage) as a function of time. When the sender is



idle, it draws a fixed amount of current1. When a packet is to be
transmitted, there is some processing energy consumed2 in addition
to the transmission energy. Likewise, when a packet is received,
there is energy consumed to receive the packet (by the interface
card) plus the processing energy needed to process the received
packet.

Time

C
u

rr
en

t

Idle Current Consumption

Idle Period

Packet Reception+Processing

Packet Processing+Transmission

E
idle

E
Tx

E Rx

Figure 1: Total energy consumed.

In this paper, we make a distinction between the total energy E
consumed and the idealized energy EI that is consumed. The total
energy refers to the total system energy, from the start of data trans-
mission to the end, that is consumed by the system. The idealized
energy refers to the total energy minus the energy consumed in the
idle periods. The reason this distinction is interesting is that EI de-
pends on the protocol processing, transmission, and reception costs
only whereas E depends on EI as well as the throughput of the
connection. As we will show in section 6, for some cases SACK
has a lower E (than Reno and Newreno) but a higher EI due to
the additional computation involved. Finally, it is interesting to
note that as the idle power consumption is minimized by improved
power-management in hardware, E will asymptotically approach
EI .

2.1 Approximate Relationship between E and
Throughput

We can write a simple expression for the total energy consumed by
a node to transmit B bytes of data reliably as follows:

E = Eidle(ttotal − tTx − tRx)
+ETxtTx + ERxtRx

where Eidle is the idle energy consumed by the sender, ttotal is the
total time needed to complete the transmission of B bytes, tTx and
tRx are the time spent in transmitting and receiving packets, and
ETx and ERx are the energy expended at the sender for packet
transmission and reception.

The first term in the above expression denotes the idle energy cost
at the sender. This is the energy consumed by the sender while
it awaits reception of ACKs from the receiver or timeout events.
Thus, if the channel has a low bit rate, or if the losses are high, the
sender is likely to spend a large amount of time in the idle state
consuming energy. The second term in the expression denotes the

1We are considering the idle energy used by the sender as a whole,
i.e., the interface card, the processor, the memory and any other
devices that are powered on.
2The main source of energy consumption is the copy operation
(user space to kernel space and then to the interface card).

energy expended for packet transmission. For a given amount of
data B, the value of this term will primarily depend on the num-
ber of transmissions and the MTU size (Maximum Transmission
Unit or packet size) used. Larger MTU sizes will require fewer
packet transmissions but a higher loss rate will result in a larger
penalty since a larger amount of data will need to be retransmitted
(recall that packet transmission cost is a sum of at least two memory
copy operations, a checksum calculation, and, eventually, the actual
transmission). Finally, the third term in the expression for E is the
packet reception cost. If we consider the case when the data trans-
mission is one-way only (i.e., the sender only receives ACKs), then
the reception cost is actually quite small (ACKs are small packets
and since they contain no data, there is a much smaller copy cost).
We can therefore drop this third term from the expression for E to
simplify it and obtain:

E = Eidle(ttotal − tTx) + ETxtTx (1)

Notice that we have also dropped tRx from the first term because
the total time spent in receiving and processing ACKs is quite small.

If we assume that the average connection throughput is τ bytes/sec
and the transmission speed is r bytes/sec we can write,

E = Eidle(B/τ − B/r) + ETxB/r
= (B/τ)Eidle + (B/r)(ETx − Eidle)
∝ 1/τ

(2)

Thus, we see that the total energy consumed is inversely propor-
tional to the average throughput achieved by the connection.

3. OVERVIEW OF RENO, NEWRENO, AND
SACK

All the current TCP implementations are based on TCP Tahoe that
incorporated algorithms for slow-start, congestion avoidance, fast
retransmit. and modifications to the formula for estimating round-
trip times (RTT), see [16]. TCP Reno is essentially similar to Tahoe
but with a modified fast retransmit algorithm that includes fast re-
covery as well. When the sender receives three duplicate ACKs,
it retransmits one segment and reduces its ssthresh by half (min-
imum of two segments). However, unlike Tahoe which performs
slow-start, Reno increases its congestion window more rapidly by
setting it to min(recvr window, CWND + ndup). In other words,
after retransmitting one segment and reducing ssthresh by one half,
Reno sets ndup to 3 and increments it for every duplicate ACK re-
ceived. When the sender receives an ACK for new data, it exits
fast recovery by setting ndup to zero. It is easy to see that Reno’s
fast recovery algorithm is optimized for single packet losses from
a window of data and will not perform well for multiple losses.
In this case the retransmit timer will go off resulting in congestion
avoidance and very low throughput.

