
ABSTRACT

An abstract of the thesis of Harkirat Singh for the Master of Science in Computer

Science presented October 23, 2002.

Title: Analysis of Energy Consumption of TCP Reno, Newreno, and SACK in

multi-hop wireless network

In this thesis we compare the energy consumption behavior of three

versions of TCP -- Reno, Newreno, and SACK. The experiments were performed

on a wireless test-bed where we measured the energy consumed at the sender node.

Our results indicate that, in most cases, using total energy consumed as the metric,

SACK outperforms Newreno and Reno while Newreno performs better than Reno.

The experiments emulated a large set of network conditions including variable

round trip times, random loss, bursty loss, and packet reordering. We also

estimated the idealized energy for each of the three implementations (i.e., we

subtracted out the energy consumed when the sender was idle) and here,

surprisingly, we found that in many instances SACK performed poorly compared

to the other two implementations. We conclude that if the mobile device has a very

low idle power consumption then SACK is not the best implementation to use for

bursty or random loss. On the other hand, if the idle power consumption is

significant, then SACK is the best choice since it has the lowest overall energy

consumption.

 ii

Dedication

 (Contemplate and reflect upon knowledge,

 and you will become a benefactor to others)

 iii

Acknowledgements

I sincerely thank my advisor Dr. Suresh Singh for his continuous support

and guidance throughout the course of my thesis and graduate work. It has

benefited me immensely in terms of both intellectual and personal growth.

I would like to thank my committee members, Dr. Suresh Singh, Professor

Jim Binkley, and Dr. Douglas V. Hall for their invaluable time and feedback. I am

thankful to Professor Jim Binkley for his support and guidance with FreeBSD.

I owe a special debt of gratitude to my parents and family. I thank my

family members for their constant support and encouragement. It is because of their

wishes and love from across the ocean that I have been able to get this far in my

life. I thank my wife, Ruby, for her selfless support and love that makes me want to

excel. Thanks to all of my friends who have made my stay in Portland a memorable

one.

 iv

ANALYSIS OF ENERGY CONSUMPTION OF TCP RENO, NEWRENO, AND

SACK IN MULTI-HOP WIRELESS NETWORK

 by

HARKIRAT SINGH

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2002

 v

Table of Contents

 PAGE

Dedication ii

Acknowledgements iii
List of Tables viii

List of Figures ix
1. Introduction 1

2. Review of Transmission Control Protocol 3
2.1 TCP Reno 4

2.2 Slow Start 4

2.3 Congestion Avoidance 5

2.4 Fast Retransmit and Fast Recovery 6

2.5 Retransmission Timeout 7

2.6 TCP New Reno 8

2.7 TCP Sack 10

2.7.1 SACK Permitted Option 11

2.7.2 Data Receiver behavior 12

2.7.3 Data Sender behavior 13

2.7.4 Congestion control and retransmission strategy 13

2.8 D-SACK 14

3. Ad Hoc Network and Energy Model 17

3.1 Wireless Network 17

3.1.1 Routing Failure 19

3.1.2 Out-of-order packets 21

3.1.3 Routing Congestion 21

 vi

3.2 Energy Consumption in TCP 22

3.2.1 Energy and Throughput Relation 24

4. Related Work 26

4.1 Energy Efficient Hardware 26

4.1.1 Dynamic Power 27

4.2 Physical Layer Energy Consumption 29

4.3 MAC Layer Energy Optimization 29

4.3.1 CSMA /CA 30

4.3.2 Power Saving Mode 32

4.3.2.1 BSS Power Saving 32

4.3.2.2 Ad-Hoc Power Saving 33

4.4 Energy aware MAC Protocols 34

4.4.1 Link Layer 34

4.4.2 Ad Hoc Energy Efficient MAC Protocols 36

4.5 Energy efficient Routing Protocols 37

4.6 Transport Layer 38

4.7 Application Layer 43

4.8 Summary 44

5. Experimental Setup 45
5.1 Experimental Methodology 45

5.2 Workload 46

5.3 Test-bed 46

5.4 Energy Measurement 48

5.5 Experimental Design 49

5.5.1 Factors 50

5.5.1.1 Mobile Nodes 50

 vii

5.5.1.2 Static Nodes 50

5.6 Implementation 51

5.7 Validation 52

5.7.1 Discussions 55

6. Experimental Results 56

6.1 Metrics 56

6.2 Random uniform Loss Case 56

6.3 Burst Loss Case 66

6.4 Packet Reordering Case 67

7. Conclusion 70
8. References 72

 viii

List of Tables

 PAGE

Table 1: Lucent IEEE 802.11 WaveLAN PC Card Characteristics 28

Table 2: Lucent WaveLAN PC Card Power Consumption 39

Table 3: Experimental parameters for loss case 51

Table 4: Experimental parameters for the burst loss case 51

Table 5: Experimental parameters for the packet reordering case 51

Table 6: Timeout and Pkts Retransmitted, 5% Loss case 63

Table 7: Summary of Total energy, goodput, and idealized energy 64

 ix

List of Figures

 PAGE

Figure 1: TCP Slow Start 5

Figure 2: Evolution of Congestion Window 5

Figure 3: Evolution of Congestion Window 6

Figure 4: D-SACK 15

Figure 5: Infrastructure Mode 17

Figure 6: Ad hoc Mode 18

Figure 7: Evolution of CWND in the event of Route Disconnection 19

Figure 8: Throughput in the event of Route Disconnection 20

Figure 9: Total Energy Consumption 22

Figure 10: Carrier-Sense Multiple Access (CSMA) 31

Figure 11: BSS Power management 32

Figure 13: Test-bed setup 45

Figure 14: Sample of Measured Data 48

Figure 15: Evolution of ACK received by TCP-SACK Sender 52

Figure 16: Snapshot Evolution of ACK received by TCP-SACK Sender 53

Figure 17: Total Energy E per bit and Goodput for 1% packet loss 57

Figure 18: Comparison of the number of timeouts 57

Figure 19: Relationship between energy and throughput (RTS/CTS Off) 58

Figure 20: Total Energy E per bit and Goodput for 5% packet loss 59

Figure 21: Total Energy E per bit and Goodput for 10% packet loss 60

 x

Figure 22: Idealized Energy EI per bit 1% and 10% packet loss 61

Figure 23: Evolution of CWND, 5% Packet Loss case 62

Figure 24: Time-Sequence (ACK), 5% Packet Loss case 62

Figure 25: Average Throughput, 5% Packet Loss case 63

Figure 26: Summary of Energy and throughput for burst loss 66

Figure 27: Total energy and idealized energy for 1% packet reordering case 68

Figure 28: Total energy and idealized energy for 1% packet reordering case 68

Figure 29: Goodput for reordering case 69

1. Introduction

The demand for pervasive computing will accelerate in the near future.

Wireless devices equipped with IEEE 802.11b are gaining popularity as the

platform of choice for deploying a range of mobile applications. In comparison to

Moore’s Law the rate of growth of battery capacity is much slower. Studies have

shown that the energy capacity has doubled roughly every 30 years [Pow95]. Since

these devices operate on battery power alone, it is important to ensure that energy-

efficient considerations are incorporated into the design of their hardware and

software. Data communication plays a key role in many mobile applications and

accounts for a large proportion of the cost in running these applications on

handhelds. Users need reliable communication for various applications like e-mail,

file transfer, and web browsing and TCP is the dominant reliable transport protocol

on top of which all these services run. It is important to understand and characterize

the energy cost of wireless communication and use this information in the design of

the communications component of these devices.

In this work we focus our attention on the energy efficiency of three

variants of TCP for connections running over wireless links. Our goal is to

characterize the energy consumption as well as the throughput of three versions of

TCP (Reno, Newreno, and SACK) for a variety of wireless network conditions

including loss (random as well as bursty), variable round trip times (RTT), and

packet reordering. We also investigate the total energy consumption as well as

Idealized energy consumption of TCP variants. We used a test-bed of three-hop

 2

wireless network, and each laptop was equipped with Lucent 802.11b 11Mbps

DSSS silver card running FreeBSD 4.3. SACK was developed based on RFC 2018.