TCP Newreno tries to overcome the shortcomings of Reno in the
presence of bursty losses by using information contained in partial
ACKs differently. A partial ACK is an ACK that acknowledges
some but not all of the unacked packets in the sender’s window.
In Reno, a partial ACK takes the sender out of fast recovery. In
Newreno, on the other hand, a partial ACK received during fast re-
covery is taken as an indication that the packet following the partial
ACK was lost and should be retransmitted. Thus, in the presence of
multiple losses from within a window, partial ACKs ensure that the
lost packets are retransmitted without waiting for retransmit timers
to go off. Newreno only comes out of fast recovery when all the
packets that were in the window at the time fast recovery started
are acknowledged.



TCP SACK, built on top of Newreno, adds an additional capability
that allows faster recovery in the presence of multiple packet losses.
When the receiver receives a block of data which is out of sequence,
that data creates a hole in the receiver’s buffer. This causes the re-
ceiver to generate a duplicate ACK for the segment preceding the
hole. The receiver also includes the starting and ending sequence
numbers of the data that was received out of sequence. This infor-
mation is a SACK. The first block in a SACK option is required to
report the data receiver’s most recently received segment, and the
additional SACK blocks repeat the most recently reported SACK
blocks. This algorithm generally allows TCP to recover from mul-
tiple segment losses in a window of data within one RTT of loss
detection.

When a sender detects a lost packet (via three duplicate ACKs), it
retransmits one packet, cuts the congestion window by half, and en-
ters fast recovery as in the case of Reno and Newreno. SACK main-
tains a variable called pipe that estimates the number of packets in
flight. It is incremented for every transmission and is decremented
when a duplicate ACK is received containing a new SACK. The
sender maintains a list of segments deemed to be missing (based
on all the SACKs received) and retransmits segments from this list
when pipe is less than CWND. Finally, when partial ACKs are re-
ceived, the sender decrements pipe by two rather than one (see [8]
for a discussion of why). SACK exits fast recovery under the same
conditions as Newreno.

Previous papers (see section 4) have compared the throughput of
different versions of TCP. The results indicate that SACK has the
highest throughput for a large percentage of network conditions.
Based on equation (2), we can therefore predict that SACK would
consume the lowest total energy (E). This is borne out in our mea-
surements as we discuss in section 6. The discussion of SACK
makes it clear that the sender needs to execute more code to main-
tain and use the SACK-related data structures. We had assumed
that this added cost would be negligible. However, as section 6
shows, the idealized energy cost EI of SACK is higher (and mea-
surable) than Reno and Newreno for many cases.

4. LITERATURE SURVEY
Several authors have studied the behavior of TCP and its variations
under different networking conditions.

[6] states that networks with wireless and other lossy links suffer
from significant non-congestion-related losses due to reasons such
as bit-errors and handoffs. The results show that TCP responds to
all losses by invoking congestion control and avoidance algorithms,
resulting in degraded end-to-end performance. The authors com-
pared the use of Explicit Loss Notification (ELN), I-TCP, Snoop,
and SACK to improve performance. They implemented and tested
the various protocols in a wireless testbed consisting of Pentium PC
base stations and IBM ThinkPad mobile hosts communicating over
a 915 MHz AT&T Wavelan, all running BSD/2.0. The primary re-
sult of their work was that SACK implemented with Snoop has a
30% higher throughput than the other protocols for bursty errors.

[8] shows that the SACK algorithm performs better than several
non-sack based recovery algorithms when 1–4 segments are lost
from a window of data. Reno’s Fast Recovery algorithm is opti-
mized for the case when a single packet is dropped from a win-
dow of data. The Reno sender retransmits at most one dropped
packet per round-trip time. Reno suffers from performance prob-
lems when multiple packets are dropped from a window of data.