We used HP 34401A multimeter for measurement of current at the sender. We

observed the interesting results; SACK consumes the lowest total energy in most of

scenarios and has the highest troughput. However, if we discount the energy

consumed by the Sender in an idle state (i.e., when the Sender is awaiting ACKs

prior to transmitting more packets), SACK appears to have the highest energy cost

in many cases. This is due to the fact that SACK introduces additional

computational complexity at the Sender, thus resulting in higher energy

consumption. This difference is interesting in mobile computation because it points

to the need for a careful selection of protocol for the handhelds. If the idle energy

for a handheld is very small, then SACK is probably not a good choice for that

device. On the other hand, if the handheld has a high idle energy cost, then SACK

is a good choice since it completes the data transmission the earliest.

The remainder of thesis is organized as follows. In Chapter 2, we describe

Transport Control Protocol (TCP). In Chapter 3, we define the energy model used

to compare the energy cost. In Chapter 4 we discuss the current state-of-the-art in

energy and other performance studies of energy studies. Chapter 5 describes our

experimental hardware and software setup and we discuss the experiment

parameters used. The results are presented in Chapter 6, and we discuss the

implication of this work in Chapter 7.

 3

2. Review of Transmission Control Protocol

Transmission Control Protocol (TCP) provides a connection oriented

reliable byte stream on top of the unreliable datagram service provided by the IP

layer [RFC793]. Unlike UDP [RFC768], TCP provides reliability by sending data

combined with positive acknowledgements (ACKs) and retransmissions. Each byte

in the transmission data stream is numbered, starting at some value and increasing

over a period of time. When a packet is formed at the Sender, this packet contains

not only the data segment from application layer but also the sequence number of

the first byte in the data segment, the (implied) length of the segment, a 16-bit TCP

checksum, sender and destination port numbers, and TCP options if any. TCP at the

Sender will then initiate a retransmission timer when the packet is sent out. The

Receiver will respond with the ACK if the segment arrives in sequence and without

scrambled, otherwise the Receiver will respond to the Sender by acknowledging

the last received correct packet that was in sequence.

All of the current TCP implementations are based on TCP Tahoe which

incorporated algorithms for slow-start, congestion avoidance, fast retransmit, and

modifications to the formula for estimating round-trip times (RTT) (see [Ste94] for

more details). TCP Reno, Newreno, and SACK are essentially similar to Tahoe but

with a modified fast retransmit algorithm that includes fast recovery as well. A

brief explanation of the mechanism of TCP Reno, Newreno and SACK follows.

 4

2.1 TCP Reno

TCP Reno [Jac88] is widely deployed in the Internet. Once the three-way

handshake between the Sender and Receiver is over the TCP Sender transmits

packets to the Receiver, and the Receiver acknowledges these packet with ACKs.

TCP is a connection-oriented protocol, and a state must be maintained at the Sender

and the Receiver. Some of the state variables of TCP Control Block are:

• snd_nxt: the sequence number of the next data byte to send

• snd_una: the sequence number of the oldest unacknowledged data byte

• cwnd: the congestion window size

• ssthresh: the slow start threshold (max value is 65535, without option)

• mss: maximum segment size

• th_ack: ACK from receiver

TCP Reno uses slow start and congestion avoidance algorithm for effectively

throttling the network.

2.2 Slow Start

This algorithm [Jac88] is used at the beginning of a new connection and

after a retransmission.

 5

 cwnd = 1 cwnd = 2 cwnd = 4 cwnd = 8

Sender

Receiver

Figure 1: TCP Slow Start

The cwnd is initialized to one segment and each time the Sender receives an

ACK it increases cwnd by one segment. This algorithm provides an exponential

increase in the growth of cwnd, when cwnd reaches ssthresh slow start algorithm

stops and the congestion avoidance operates.

2.3 Congestion Avoidance

Figure 2: Evolution of Congestion Window

 6

Congestion Avoidance throttles the network by increasing cwnd more

conservatively each time a new ACK arrives.

cwnd
cwndcwnd 1+=

2.4 Fast Retransmit and Fast Recovery

TCP Sender detects loss by tripple duplicate ACKs or timeout. When a TCP

Receiver misses a packet (due to reordering or loss) on a connection but receives

several packets that are later in sequence, it generates an ACK for the missing

packet.

Figure 3: Evolution of Congestion Window

 7

When the Sender sees more than a threshold (three) number of duplicate

ACKs, it infers that the packet is lost. The Sender performs the following action:

� ssthresh = min (cwnd, receiver advertised window) / 2

� snd_nxt = th_ack, cwnd = 1

� Retransmit the missing segment and cwnd = ssthresh + 3

Each time another duplicate ACK arrives, the Sender increments cwnd by the

segment size and transmit a packet (if allowed by the new value of cwnd).

When the next ACK acknowledges all the intermediate segments sent

between the lost segment and the receipt of the third duplicate ACK, cwnd is set to

ssthresh (step 1), which is termed "deflating" the window. Figure 3 shows three

different events of fast-retransmit and fast-recovery, and one of the events is at 2.00

sec, when after receipt of three duplicate ACKs TCP Sender reduces its cwnd to

half.

2.5 Retransmission Timeout

TCP maintains an estimate of the round trip time (RTT), i.e., the time it

takes for the segment to travel from the Sender to the Receiver plus the time it

takes for the ACK (and/ or any data) to travel from the Receiver to the Sender. The

variable RTO (Retransmit Time Out) maintains the value of the time to wait for an

ACK after sending a segment before timing out and retransmitting the segment. If

the RTO estimate is much lower than the actual round-trip time of the connection,

 8

segments will be retransmitted unnecessarily before the actual segment or its

corresponding ACK has propagated through the network. If the round-trip

estimation is too high, time-outs will be longer than necessary thus the actual

throughput will be low because even if a segment gets lost, the Sender will not

retransmit until the timer goes off.

The RTO is set by taking into account both the mean round-trip time (RTT)

between the Sender and the Receiver, and the variation in it. In most modern

implementations of TCP, RTO = mean RTT + 4 * mean deviation in RTT.

Whenever a TCP Sender has outstanding data that has not yet been

acknowledged, it sets a timer known as the retransmission timer. If there is

unacknowledged data at the time the timer expires, then the oldest packet among

these is assumed to have been lost. After timeout the connection enters into another

slow start phase.

2.6 TCP New Reno

When multiple packets have been dropped from a single window of data the

Fast Retransmit and Fast Recovery algorithms do not recover fast [FF96, Hoe96].

In this case, if the SACK option is available, the TCP Sender has the information to

make intelligent decisions about which packets to retransmit and which packets not

to retransmit during Fast Recovery.

In the case of multiple packets dropped from a single window of data, the

first new information available to the Sender comes when the Sender receives an

acknowledgement for the retransmitted packet (that is the packet retransmitted

 9

when Fast Retransmit was first entered). If there had been a single packet drop,

then the acknowledgement for this packet will acknowledge all of the packets

transmitted before Fast Retransmit was entered (in the absence of reordering).

However, when there were multiple packet drops, then the acknowledgement for

the retransmitted packet will acknowledge some but not all of the packets

transmitted before the Fast Retransmit. We call this packet a partial

acknowledgment [Hoe96].

Newreno [FH99] modifies the fast retransmit and fast recovery algorithm

such that the Sender does not wait for a retransmission timeout and continues to

retransmit lost segments every time it receives a partial ACK. The details of the

Newreno fast retransmit and recovery algorithm are as follows:

1. When the third duplicate ACK is received and the Sender is not already

in the Fast Recovery procedure, set ssthresh to no more than the value given by the

equation below. (This is equation 3 from [RFC 2581]).

)(






= MSSwindowadvertisedreceivercwndssthresh *2,

2
,minmax

Record the highest sequence number transmitted in the variable "recover".

2. Retransmit the lost segment and set cwnd to ssthresh plus 3*MSS. This

artificially "inflates" the congestion window by the number of segments (three) that

have left the network and which the Receiver has buffered.

 10

3. For each additional duplicate ACK received, increment cwnd by one.

This artificially inflates the congestion window in order to reflect the additional

segment that has left the network.

4. Transmit a segment, if allowed by the new value of cwnd and the

Receiver's advertised window.

5. When an ACK arrives that acknowledges new data, this ACK could be

the acknowledgment elicited by the retransmission from step 2, or elicited by a

later retransmission.

6. If this ACK acknowledges all of the data up to and including "recover",

then the ACK acknowledges all the intermediate segments sent between the

original transmission of the lost segment and the receipt of the third duplicate

ACK. Set cwnd to ssthresh, where ssthresh is the value set in step 1 (this is termed

"deflating" the window), and exit fast recover algorithm.

2.7 TCP Sack

Multiple packet losses from a window of data can have a catastrophic effect

on TCP throughput [FF96, Hoe96]. TCP [RFC793] uses a cumulative

acknowledgment scheme in which received segments that are not at the left edge of

the receive window are not acknowledged. This forces the Sender to either wait a

round-trip time to find out about each lost packet, or to unnecessarily retransmit

segments that have been correctly received [FF96]. With the cumulative

acknowledgment scheme, multiple dropped segments generally cause TCP to lose

its ACK-based clock, reducing overall throughput.

 11

Selective Acknowledgment (SACK) [RFC2018] is a strategy that corrects

aforesaid behavior in the face of multiple dropped segments. With selective

acknowledgments, the data Receiver can inform the Sender about all segments that

have arrived successfully, so that the Sender needs to retransmit only the segments

that have actually been lost.

2.7.1 SACK Permitted Option

SACK option, which is known as SACK Permitted Option, needs to be

negotiated during connection establishment phase. This two bytes option must not

be sent on a non-SYN segment. The first byte of this option contains the kind

which is four, and the second byte the length in bytes which is two.

The SACK option is to be sent by the data Receiver to the Sender to inform

the Sender of the non-contiguous blocks of data received and help in case

retransmission. When missing segments are received, the data Receiver

acknowledges the data normally by advancing the left window edge in the

Acknowledgement Number Field of the TCP header. The SACK option does not

change the meaning of the Acknowledgement Number field.

The first byte of this option contains the kind of the option which is five.

The second byte contains the length of the option which is variable according to the

number of blocks reported. Each contiguous block of data queued at the data

receiver is defined in the SACK option by two 32-bit unsigned integers in network

byte order.

 12

• Left Edge of Block: This is the first sequence number of this block.

• Right Edge of Block: This is the sequence number immediately following

the last sequence number of this block.

The maximum number of SACK blocks reported by receiver is limited by the

length of the option field which is 40 bytes. Hence maximum number of blocks is 4

(8 * n + 2 bytes). It is expected that the SACK option generally be used in

conjunction with other options (as Timestamps which is two bytes long) that limits

the number of SACK blocks to three.

2.7.2 Data Receiver behavior

If the Receiver has received a SACK permitted option on the SYN segment

for this connection it should generate a SACK option on each ACK that does not

acknowledge the highest sequence number in the Receiver’s queue. If not, the

Receiver must not generate a SACK option in any case. Thus every duplicate ACK

should bear a SACK option.

The first SACK block must specify the contiguous block of data containing

the segment which triggered this ACK, unless that ACK advances the

acknowledgement field in the header. This assures that the ACK with the SACK

option reflects the most recent change in the Receiver’s queue.

The data Receiver should include as many distinct blocks as possible in the

SACK option. Note that the maximum available option space may not be sufficient

to report all blocks present in the Receiver's queue.

 13

The SACK option SHOULD be filled out by repeating the most recently

reported SACK blocks (based on first SACK blocks in previous SACK options)

that are not subsets of a SACK block already included in the SACK option being

constructed. This assures that in normal operation, any segment remaining part of a

non-contiguous block of data held by the data Receiver is reported in at least three

successive SACK options, even for large-window TCP implementations. After the

first SACK block, the following SACK blocks in the SACK option may be listed in

arbitrary order. However, SACK blocks must not report any old data that is no

longer actually held by the Receiver if it has reneged.

2.7.3 Data Sender behavior

When receiving an ACK containing a SACK option, the data Sender should

record the selective acknowledgement for the future reference. The data Sender is

assumed to have a retransmission queue that contains the segments that have been

transmitted but not yet acknowledged, refereed as holes. On receipt of SACK

blocks TCP Sender will update the hole information at the data Receiver.

2.7.4 Congestion control and retransmission strategy

We describe here the behavior of TCP-SACK during fast retransmit and fast

recovery. This is explained based on Sally Floyd’s algorithm using pipe variable

which is an estimation of the amount of data in the network.

 14

1. When the third duplicate acknowledgement is received, set ssthresh to

one-half of the current window. Record the highest sequence number transmitted in

the variable "recover".

2. Retransmit the missing segment. Initialize pipe to cwnd minus three the

segment size and set cwnd to ssthresh

3. Each time another duplicate ACK is received decrement pipe by one

segment size. If pipe is less than cwnd retransmit a segment that has not been

SACKed and increment pipe by one segment size. If all non-SACKed segments

have already been retransmitted, send new data.

If a partial ACK (an ACK for new data but not as much as for the

“recover”) is received decrement pipe by two segment size and perform

retransmission as stated above. When the “recover” ACK is received TCP returns

to normal behavior and performs congestion avoidance.

It is important to note that the pipe variable is decremented by one segment

size when a duplicate ACK is received because it means that a segment left the

network. The pipe variable is decremented by two segments size when a partial

ACK is received because it means that the segment that triggered this ACK has left

the network and that the next expected segment by receiver has been lost (which

means two segments out of the network).

2.8 D-SACK

There has been a extension to the SACK known as D-SACK [RFC 2883].

The use of D-SACK does not require separate negotiation between a TCP Sender

 15

and Receiver that has already negotiated SACK capability. When D-SACK is

used, the first block of the SACK option should be a D-SACK block specifying the

sequence number of the duplicate segment that triggers the acknowledgement.

 SEQ 0:499
 SEQ 500:999
 SEQ 1000:1499

 Delayed
 SEQ 1500:1999 SEQ 2000:2499
 SEQ 2500:2999
 SEQ 1000:1499 SEQ 1000:1499

 ACK 500

 ACK 1000

ACK 1000, SACK 1500-2000

ACK 1000, SACK 1500-2500

ACK 1000, SACK 1500-3000

 ACK 1000

ACK 1000, D-SACK 1000-1500

 Sender Receiver

Figure 4: D-SACK

If the packets are reordered in the network such that a segment arrives more

than 3 packets out of order, TCP’s fast retransmit algorithm will retransmit the out-

of-order packet. Without the use of D-SACK, the sender will unnecessary perform

 16

false fast retransmission and fast recovery. However, the use of D-SACK allows

the Sender to detect some cases when a a Fast Retransmit was due to packet

reordering instead of a packet loss.

Without the use of D-SACK, the Sender would only know that the first

transmission of the segment 1000-1499 was delayed in the network, or that either

one of the data segments or the final ACK was duplicated in the network. Thus the

use of D-SACK allows the Sender to more reliably infer that the first transmission

of the segment 1000-1499 was not dropped. This allows TCP sender to “undoing”

the reduction in the congestion window.

 17

3. Ad Hoc Network and Energy Model

In this section we will explain the ad hoc network and its key

characteristics. We also investigate the performance of TCP under these

characteristics. Afterwards, we explain Energy model for TCP.

3.1 Wireless Network

The 802.11 standard [Spec99] define two modes of operation of wireless

network: infrastructure (BSS) and ad hoc network (IBSS). In infrastructure mode

(Figure 5), the wireless network consists of at least one access point and a set of

mobile nodes equipped with wireless network interface (NI) card.

PDA

Laptop

Laptop

Access Point

Laptop

 PDA

Figure 5: Infrastructure Mode

 18

This configuration is called a Basic Service Set (BSS). An Extended

Service Set (ESS) is a set of two or more BSSs forming a single sub-network. Since

most corporate WLANs require access to the wired LAN for services (file servers,

printers, Internet links) they will operate in infrastructure mode.

Ad hoc mode (also called peer-to-peer mode or an Independent Basic

Service Set, or IBSS) is simply a set of 802.11 mobile nodes that communicate

directly with one another without using an access point or any connection to a

wired network (Figure 6).

This mode is useful for quickly and easily setting up a wireless network

where a wireless infrastructure does not exist or is not required for services, such as

a conference room, convention center, or airport, or where access to the wired

network is barred such as disaster relief or battlefield.