For the scenario with two dropped packets, the sender goes through
Fast Retransmit and Fast Recovery twice in succession, unnecessar-
ily reducing the congestion window size twice. For the scenarios
with three or four packet drops, the Reno sender has to wait for a re-
transmit timer to recover putting the sender into Slow-Start. How-
ever, in all such cases (when multiple packets are lost from a single
window of data), Newreno can recover without a retransmission
timeout, retransmitting one lost packet per round-trip time until all
of the lost packet from the window have been retransmitted.

[4] compared Reno, Newreno, and SACK for communication over
satellite links. They used two Intel machines with NetBSD1.1, two
cisco routers and ACTS VSAT connected to a satellite, and a hard-
ware emulator for dropping packets. They dropped 1,2,3 and 4
packets for different experiments, used two data sizes (200KB and
5MB) and experimented with three bit error rates of 10e-5,10e-6
and 10e-7. For 1,2,3 and 4 packet loss the performance was similar
to [8]. For losses of 10e-7 and 10e-6, they saw the same results
as ours, and for the high loss case 10-5, they show that all of the
TCP variants performed poorly and SACK was similar to Reno and
Newreno.

[10] evaluated the performance of Reno, Newreno, and SACK for
a satellite network. Experiments were carried out in the simulator
ns. They used a RTT in the range of 100 – 600 msec. The paper
shows that using partial ACKs to trigger retransmissions, in con-
junction with SACK, improves performance when compared with
TCP using fast retransmit/fast recovery alone. Specifically, SACK-
Newreno is better than SACK-Reno which is in turn better than
Reno.

[7] performed experiments in which two PCs running FreeBSD
were connected by a SUN UltraSparc acting as a router that in-
serted link delays. The link delay was 25 msec and bandwidth was
limited to 2 Mbps. The buffer space at the sender and receiver was
set to 16KB. They studied two types of losses – random uniform
loss (0% to 9%) and bursty loss where three packets were dropped
randomly. In the random uniform loss case, they observed that if
the loss probability is low then both Reno and SACK behave sim-
ilarly. Likewise, if the loss probability is high, these two protocols
again behave similarly because retransmitted packets at high loss
probabilities will be lost causing SACK to timeout which is a nor-
mal case with Reno. However, if the loss probability is between
2% and 4% then SACK outperforms Reno. In the burst loss case,
SACK improves throughput by a significant amount (60% to 70%).
This is because for Reno the loss of three isolated packets or three
consecutive packets results in the same behavior while SACK re-
covers quickly from a bursty loss and does not cause timeouts.

[13] is the first paper describing a SACK implementation in FreeBSD,
and it also proposes TSACK (so that receiver can use the SACK
option based on the timestamp option) which was not widely ac-
cepted. The paper gives a distribution function indicating the num-
ber of blocks which are present in the SACK queue. This data
shows that in the case of a bursty loss, the queue size is smaller
than in the case of random uniform loss (with the same average
loss probability). An implication of this is that the idealized energy
cost (EI ) of SACK should be smaller in the case of bursty loss than
random uniform loss – this observation is confirmed in our experi-
ments.

[5] discusses the existence of packet reordering in the internet and
gives reasons why it may be undesirable to eliminate reordering.



There are situations where average packet latency can be reduced,
link efficiency can be increased, and/or reliability can be improved
if reordering is permitted. Examples include certain high speed
switches within the Internet backbone and the parallel links used
over many Internet paths for load splitting and redundancy

5. EXPERIMENTAL SETUP
Characterizing the energy consumption of TCP in multi-hop wire-
less networks poses a challenge due to the fact that, on the one
hand, to emulate complex networking scenarios we need to use a
simulator like NS-2 [1] while, on the other hand, measuring the ac-
tual energy consumed requires us to use a real system (the energy
models in NS-2 do not consider node costs whereas simulators like
SimplePower [2], which simulate node-level energy costs, do not
simulate networks of communicating nodes). The approach we set-
tled on was a hybrid one – we used an actual wireless network (as
illustrated in Figure 2) where we could measure the energy con-
sumed by the sender. And, to simulate a wide range of network
properties (packet loss, delay, etc.), we ran Dummynet [12] at one
of the intermediate nodes.