PDA

Laptop

Laptop

Laptop

 PDA

Figure 6: Ad hoc Mode

 19

We will focus our discussion in the context of ad hoc (IBSS) network as

this network is more flexible in terms of set up, mobility etc.. Further, it has

different power requirement as compare to BSS [FN01].

The throughput of TCP connection is very low in ad hoc network due to the

fact that mobile nodes communicate over relatively low bandwidth links which are

prone to high propagation loss, burst error, fading, multi-user interference and

frequent topological change. The three primary key factors for this are:

3.1.1 Routing Failure

Figure 7: Evolution of CWND in the event of Route Disconnection

 20

A related problem pointed out in [HV99] is that the underlying routing

protocol (DSR JM96] in this case) may find invalid routes due to the cache reply

mechanism incorporated into the protocol.

This causes further delays in finding a route and can lead to serial timeouts

at the Sender, which can become very long. Finally, it is possible that even if a

route is found, the TCP Sender may not send data because it is waiting for a

timeout to retransmit data. By the time the Sender times out, the route may no

longer be valid! Thus the TCP throughput will be very small.

Figure 8: Throughput in the event of Route Disconnection

In Figure 7 route failure occurs at time 2.00 and 5.00 sec, the TCP Sender

remains idle for some periods of time, many retransmissions take place when there

is no route, the Sender will timeout and invoke slow start and congestion window is

 21

small. The throughput of the connection degrades, the corresponding time periods

in Figure 8 have throughput almost zero.

3.1.2 Out-of-order packets

Due to route changes during the lifetime of a TCP connection or due to

multi-path routing, it is possible for packets and/ or ACKs to arrive out-of-order

[BPS99]. This can cause the Sender to receive triple duplicates which in turn

results in the Sender retransmitting the offending packet and shrinking its

congestion window by a half. Thus, the overall energy consumption increases due

to reduced throughput as well as due to unnecessary retransmissions.

3.1.3 Routing Congestion

Routing failure can cause network congestion if there are several active

connections [MSB00]. This is because each route failure forces the routing protocol

to find new routes and as a consequence, the number of control packets in node

buffers can increase significantly. Similarly, TCP Senders will timeout and

retransmit packets that may already be present in the buffers of intermediate hops.

These two factors taken together can result in congestion at one or more nodes in

the network which in turn results in lowered TCP throughput and higher energy

consumption.

TCP's design is not optimized for the three network conditions discussed

above that are endemic to ad hoc networks. Therefore, in each case, TCP

 22

misinterprets the network state resulting in poor throughput and excessive packet

retransmissions.

Clearly standard1 TCP implementation does not have mechanism to react to

aforesaid ad hoc network characteristic which causes for unnecessary

retransmission of packets, longer idle connection time and lower throughput.

3.2 Energy Consumption in TCP

Consider the case where a node in an ad hoc network needs to transmit B

bytes of data reliably. It transmits a window of packets and waits to receive ACKs.

Upon reception of ACKs, it moves its window and transmits more packets.

Figure 9: Total Energy Consumption

1 We mean Reno, Newreno and SACK as standard TCP implementation

 23

Figure 9 shows the evolution in time of a Sender where we plot the current

drawn by the Sender (assuming a fixed voltage) as a function of time. When the

Sender is idle, it draws a fixed amount of current2. When a packet is to be

transmitted, there is some processing energy consumed3 in addition to the

transmission energy. Likewise, when a packet is received, there is energy

consumed to receive the packet (by the interface card) plus the processing energy

needed to process the received packet.

We make a distinction between the total energy E consumed and the

idealized energy EI. The total energy refers to the total system energy, from the

start of data transmission to the end that is consumed by the system. The idealized

energy refers to the total energy minus the energy consumed in the idle periods.

The reason this distinction is interesting is that EI depends on the protocol

processing, transmission, and reception costs only, whereas E depends on EI as well

as the throughput of the connection. As we will show in Chapter 6, for some cases

SACK has a lower E (than Reno and Newreno) but a higher EI due to the additional

computation involved. Finally, it is interesting to note that as the idle power

consumption is minimized by improved power-management in hardware, E will

asymptotically approach EI.

2 We are considering the idle energy used by the sender as a whole, i.e., the interface card, the
processor, the memory and any other devices that are powered on.
3 The main source of energy consumption is the copy operation (user space to kernel space and then
to the interface card).

 24

3.2.1 Energy and Throughput Relation

We can write a simple expression for the total energy consumed by a node

to transmit B bytes of data reliably as follows:

() RxRxTxTxRxTxtotalidle tPtPtttPE ++−−=

Where Pidle is the idle power consumed by the Sender, ttotal is the total time

needed to complete the transmission of B bytes, tTx and tRx are the time spent in

transmitting and receiving packets, and PTx and PRx are the corresponding power

consumed at the Sender for packet transmission and reception.

The first term in the above expression denotes the idle energy cost at the

Sender. This is the energy consumed by the Sender while it awaits reception of

ACKs from the Receiver or timeout events. Thus, if the channel has a low bit rate,

or if the losses are high, the Sender is likely to spend a large amount of time in the

idle state consuming energy. The second term in the expression denotes the energy

expended for packet transmission. For a given amount of data B, the value of this

term will primarily depend on the number of transmissions and the MTU size

(Maximum Transmission Unit or packet size) used. Larger MTU sizes will require

fewer packet transmissions but a higher loss rate will result in a larger penalty since

a larger amount of data will need to be retransmitted (recall that packet

transmission cost is a sum of at least two memory copy operations, a checksum

calculation, and, eventually, the actual transmission). Finally, the third term in the

 25

expression for E is the packet reception cost. If we consider the case when the data

transmission is one-way only (i.e., the Sender only receives ACKs), then the

reception cost is actually quite small (ACKs are small packets and since they

contain no data, there is a much smaller copy cost). We can therefore drop this third

term from the expression for E to simplify it and obtain:

() TxTxTxtotalidle tPttPE +−=

Notice that we have also dropped tRx from the first term because the total

time spent in receiving and processing ACKs is quite small.

If we assume that the average connection throughput is τ bytes/sec and the

transmission speed is r bytes/sec we can write,

()

τ

τ
τ

1
)()/()/(

///

∝

−+=
+−=

idleTxidle

Txidle

PPrBPB
rBPrBBPE

Thus, we see that the total energy consumed is inversely proportional to the

average throughput achieved by the connection.

 26

4. Related Work

Ad hoc networks are collections of mobile nodes (laptop, PDA, cell phone

etc.) which communicate with each other in the absence of any networking

infrastructure. These mobile nodes need to be light in weight. Furthermore, they are

battery operated with finite energy resources, hence they need to be energy

conserving so that battery life can be increased. Even though battery technology is

improving continuously and hardware is improving rapidly in terms of power

consumption, battery life and battery weight are issues that are the motivation for

researchers to reduce overall power consumption. In this section we will

summarize energy studies and power saving techniques proposed at different layers

of the mobile node.

4.1 Energy Efficient Hardware

In the past several studies have showed that CPU, Memory, liquid crystal

display (LCD) and wireless network interface (NI) are the predominant source of

power consumption in a laptop [Lor95]. Therefore, it is important to reduce their

energy consumption. Today’s hardware is based on CMOS technology. There are

two main components that establish the amount of power dissipated in a CMOS

circuit [WE93]. These are:

• Static dissipation: Due to leakage current or other current drawn

continuously from the power supply.

 27

• Dynamic dissipation: Due to switching transient current and charging and

discharging of load capacitances

4.1.1 Dynamic Power

Dynamic power dissipation is the largest component in the power

consumption. It can be expressed as:

pDDLd fVCP ∗∗= 2][(1)

where Pd is the power in watts, VDD is supply voltage, CL is load capacitance and fp

is repetition frequency. Dynamic power can be reduced by reducing one or all of

these factors. However, they each have their side effects. Lower Voltage will

reduce power (quadratic) at the expense of speed so time taken to complete a task

will increase. Load capacitance can be reduced by using smaller transistor and

routing capacitance.

It is possible to disable the clock to the portion of the hardware which is not

active; this reduces unwanted transitions and therefore reduces Dynamic Power

consumption. Specifically, a mobile node spends a small amount of its time

sending and receiving traffic, so idle power consumption is a significant

contribution to overall power consumption (refer to Table 1). These results are

presented by [FN01].