As shown in Figure 2, we use four laptops equipped with 802.11b
11Mb/s cards. The path from the sender to the receiver traverses
three hops and at node C we run Dummynet to simulate a wide
range of network conditions. Specifically, we use Dummynet to
introduce delays in both directions (for data packets as well as for
ACKs), simulate packet loss (random uniform loss as well as bursty
loss), and to periodically reorder packets. Dummynet can also be
used to emulate different bandwidths though we did not use this fa-
cility in our studies. Our experiments used the FreeBSD 4.3 kernel
and our own SACK implementation derived from the implementa-
tion in OpenBSD2.9 [3]. Finally, to measure the energy consumed,
the sender’s power supply is connected to a HP 34401A multimeter
that is controlled by a separate laptop. We measure the current ev-
ery millisecond and the raw data is stored on the measuring laptop.
Our sender wasa Toshiba Satellite laptop whose idle current draw
was 1.2A at a voltage of 15V. Figure 3 shows a sample trace of a
simultaneous measurement of the total system energy and the en-
ergy draw of the radio card. See [9] for a detailed characterization
of the radio energy consumption.

Figure 2: Experimental Setup.

5.1 Experimental Design
In section 6 we describe the results obtained for three different con-
ditions: random packet loss, bursty loss, and for the situation when

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500
Total Energy Consumed and Energy Consumed by the Radio

Time (msec)

C
ur

re
nt

 (
m

A
)

Total measured energy 

Simultaneous measurement of
energy consumed by the radio 

Figure 3: Sample of measured data.

Parameter Values
Average RTT 15, 40, 70, 100, 130 msec
Packet Loss 1%, 5%, and 10%
MTU Size 512 and 1500 bytes
RTS/CTS ON, OFF
Protocols Reno, Newreno, and SACK

Table 1: Experimental parameters for the loss case, Section 6.1.

there is packet reordering. Let us use this division to explain our
experimental design. Table 1 describes the variable experimental
parameters and their values for the case when packets are lost ran-
domly uniformly (section 6.1). As the table indicates, we exper-
imented with increasing RTT values, two MTU sizes, and differ-
ent loss probabilities. The total number of experimental settings is
therefore 5×3×2×2×3 = 180. For each experimental setup, we
ran between 10 and 15 repetitions and computed 90% confidence
intervals.

For the bursty loss case (Section 6.1.1), we reduced the number of
experimental parameters (Table 2) resulting in fewer experimental
scenarios (a total of 15). We decided to use only one bursty loss sce-
nario because it clearly distinguishes between the three protocols.
In addition, we decided to drop the RTS/CTS ON case because the
results we obtain are very similar to the RTS/CTS OFF case. The
packets were dropped with a probability of 0.85 for one second af-
ter 12 seconds of zero loss. With an MTU of 1500 bytes that we
used, the average number of dropped packets was 40 – 80. For the
packet reordering case (Section 6.2), the number of experimental
setups we used was 30 (see Table 3).

6. EXPERIMENTAL RESULTS
We evaluated Reno, Newreno, and SACK using three metrics:

• Total Energy/bit E measured in Joules/bit. This includes the
energy consumed while the sender is idle.

• Idealized Energy/bit EI measured in Joules/bit. This mea-
sure excludes the idle time energy and thus more closely ap-
proximates the cost of the various protocols.



Parameter Values
Average RTT 15, 40, 70, 100, 130 msec
Bursty Packet Loss 85% loss rate for 1 second

every 12 seconds
MTU Size 1500 bytes
RTS/CTS OFF
Protocols Reno, Newreno, and SACK

Table 2: Experimental parameters for the bursty loss case, Sec-
tion 6.1.1.

Parameter Values
Average RTT 15, 40, 70, 100, 130 msec
Packet Loss None
Reorder Rate 1% and 5% packets reordered
MTU Size 512, 1500 bytes
RTS/CTS OFF
Protocols Reno, Newreno, and SACK

Table 3: Experimental parameters for the packet reordering
case, Section 6.2.

• Goodput in kb/s.

Section 6.1 looks at the case when the packet losses are random
uniform, section 6.1.1 looks at the situation when the losses are
bursty, and section 6.2 looks at the case when some packets are
reordered in the network.