 28

 MEASURED SPECIFICATION
Sleep Mode
Idle Mode
Receive Mode
Transmit Mode

10 mA
156 mA
190 mA
284 mA

10 mA
n/a
180 mA
280 mA

Power Supply 4.74 V 5 V

Table 1: Lucent IEEE 802.11 WaveLAN PC Card Characteristics

Wireless Network interface, which is a significant consumer of power

[SK97], can be turned off in the idle state. However, we will see in later sections

that this approach is not so straightforward.

We can rewrite the equation 1 in terms of time as:

2][DDLd VCtP ∗=∗ (2)

Power-delay product gives the energy consumption of a particular task;

hence with lower clock frequency it will take a longer time to finish a task. The

Compaq Itsy energy study [FBA+0] has similar findings for Pocket PCs. It

recommends that for compute-intensive applications with no voltage switching,

application should be run at as fast a clock frequency as possible until completed.

The system then should be placed into a low-powered mode.

System architecture power can be reduced by low power displays [HW96],

power efficient disk drives algorithms [DKM+94], CPU scheduling with voltage

scaling [BB96; GCW95; Wei93], low power I/O devices, etc..

 29

4.2 Physical Layer Energy Consumption

In recent years, the idea of wireless micro-sensor networks has garnered a

great deal of attention by researchers. A distributed, ad-hoc wireless network

consists of hundreds to several thousands of small sensor nodes scattered

throughout an area of interest. Proposed applications for wireless micro-sensor

networks are unique hence wireless micro-sensor systems will have different

challenges and design constraints than existing wireless networks (e.g. cellular

networks and wireless LANSs). Ambient conditions are time varying in wireless

micro-sensor networks, thus the system should be able to adapt to these varying

conditions. In addition to these challenges, the energy consumption of the

underlying hardware is also of paramount importance. [SCI+01] proposes that it is

possible to take advantage of hooks and knobs in the physical layer to build more

energy-efficient protocols and algorithms. It recommends a physical layer driven

approach to protocol and algorithm design for wireless sensor networks. If protocol

designers treat the physical layer as a black box, then protocols can be detrimental

to energy consumption.

4.3 MAC Layer Energy Optimization

We will first explain the mechanism of IEEE 802.11 afterwards we will

explain energy saving techniques and Power aware MAC protocols.

The 802.11 standard [Spec99] define two modes of operation for a wireless

network interface: infrastructure mode (BSS) and ad hoc mode. In BSS mode there

 30

exists at least one Access Point (AP), which is responsible for moderating traffic

between hosts. In Ad hoc mode each mobile node is in the transmission range of

other nodes, they communicate directly with each other on peer-to-peer level.

The 802.11 Media Access Control (MAC) is very similar in concept to

802.3, in that it is designed to support multiple users on a shared medium by having

the sender senses the medium before accessing it. The WLAN is half-duplex, i.e. it

cannot listen while transmitting, and therefore, collision detection is not possible.

To account for this problem 802.11 MAC layer standard [Spec99] has defined a

basic method which is Carrier Sense Multiple Access / Collision Avoidance

(CSMA/CA). There are two other methods which are DCF (Distributed Co-

ordinate Function) RTS/CTS, and PCF (Point Co-ordinate Function).

4.3.1 CSMA /CA

A mobile node wishes to transfer senses the medium, and, if it is idle. If so,

the mobile node waits an additional, randomly selected period of time and then

transmits if the medium is still free. However, if it is busy, each mobile node may

wait until transmission stops and enters into random backoff period. This prevents

multiple nodes seizing the medium immediately after completion of preceding

transmission. To ensures reliability each data packet is followed by an ACK.

 31

 DIFS

SRC

 SIFS

DEST Contention Window

 DIFS

OTHER
 SlotTime

Defer Access Backoff After Defer

Figure 10: Carrier-Sense Multiple Access (CSMA)

The period between completion of packet transmission and start of ACK

frame is one Short Inter Frame Space (SIFS).

Transmission other than ACKs must wait at least a DCF Inter Frame Space

(DIFS) before transmitting data. If a transmitter sense a busy medium, it determines

a random backoff period by setting an internal timer. After medium becomes idle,

mobile node wishes to transmit waits a DIFS plus an integer multiple (min value of

0 and max of 255) of Slot Time. Upon expiration of DIFS, the timer begins to

decrement. If the timer reaches zero, the node may begin transmission. However, if

the channel is seized by other node before the timer reaches zero, the timer value is

retained at decremented value for subsequent transmission this ensure fairness.

DATA

 32

RTS/CTS is used to counter the problem of “hidden terminal”. Time-

bounded data application such as video and voice are supported by PCF.

4.3.2 Power Saving Mode

A wireless network interface consumes significant amount of total power

even when it is in an idle mode. The 802.11 standard describes a power saving

mode enabling them to go into awake and doze mode, in former mode mobile node

is continuously drawing power, however, in doze mode the radio is dozing.

Transition from the doze state to the awake state results in additional energy

consumption [HS00].

4.3.2.1 BSS Power Saving

Figure 11: BSS Power management

 33

Mobile nodes communicate thru Access Point (AP). Once every beacon

period the AP sends a beacon (also used for time synchronization) indicating if AP

has a data queued for a dozing node. This Traffic indication map (TIM) is

broadcasted as part of timing synchronization beacons [ZP99]. Mobile node wakes

up to listen to these beacons. If a node has a data queued as indicated by TIM it

returns to awake mode and alerts AP by sending PS-Poll message that it is ready to

receive data. Buffered broadcast / multicast message is indicated by DTIM to

awaken all mobile nodes and alert them for forthcoming traffic. AP then transmits

the queued message without PS-Poll message.

4.3.2.2 Ad-Hoc Power Saving

ATIM window ATIM window

Beacon Interval Beacon Interval

Dozing

Rcv ACK Xmit frame

Xmt ACK Rcv frame

Xmit ATIM

Rcv ATIM

Rcv ACK

XmtACK

 Figure 12: DCF Power management

 34

The 802.11 ad hoc power saving mode uses periodic beacons to

synchronize nodes in the network. Beacon packets contain timestamp that

synchronizes node’s clock. A beacon period starts with an ad hoc traffic indication

message window (ATIM Window), and each node stays awake for an ATIM

window interval. Transmission of ATIM frames is performed using the CSMA/CA

or DCF mechanism [ZP99]. A node that receives an ATIM replies by ATIM-ACK,

sender and receiver nodes remain awake during entire beacon interval.

The beacon period and ATIM window size considerably affects throughput

and energy consumption [WESW98]. If the ATIM window size chosen to be too

small, there may not be enough time to advertise all buffered packets. If ATIM

window is too large, there may not be enough room for transmitting data as data

transmission starts after the end of ATIM window.

4.4 Energy aware MAC Protocols

We can divide these protocols into three categories: first, which modifies

Link layer to reduce effective number of packet transmission and better error

control models, second, where new Power aware MAC protocols are developed for

ad hoc networks and lastly which deals with enhancement of 802.11 power aware

mechanism.

4.4.1 Link Layer

Automatic Repeat Request (ARQ), Forward error correction (FEC), and

hybrid of these two also exist. Another possibility is to allow the error control

 35

strategy as a function of the channel conditions. Wireless links experience widely

varying channel conditions, therefore, it seems likely that any one of the schemes is

not likely to be optimal in terms of energy efficiency at all the time.

 [LSS99] shows that with ARQ alone, energy consumed is directly

proportional to mean number of retransmission (MNoR), result shows that in good

channel condition MNoR is negligible, whereas for poor channels, it reaches the

maximum allowed value and flattens out there. In FEC alone, energy is

proportional to computational cost of producing the redundancy. Adaptive frame

size can have a dramatic impact on the behavior of the ARQ protocol. Large packet

size will be optimal in good channel as this minimizes overhead. However, in a

noisy channel, a smaller packet will be preferable despite the excess overhead,

since the packet loss rate of the large packets will dominate.

[ZR97] found that Classis ARQ strategies lead to a considerable waste of

energy, due to large number of transmissions. They propose to time packet

transmissions (and retransmissions) in a manner that maximizes energy efficiency.

In native ARQ modes, classic ARQ protocols, such as Go-Back-N or Selective

Repeat, recover errors by retransmitting packets regardless of the state of the

channel. Thus, in bad channel condition it may lead to depletion of the energy.

Subsequently, when the channel becomes good again the depletion in the energy

may make transmissions more prone to errors resulting in potentially more

transmissions, leading to a catastrophic loss of energy.

 36

The key idea is when channel conditions deteriorate (upon receipt of NACK

or garbled feed-back), the transmitter enters a probing mode, and sends a short

probing packet every so often. When channel conditions improve, the transmitter

switches back to the normal mode and restarts transmission from the point it was

interrupted. The potential gain of this protocol depends on how rapidly fading

occurs relative to round trip delay time on the link. It was shown that accepting a

moderate throughput reduction may make it possible to significantly reduce the

energy consumption of the system, relative to classic ARQ protocols.

[HSB00] have developed a MAC protocol (E2MaC) suitable for wireless

multimedia traffic. Traffic over the wireless link is scheduled by the base station

based on the QoS requirements of the connection and on the current channel

conditions. The scheduler tries to avoid only non-time critical traffic during bad

channel periods, thereby not affecting traffic with demanding QoS.

4.4.2 Ad Hoc Energy Efficient MAC Protocols

PAMAS [SR98] is designed for ad hoc protocols with energy conservation

as the primary goal. It uses separate channel for data and signaling. A mobile node

with a packet to transmit sends RTS and enters AwaitCTS state. If CTS does arrive

it starts transmission over data channel and receiving node transmits busy tone over

control channel to ensure that neighbors do not seize the channel for data

transmission.

 37

Nodes who are not participating in ongoing transmission can turn off their

radio to ensure that power is not depleted in overhearing. A node on wakeup

performs binary probe to determine the longest remaining transfer for which it can

go back to sleep again before attempting to seize the channel.

SPAN, [CJBM01] an energy-efficient scheme, elects a group of

“coordinators” which are changed periodically. The coordinators stay awake and

forward traffic for active connections. Non–coordinators follow standard IEEE

802.11 power saving scheme. Nodes, typically coordinators, buffer the packets for

dozing nodes and announces them during ATIM window. In SPAN network, packet

routed via non-coordinate nodes are rare, therefore, it proposes new advertised

traffic window, following standard ATIM window. During this advertised traffic

window, the announced packets and the packets for the coordinator can be

transmitted. After this window, only the packets for the coordinator can be

transmitted and other nodes (non-coordinators) can go to doze state if they do not

have traffic to send or receive.

DPSM [JV02] is motivated form the fact that fixed ATIM window leads to

lower throughput and higher energy consumption in various scenarios [WESW98].

It proposes an adaptive scheme to dynamic choose a suitable ATIM window size.

4.5 Energy efficient Routing Protocols

[SWR98] proposes Power Aware routing where links are assigned weights

as a function of energy consumed when transmitted over the link, lower residual

energy may correspond to higher cost. The goal is to minimize energy consumed

 38

per packet, load balancing among cut-set nodes and maximize duration before a

node fails due to energy depletion (network partition). [CT00] Proposes energy

conserving routing, which selects the paths based on corresponding power level so

that the time until the batteries of the nodes drain-out is maximized.

[RH00] proposes a method for selecting transmitting power level to adjust

the network topology to maximize the network lifetime and reduces spatial

interferences. [WLBW01] describes a topology maintenance algorithm using

similar underlying radio support, their algorithm guarantees connectedness using

directional information.

[RM99] Describes position-based distributed network protocol optimized

for minimum energy consumption in mobile wireless networks that support peer-

to-peer communications. A simple local optimization scheme executed at each

node guarantees strong connectivity of the entire network and attains the global

minimum energy solution for stationary networks. A position-based algorithm is

proposed to set up and maintain a minimum energy network between users that are

randomly deployed over an area and are allowed to move with random velocities.

4.6 Transport Layer

[SK97] compares Energy for Send, Receive and Idle period for two

transport protocols, TCP Reno and Modified UDP. Researchers found that the

dominant cost in the energy usage of a transport protocol is the time that the

transfer takes to complete, not the number of packets send or receive by a particular

transport protocol. Results conform that idle time makes major contribution to final

 39

energy cost. At higher loss TCP mistakes packet losses for congestion and reduces

transmission rate which increases total energy cost.

[FN01] investigated the per packet energy cost for Lucent WaveLAN Silver

(11 Mbps) card in sleep mode, idle mode, receive mode and transmit mode. It was

observed that while operating in ad hoc mode idle power consumption is significant

because hosts required to maintain their network interface in idle mode to main

connectivity of the ad hoc network. Experiments were performed on IBM

ThinkPad running FreeBSD4.0 and equipped with Lucent 802.11 WaveLAN

“Silver” card (11 Mbps). The comparison of idle power consumption is given in

Table 2.

 Ad hoc Mode BSS Mode

Idle Power (mWatts) 843 66

Table 2: Lucent WaveLAN PC Card Power Consumption

[TBGP00] Compared the energy and throughput-efficiency of TCP error

control strategies of three implementations of TCP Tahoe, Reno, and New Reno.

They believe that estimation of additional energy expenditure cannot be based

solely on the byte overhead due to retransmission, since overall connection time

might have been extended while waiting or while attempting only a moderate rate

of transmission. On the other hand, the estimation cannot be based solely on the

overall connection time either, since the distinct operations performed during that

 40

time (e.g. transmission vs. idle) consume different levels of energy. Nevertheless,

the potential for energy saving can be gauged from the combination of time and

byte overhead savings achieved. Based on these metrics, one can estimate lower

bounds for energy consumption.

The three versions of TCP were implemented using the x-kernel protocol

framework. Their focus was to study heterogeneous wired/wireless environments.

In order to simulate error conditions, a virtual protocol VDELDROP was

configured between TCP and IP. It has two states consists of Markov chain. All of

the experiments were undertaken using 5 Mbytes data transmission. Connection

time, data packet overhead (retransmission etc.) were taken into consideration as

significant factor for energy expenditure as well as throughput.

Under low loss (0.01 to 1%) conditions Reno outperforms other two

versions of TCP as it gets sufficient time to expend the window to maximum, yet,

unlike Taheo, when an error occurs it does not always follow Slow Start, but

sometimes performs Fast Recovery instead. Tahoe performs distinctly better when

errors are intensive (20 %) and persistent because large windows of data could

continue to be transmitted for a period of time despite the prevailing error phase.

New Reno can be the protocol of choice only for environments with relatively

infrequent and short/random errors.

[ZR99] analyzes the energy consumption performance of various versions

of TCP for bulk data transfer in an environment where channel errors are

correlated. It is good to throttle data flow in the event of loss and congestion,

 41

energy efficiency is considered as the ratio of number of successful transmissions

over total number of transmissions. Analytical approach is based on a

Markov/renewal reward approach. Only single transmitter-receiver pair running

TCP on a 1.5 Mbps dedicated link with zero propagation delay and feedback were

considered.

Efficient usage of energy is achieved when a scheme stops transmitting

when channel conditions become adverse and resumes the transmission when they

improve. This is exactly how window adaptation algorithm of TCP works. Tahoe

performs better than TCP Reno when correlated fading is more. Brief summary of

some of the research work dealing with performance analysis of variants of TCP

where throughput was the metrics of comparison is as follows:

[FF96] shows that the SACK algorithm performs better than several non-

sack based recovery algorithms when 1--4 segments are lost from a window of

data. [AHKO97] compared Reno, Newreno, and SACK for communication over

satellite links. They used two Intel machines with NetBSD1.1, two CISCO routers

and ACTS VSAT connected to a satellite, and a hardware emulator for dropping

packets. They dropped 1,2,3 and 4 packets for different experiments, used two data

sizes (200KB and 5MB) and experimented with three bit error rates of 10e-5,10e-6

and 10e-7. For 1,2,3 and 4 packet loss the performance was similar to [FF96]. For

losses of 10e-7 and 10e-6, they saw the same results as ours, and for the high loss

case 10e-5, they show that all of the TCP variants performed poorly and SACK was

similar to Reno and Newreno. [HK99] evaluated the performance of Reno,

 42

Newreno, and SACK for a satellite network. Experiments were carried out in the

simulator ns. They used a RTT in the range of 100 -- 600 msec. The paper shows

that using partial ACKs to trigger retransmissions in conjunction with SACK,

improves performance when compared with TCP using fast retransmit/fast

recovery alone. Specifically, SACK-Newreno is better than SACK-Reno which is

in turn better than Reno.