6.1 Random Uniform Loss Case
Table 1 outlines the experimental design for this group of experi-
ments. For each case, we transmitted 5MB of data using ttcp. Fig-
ures 4, 5, 6 plot (1) the total energy E as a function of different
RTTs for two values of the MTU and (2) the goodput as a function
of RTT3. We can make several observations based on these results:

• In general, smaller MTUs are better (i.e., consume less en-
ergy) at high losses (see Figure 6, the 10% loss case) whereas
larger MTUs are better at low loss (see Figure 4, the 1% loss
case). This observation has been made by several previous
researchers when throughput was the metric studied.

• For most cases, SACK consumes the least amount of energy.
The reason is that SACK retransmits missing segments ear-
lier than Reno (which waits for a timeout in most cases) and
Newreno (which does not know which of the unacked seg-
ments is missing at the receiver). Thus, SACK completes
transmission of the data sooner resulting in lower overall en-
ergy.

• Figures 4, 5, 6 show that for the 1% and the 5% loss cases,
SACK consumes the least amount of energy (for both MTU
sizes) while for the 10% loss case, SACK consumes the most
energy at an MTU of 1500. There are two reasons for this:

– When the loss rate is high, with large MTU, the num-
ber of segments in a window is small and hence the
possibility of receiving 3 dupacks is small. In this case
the fast retransmit algorithm is seldom triggered. Thus

3These graphs correspond to the case when RTS/CTS was turned
off. The graphs for the ON case are quite similar and have been left
out for ease of explanation.

SACK does not really help improve throughput (see
also RFC 3042 which notes the same problem and sug-
gests the use of a “Limited Transmit Algorithm” which
we have not implemented).
Figure 8 shows that the number of timeouts with or
without SACK at MTU 1500 is about the same. With a
smaller MTU, on the other hand, SACKs do help more
and therefore we see that at higher packet loss rates, the
timeouts for the SACK case are smaller.

– Since the SACK throughput is small, the total energy
consumed by SACK will be at least as high as Reno and
Newreno. However, SACK adds an additional burden
in terms of computational overhead and this results in a
higher total energy consumption.

• The energy consumed increases with an increase in RTT.
This is clear because the throughput falls with an increase
in RTT.

• We plot the total energy per bit as a function of goodput for
the 10% loss case and a MTU of 512 bytes in Figure 7. As
we can clearly see, as the goodput decreases the energy used
increases and there is an inverse relationship between these
two quantities as predicted by equation 2.

60 80 100 120 140 160 180 200 220 240
60

80

100

120

140

160

180

200

220

240

260
Energy vs Goodput (10% Loss, RTS/CTS OFF, MTU 512)

Goodput (Kbits/s)

E
ne

rg
y 

(J
ou

le
s 

* 
e−

6 
/B

it)

Newreno
Reno
SACK

Figure 7: Relationship between energy and throughput
(RTS/CTS Off).

In Figure 9 we plot the ideal energy EI consumed for the 1% and
10% loss cases. At the 1% loss case we see that SACK actually con-
sumes more energy than either of Reno or Newreno at both MTU
sizes! This is because, as we noted above, SACK has an added
computational burden that only becomes visible when we discount
the idle energy cost. We see a similar pattern in the 5% and 10%
loss cases as well.

Table 4 summarizes the relative performance of the protocols as
measured by the total energy, the goodput, and the idealized energy
for all of the loss and MTU combinations (we derive these rank or-
derings based on a comparison of the mean values of energy, good-
put, and idealized energy for the different RTTs and MTUs). We
note that the total energy and goodput are inversely related. Thus,



0 20 40 60 80 100 120 140
10

15

20

25

30

35

40

45

50

55
Energy Consumption : 1% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK1500 

SACK512 

RENO512 

0 20 40 60 80 100 120 140
200

400

600

800

1000

1200

1400

1600
1% Packet Loss, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

RENO512 & SACK512 

NEWRENO1500 

RENO1500 

Figure 4: Total Energy E per bit and Goodput for 1% packet loss with no RTS/CTS.