[BHZ98] performed experiments in which two PCs running FreeBSD were

connected by a SUN UltraSparc acting as a router that inserted link delays. The link

delay was 25 msec and bandwidth was limited to 2 Mbps. The buffer space at the

sender and receiver was set to 16KB. They studied two types of losses -- random

uniform loss (0% to 9%) and bursty loss where three packets were dropped

randomly. In the random uniform loss case, they observed that if the loss

probability is low then both Reno and SACK behave similarly. Likewise, if the loss

probability is high, these two protocols again behave similarly because

retransmitted packets at high loss probabilities will be lost causing SACK to

timeout which is a normal case with Reno. However, if the loss probability is

between 2% and 4% then SACK outperforms Reno. In the burst loss case, SACK

improves throughput by a significant amount (60% to 70%). This is because for

Reno the loss of three isolated packets or three consecutive packets results in the

same behavior while SACK recovers quickly from a bursty loss and does not cause

timeouts.

 43

In the recent past there have been simulation based studies on the issues RF

power and TCP throughput [BA+02] [ZRM02]. [ZRM02] concludes that increased

transmitted power (RF power) is not always good as their study shows that

increased transmitted power results in higher TCP throughput up to a breakpoint

(because of better SIR), after which an increment of transmitted power actually

leads to worse performance due to greater interference. However, we did not

modify the WaveLAN card's transmission speed & power in our study

4.7 Application Layer

[FS99] used energy profiling of the application to dynamically adapt their

quality to conserve energy when it is scare. An attribute called fidelity, captures the

notion of data degradation in Odyssey. For example, a client playing full-color

video data from a server could switch back to black and white video when

bandwidth drops, rather than suffering lost frames. Energy used by video player,

speech recognizer, map viewer, and Web browser were considered. It was found

that hardware-centric power management combined with Dynamic fidelity results

in maximum energy conservation in most of the cases.

[FBA+0] investigate the energy consumption of low-power StrongARM

SA-1100 microprocessor based Itsy Pocket Computer. It recommends that for

compute-intensive applications with no voltage switching, application should be

run at as fast clock frequency as possible until completed, and then the system

should be placed into a low-powered mode. They evaluate the energy and power

impact of several tradeoffs in the design of a JVM (Java Virtual Machine) for Itsy

 44

Pocket PC. Single JVM to run multiple applications can reduce as much as 25%

energy usage. Preloading Java classes can reduce start up time without impacting

energy consumption. JIT (Just-In-time) compilation can provide significant energy

saving for Pocket PC.

4.8 Summary

In this chapter we summarize various practices adopted by research community

during past few years to reduce the energy consumption of nodes in mobile ad hoc

networks. We saw that these techniques can be broadly divided into three

categories: System hardware level optimization, Protocol level, and Application

level.

 45

5. Experimental Setup

In this section we will discuss about experimental methodology, afterwards

we discuss about the SACK implementation and its validation.

5.1 Experimental Methodology

We first describe our test environment: how the ad hoc network (Figure 13)

is realized. Afterwards, we explain workload and factors considered for

characterizing TCP Energy, later on we explain how we measured energy.

Figure 13: Test-bed setup

Characterizing the energy consumption of TCP in multi-hop wireless

networks poses a challenge due to the fact that, on the one hand, to emulate

 46

complex networking scenarios we need to use a simulator like NS-2 [NS01] while,

on the other hand, measuring the actual energy consumed requires us to use a real

system (the energy models in NS-2 do not consider node costs whereas simulators

like Simple Power [Sim01], which simulate node-level energy costs, do not

simulate networks of communicating nodes). The approach we settled on was a

hybrid one -- we used an actual wireless network (as illustrated in Figure 13 where

we could measure the energy consumed by the sender).

5.2 Workload

We used TTCP [PS98] as a workload generator. TTCP is a popular public

domain tool for measuring end-to-end throughput by sending bulk data over the

network. It achieves high performance by filling a memory buffer with data, then

repeatedly transmitting this data. Since there are no I/O operations involved, the

traffic transmitter and receiver can operate at true network speeds. TTCP has a

simple command line interface which allowed us (among other settings) to specify

the receiver window size and the sender's buffer size.

5.3 Test-bed

As shown in Figure 13, we use four laptops each running FreeBSD 4.3. All

laptops were equipped with 2.4GHz DSSS Lucent 802.11b 11Mb/s WaveLAN PC

cards. The path from the sender to the receiver traverses three hops. We considered

a string topology as in A->B->C->D. A is sender and D is receiver, B and C are

routers. A and B are on one subnet, B and C are on a separate subnet, and C and D

 47

are on same subnet. For A, B is the default router. B and C have static routes to

each other. For D, C is the default router. The WaveLAN interface on B and C was

aliased in order to be on two different subnets.

We used Dummynet at node C to simulate a wide range of network

conditions. Dummynet [Riz97] works by intercepting communications of the

protocol layer under test and simulating the effect of finite queues, bandwidth

limitations and communication delays. It is implemented as a filter in the protocol

stack of the operating system. Packets that are handed from one network layer to

another can be intercepted and passed through objects called pipes. Since no copies

of the data are done, and all operations require constant time, the overhead

introduced by Dummynet is almost negligible.

We used Dummynet with HZ=1000, a kernel compile option which will

give a granularity of 1 ms. Pipes can be configured to simulate the effect of packet

loss, reordering, burst error and propagation delays. Each pipe can be configured

separately, so that one can assign different attributes like packet loss rates, delays,

bandwidth etc..

Delay sets the propagation delay of the pipe, in milliseconds. All delays are

with the granularity of 1/HZ seconds. Random packet loss rate (PLR) is a floating-

point number between 0 and 1 which causes packets to be dropped at random. This

is done to simulate lossy channel. All of the above parameters of the pipe can be

configured and changed on the fly using simple IPFW [HB01] commands. Delay

 48

and PLR emulated conditions similar to the real world where TCP connection has

to react to sudden change in the wireless channel.

We used separate channel for conducting our test, we also made sure that

there is no interference which might lead to error in our results. We used tcpdump

to validate no other traffic was present on the channel.

5.4 Energy Measurement

To measure the energy consumed by the sender (laptop A) we connected

its’ power supply (in series) to HP 34401A multimeter that is controlled by a

separate laptop running VeePro software. We used two multimeters – one

measured the total system energy while the second measured the radio-level energy

alone (Figure 14 shows a sample data trace).

Figure 14: Sample of Measured Data

 49

The multimeter takes 1000 current readings per second and saves them to

the laptop running VeePro through a serial cable. Throughout the experiments, the

TCP connection between A and D is the only networking activity in the channel. In

order to ensure accurate energy measurements, no other computational activity is

done on A.

Our sender was a Toshiba Satellite laptop whose idle current draw was 1.2A

at a voltage of 15V. Figure shows a sample trace of a simultaneous measurement of

the total system energy and the energy draw of the radio card. See [FN01] for a

detailed characterization of the radio energy consumption.

We start measuring energy at sender before the actual start of TTCP (we

used automated shell script for this) and then we use generated current trace to find

out actual value of t0 and tn. In our experiments t0-tn is the interval over which

TTCP is running and channel is active.

5.5 Experimental Design

Our goal in this research was to characterize and improve TCP's energy

consumption in ad hoc networks. At a high-level, we can classify ad hoc networks

as those where nodes are very mobile (e. g., network of vehicles) or those where

nodes move slowly, if at all (e. g., peer-to-peer networks or static ad hoc networks

like Rooftop). In the former case, mobility is the primary detractor of performance

while in the latter case, link-layer loss/ congestion is the primary detractor.

 50

5.5.1 Factors

We divided our study into two parts - the first examined the impact of

mobility induced factors and in the second, we studied the impact of loss on the

three protocols.