0 5 10 15
0

50

100

150

200

250

300

350

400
Timeouts

Packet Loss %

A
ve

ra
ge

 N
um

be
r 

of
 T

im
eo

ut
s

RENO512
NEWRENO512
SACK512
RENO1500
NEWRENO1500
SACK1500

SACK512 

RENO512 

NEWRENO512 

SACK1500 

Figure 8: Comparison of the number of timeouts.

the protocol that has the highest goodput also has the lowest total
energy. We also note that in all cases except MTU 1500 & 10%
packet loss rate SACK has the highest goodput and the lowest to-
tal energy. In this one case, Newreno has the lowest energy and
highest throughput.

When we look at the idealized energy, on the other hand, we see
that either Newreno or Reno use the lowest idealized energy in all
cases except in the MTU 512 & 5% packet loss case where SACK
and Newreno perform equally well. In general, we believe that
SACK performs poorly with respect to this metric because of the
additional data structures and computation it performs. Newreno
and Reno, on the other hand, have very similar computational over-
head. The only reason Newreno sometimes performs better in some
cases (e.g., MTU 512 & 10% packet loss) is that in fast recovery
it retransmits unacked packets before the retransmit timer goes off.

Reno, on the other hand, only retransmits one packet (the one that
received three duplicate acks) and then retransmits the remaining
packets when the retransmit timers go off. Figure 8 plots the num-
ber of timeout events for different MTU sizes. As we can see, at
a MTU of 512, Newreno has fewer timeouts than Reno and thus
performs better by this metric. However, even though SACK has
the least number of timeouts, its computational cost is high enough
to offset any gain due to its better throughput.

The lesson here is that if the wireless devices can be designed to
enter deep power saving modes when there is inactivity (i.e., re-
duce the idle cost as much as possible), then SACK may not be a
good choice for mobile environments. On the other hand, if the idle
power remains high, then SACK definitely results in overall energy
savings.

6.1.1 Bursty Loss Case
Figure 10 plots the energy and idealized energy cost for the exper-
imental setup described in Table 6.1.1. In the energy plot, we plot
both the total energy (E) as well as the idealized energy (EI ) in the
same graph. We see that SACK has the lowest total energy while
Newreno has the lowest idealized energy consumption. The reason
for this behavior is that in the case of a bursty loss, Newreno will re-
transmit lost packets without waiting for the retransmit timers to go
off (based on partial ACKs received). SACK, likewise will retrans-
mit these packets as well (as indicated by the SACKs) but it also
has the added overhead of maintaining SACK-related data. This
additional cost results in SACK having a higher idealized energy
cost even though its goodput is the highest.

6.2 Packet Reordering Case
Figures 11 and 12 plot the total energy and idealized energy for the
reorder case (see Table 6.2). We can summarize the main findings
as follows:

• SACK is by far the winner in terms of total energy as well as
idealized energy. The goodput of SACK is also the highest.

Let us first look at the reason for SACK’s better goodput



0 20 40 60 80 100 120 140
20

40

60

80

100

120

140
Energy Consumption: 5% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 

RENO1500 

SACK1500 

NEWRENO1500 

RENO512 & NEWRENO512 

0 20 40 60 80 100 120 140
100

200

300

400

500

600

700
5% Packet Loss, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 

RENO1500 

SACK1500 

RENO512 & NEWRENO512 

Figure 5: Total Energy E per bit and Goodput for 5% packet loss with no RTS/CTS.

1% Loss 5% Loss 10% Loss
MTU 512 ES ≈ EN ≈ ER ES < EN ≈ ER ES < EN ≈ ER

τS ≈ τN ≈ τR τS > τN ≈ τR τS > τN > τR

ER
I < EN

I ≈ ES
I EN

I ≈ ES
I ≈ ER

I EN
I < ER

I < ES
I

MTU 1500 ES < EN < ER ES < EN < ER EN < ER < ES

τS ≈ τN > τR τS > τN > τR τN > τR > τS

EN
I < ER

I ≈ ES
I EN

I ≈ ER
I < ES

I ER
I < EN

I ≈ ES
I

R – Reno, N – Newreno, S – SACK

Table 4: Summary of total energy (E), goodput (τ ), and idealized energy (EI ) data.

(and total energy). When the sender receives three dupli-
cate ACKs (that also contain information about holes in the
receiver’s buffer), the sender retransmits one segment and
then retransmits the segments that corresponded to holes in
the receiver’s buffer as and when pipe is less than CWND.
Newreno, on the other hand, sequentially retransmits seg-
ments on receipt of partial ACKs. This results in some pack-
ets not being retransmitted early enough and we get timeout
events. In our experiments, we noted that SACK never had
any timeouts for the reorder experiments while both Reno
and Newreno had timeout events (Reno more than Newreno).

• The above discussion explains why SACK has a higher good-
put and lower total energy than Newreno and Reno. The rea-
son it also has the lowest idealized energy is because (1) there
are no timeouts for SACK thus reducing the processing in-
volved, (2) SACK retransmits fewer packets than Reno and
Newreno.

7. DISCUSSION
In this paper we examined the relative energy consumption profiles
of TCP Reno, Newreno, and SACK. We note the following:

• The total energy consumed (for any protocol) is inversley
proportional to the throughput.

• The total energy consumed for SACK is the lowest in almost
all cases except for MTU 1500 at a loss rate of 10%. The

reason SACK has the lowest energy cost is that it has the
highest throughput and the idle energy of our device was high
(18W). This high idle energy cost plays a dominating role in
the total energy measurements.

• SACK has a poor idealized energy performance due to the
fact that SACK implementations require additional data struc-
tures and processing. This is the reason that SACK performs
poorly for the 10% loss case with 1500 MTU – here the ben-
efits of using SACK do not come into play since the CWND
contains few segments. However, the computational over-
head is still present and this causes SACK to have a higher
total energy consumption.

• In the case of packet reordering, SACK is by far the winner
in terms of total energy and idealized energy. This is because
SACK has no timeouts for the cases we looked at (both Reno
and Newreno have timeouts).

• In the case of bursty losses, SACK has the lowest total energy
while Newreno has a slightly lower idealized energy. The
reason is again that SACK’s computational cost overwhelms
the gains due to a higher throughput.

Using the above results we can conclude that when designing a
protocol for a mobile device, we must first consider the operating
environment (bursty loss or random loss, etc.) and then select the
appropriate level of protocol complexity since the computational



0 20 40 60 80 100 120 140
50

100

150

200

250

300

350

400

450

500

550
Energy Consumption: 10% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 

SACK1500 

NEWRENO1500 

0 20 40 60 80 100 120 140
0

50

100

150

200

250
10% Packet Loss, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 

RENO512 

NEWRENO512 

SACK1500 

NEWRENO1500 

Figure 6: Total Energy E per bit and Goodput for 10% packet loss with no RTS/CTS.

overhead of a protocol can be significant. In our case, if we extrap-
olate and imagine a device with very low idle power consumption
then it is clear that SACK would be a poor choice for most situa-
tions.

Acknowledgements
We would like to thank Jim Binkley for his technical support in
implementing our testbed, L. Rizzo for technical support on Dum-
mynet, and the FreeBSD community for technical support during
our implementation of SACK in FreeBSD 4.3.

8. REFERENCES
[1] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns/

(October 15, 2001).

[2] Simplepower,
http://www.cse.psu.edu/ mdl/SimplePower.html (October 15,
2001).

[3] OpenBsd2.9, http://daedalus.cs.berkeley.edu (August, 2001).

[4] Mark Allman, Chris Hayes, Hans Kruse, and Shawn
Ostermann, “TCP Performance Over Satellite Links”, In
Proceedings of the 5th International Conference on
Telecommunication Systems, March 1997.

[5] J. Bennett, C. Partridge, and N. Shectman, “Packet
Reordering is Not Pathological Network Behavior”,
IEEE/ACM Transactions on Networking, December 1999.

[6] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz,
“A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links”, in ACM SIGCOMM,
Stanford, CA, Aug. 1996.

[7] R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations
with TCP Selective Acknowledgment, ACM Computer
Communications Review, Vol. 28(2), April 1998.

[8] K. Fall and S. Floyd, “Simulation-based Comparison of
Tahoe, Reno, and SACK TCP”, ACM Computer
Communications Review, Vol. 26(3), July 1996, pp. 5 – 21.

[9] Laura Feeny and Martin Nilsson, “Investigating the Energy
Consumption of a Wireless Network Interface in an Ad Hoc
Networking Environment”, Proceedings INFOCOM 2001,
Anchorage, Alaska.

[10] Tim Henderson, Randy Katz, “Transport Protocols for
Internet-compatible Satellite networks”, IEEE Journal on
Selected Areas of Communications, February, 1999.

[11] G. Holland and N. Vaidya, “Analysis of TCP Performance
over Mobile Ad Hoc Networks”, Proceedings ACM
Mobicom’99.

[12] L. Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols,” ACM Computer Communication
Review, Vol.27,n.1, Jan. 1997.

[13] L. Rizzo, “Issues in the Implementation of Selective
Acknowledgments for TCP”, January, 1996,
http://www.iet.unipi.it/ luigi/selack.ps

[14] V. Rodoplu and T.H. Meng, “Minimum Energy Mobile
Wireless Networks,” IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 1333-1344, August 1999.

[15] V. Tsaoussidis, H. Badr, X. Ge, K. Pentikousis,
“Energy/Throughput Tradeoffs of TCP Error Control
Strategies,” In Proceedings of the 5th IEEE Symposium on
Computers and Communications, France, July 2000.

[16] W. Richard Stevens, TCP/IP Illustrated, Volume I:
The Protocols, Addison Wesley Publishers, 1994.

[17] M. Zorzi, R.R. Rao, “Error Control and Energy Consumption
in Communications for Nomadic Computing,” IEEE
Transactions on Computers, March 1997.

[18] M. Zorzi, R.R. Rao, “Is TCP Energy Efficient?,” Proceedings
IEEE MoMuC, November 1999.



0 20 40 60 80 100 120 140
10

15

20

25

30

35
Idealized Energy Consumption: 1% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

NEWRENO1500 

SACK512 

SACK1500 

RENO512 

0 20 40 60 80 100 120 140
20

40

60

80

100

120

140

160
Idealized Energy Consumption: 10% Packet Loss, RTS/CTS off

Average RTT (msec)
E

ne
rg

y 
(J

ou
le

s*
e−

6/
B

it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK1500 

NEWRENO512 

Figure 9: Idealized energy per bit of goodput for 1% and 10% packet loss.

0 20 40 60 80 100 120 140
10

20

30

40

50

60

70
Energy Consumption (Total & Idealized): Burst Loss, RTS/CTS off, MTU 1500

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO−Total
NEWRENO−Total
SACK−Total
RENO−Ideal
NEWRENO−Ideal
SACK−Ideal

NEWRENO−Ideal SACK−Ideal 

NEWRENO−Total 

SACK−Total 

0 20 40 60 80 100 120 140
200

300

400

500

600

700

800

900

1000

1100

1200
Goodput: Burst Loss, RTS/CTS, MTU 1500

Average RTT (msec)

G
oo

dp
ut

 (
kb

ps
)

RENO
NEWRENO
SACK

Figure 10: Summary of energy and throughput for bursty loss.



0 20 40 60 80 100 120 140
10

20

30

40

50

60

70

80

90

100
Energy Consumption: 1% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

0 20 40 60 80 100 120 140
10

15

20

25

30

35
Idealized Energy Consumption: 1% Packet reorder, RTS/CTS off

Average RTT (msec)
E

ne
rg

y 
(J

ou
le

s*
e−

6/
B

it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

Figure 11: Total energy and idealized energy for a 1% packet reordering case.

0 20 40 60 80 100 120 140
0

50

100

150

200

250
Energy Consumption: 5% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 & 1500 

NEWRENO512 

NEWRENO1500 

0 20 40 60 80 100 120 140
10

20

30

40

50

60

70

80
Idealized Energy Consumption: 5% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y 

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK512 & 1500 

NEWRENO 

1500 

512 

RENO 

512 

1500 

Figure 12: Total energy and idealized energy for a 5% packet reordering case.



0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400
Goodput: 1% Packet reorder, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
kb

ps
)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK 

1500 512 

NEWRENO 

1500 512 

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700
Goodput: 5% Packet reorder, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
kb

ps
)

RENO1500
NEWRENO1500
SACK1500
RENO512
NEWRENO512
SACK512

SACK
512 & 1500 

NEWRENO 

1500 512 

Figure 13: Goodput for the reordering case.