5.5.1.1 Mobile Nodes

To study the impact of mobility, we emulate routing failure and out-of-

order packets. As Reno, Newreno, and SACK do not have any mechanism to detect

route failure that’s why all the three protocols performed poorly. Therefore, we

decided to drop route failure case.

5.5.1.2 Static Nodes

 Ad hoc network nodes communicate over relatively low bandwidth links

which are prone to high propagation loss, burst error, fading and multiuse

interference. To study static ad hoc networks, we emulate these conditions by

creating random loss and bursty loss at node C using dummynet.

The summary of factors considered three different conditions: random

packet loss, bursty loss and packet reordering is tabulated as follows:

 51

Parameters Values
Average RTT
Packet Loss
MTU Size
RTS/CTS
Protocols

15, 40, 70, 100, 130 msec
1%, 5%, and 10%
512 and 1500 bytes
OFF
Reno, Newreno, and SACK

Table 3: Experimental parameters for loss case

Parameters Values
Average RTT
Burst Packet Loss
MTU Size
RTS/CTS
Protocols

15, 40, 70, 100, 130 msec
85% loss rate for 1 second every 12 seconds
1500 bytes
OFF
Reno, Newreno, and SACK

Table 4: Experimental parameters for the burst loss case

Parameters Values
Average RTT
Packet Loss
Reorder Rate
MTU Size
RTS/CTS
Protocols

15, 40, 70, 100, 130 msec
1%, 5%, and 10%
1% and 5% reordering
512 and 1500 bytes
OFF
Reno, Newreno, and SACK

Table 5: Experimental parameters for the packet reordering case

5.6 Implementation

We implemented SACK in FreeBSD-4.3. We derived our implementation

from the SACK implementation in OpenBSD2.9, which itself based on Sally

 52

Floyd’s SACK algorithm described in RFC2018. We used netstat, tcpdump, Shawn

Ostrermann’s tcptrace [Tra02] and our own shell scripts for validating SACK

implementation. We modified tcptrace [Tra02] to generate more specific graph.

5.7 Validation

We used our test-bed as described in Figure 15 for validation. Node ‘C’ was

configured to generate End-to-end propagation delay and random uniform loss as

40msec and 2% (for data only) respectively.

Figure 15: Evolution of ACK received by TCP-SACK Sender

 53

Figure 15 shows the evolution of ACKs received by the TCP-SACK sender.

At 0.5 second sender receives consecutive duplicate ACKs each bearing the recent

SACK block information from sender. The snapshot of duplicate ACK period is

given below in Figure 16.

Figure 16: Snapshot Evolution of ACK received by TCP-SACK Sender

Afterwards we analyzed the tcpdump file using tcptrace the details of the same are

as follows:

We use abbreviation as S: Sender, R: Receiver, ACK: acknowledgement.

Sequence numbers are unique and numbered starting at some value and increasing

over a period of time. However, for simplicity we used Sequence offset. We have

also dropped ACK sequence from the Sender to the Receiver as it is same.

 54

S > R SYN 0:0 (0) MSS (1460) SACKREQ
R > S SYN 0:0 (0) ACK (1) MSS (1460) SACKREQ
S > R ACK (1) three-way-handshake

S > R 1:1461 (1460) cwnd (1)
R > S ACK (1461)

S > R 1461:2921 (1460) cwnd (2)
S > R 2921:4381 (1460) cwnd (2)
R > S ACK (4381)

S > R 4381:5841 (1460) cwnd (3)
S > R 5841:7301 (1460) cwnd (3)
S > R 7301:8761 (1460) cwnd (3)

R > S ACK (5841)
R > S ACK (8761)

S > R 8761:10221 (1460) cwnd (5) 41136
S > R 10221:11681 (1460) cwnd (5) 39676
S > R 11681:13141 (1460) cwnd (5) 38216
S > R 13141:14601 (1460) cwnd (5) 36756
S > R 14601:16061 (1460) cwnd (5) 35296

R > S ACK (10221)
R > S ACK (13141)
R > S ACK (14601)

S > R 16061:17521 (1460) cwnd (8) 33836 segment dropped
S > R 17521:18981 (1460) cwnd (8) 32376
S > R 18981:20441 (1460) cwnd (8) 30916
S > R 20441:21901 (1460) cwnd (8) 29456
S > R 21901:23361 (1460) cwnd (8) 27996
S > R 23361:24821 (1460) cwnd (8) 26536
S > R 24821:26281 (1460) cwnd (8) 25076

R > S ACK (16061) SACK [17521--18981] Positive ACK
R > S ACK (16061) SACK [17521--20441] Dup ACK
R > S ACK (16061) SACK [17521--21901] Dup ACK
R > S ACK (16061) SACK [17521--23361] Dup ACK

 55

S > R 26281:27741 (1460) cwnd (8)
S > R 27741:29201 (1460) cwnd (9) cwnd = 0

R > S ACK 16061 SACK [17521--24821]
R > S ACK 16061 SACK [17521--26281]

S > R 16061:17521 (1460) cwnd (1) fast-retransmit

R > S ACK 16061 SACK [17521--27741]
R > S ACK 16061 SACK [17521--29201]
R > S ACK 29201

5.7.1 Discussions

SACK Permitted Option gets negotiated during connection establishment

phase. This two bytes option is not sent on a non-SYN segment.

Segment (16061:17521) gets dropped and the Receiver uses the SACK

option to inform the Sender about the non-contiguous blocks of data received. The

first SACK block specifies the contiguous block of data containing the segment

which triggered this ACK. The subsequent SACKed blocks contain the most recent

information. Once the Sender receives three duplicate-ACKs it invokes fast-

retransmit and fast-recovery algorithm and based on hole information it retransmits

specific segments.

 56

6. Experimental Results

All experiments were conducted at least ten times and we computed 95%

confidence intervals (which are also shown in the figures). Furthermore, in order to

get statistically significant results, we transmitted 5M of data for each run

(transmitting smaller amounts of data resulted in high measurement error due to the

1msec granularity of the multimeter).

6.1 Metrics

We evaluated Reno, Newreno, and SACK using three metrics:

• Total Energy/bit E measured in Joules/bit. This includes the energy

consumed while the sender is idle.

• Idealized Energy/bit EI measured in Joules/bit. This measure excludes the

idle time energy and thus more closely approximates the cost of the various

protocols.

• Goodput in kbps

6.2 Random uniform Loss Case

Table 3 outlines the experimental design for this group of experiments. For

each case, we transmitted 5MB of data using TTCP. Figures 17, 20, 21, and 22

plot (1) the total energy E as a function of different RTTs for two values of the

MTU and (2) the goodput as a function of RTT. We can make several observations

based on these results:

 57

Figure 17: Total Energy E per bit and Goodput for 1% packet loss

Figure 18: Comparison of the number of timeouts

 58

Figure 19: Relationship between energy and throughput (RTS/CTS Off)

• In general, smaller MTUs are better (i.e. consumes less energy at the high

losses (see Figure 21, the 10% loss case) whereas larger MTUs are better at

low loss (see Figure 17). This observation has been made by several

previous researchers when throughput was the metric studied.

• For most cases, SACK consumes the least amount of energy. The reason is

that SACK retransmits missing segments earlier than Reno (which waits for

a timeout in most cases) and Newreno (which does not know which of the

unacked segments is missing at the receiver). Thus, SACK completes

transmission of the data sooner resulting in lower overall energy.

• Figures 17, 20, 21, and 22 show that for the 1% and the 5% loss cases,

SACK consumes the least amount of energy (for both MTU sizes) while for

 59

the 10% loss case, SACK consumes the most energy at an MTU of 1500.

There are two reasons for this:

� When the loss rate is high, with large MTU, the number of segments

in a window is small and hence the possibility of receiving 3

dupacks is small. In this case the fast retransmit algorithm is seldom

triggered. Thus SACK does not really help improve throughput (see

also RFC 3042 which notes the same problem and suggests the use

of a “Limited Transmit Algorithm” which we have not

implemented).

Figure 18 shows that the number of timeouts with or without SACK at

MTU 1500 is about the same. With a smaller MTU, on the other hand, SACKs do

help more and therefore we see that at higher packet loss rates, the timeouts for the

SACK case are smaller.

Figure 20: Total Energy E per bit and Goodput for 5% packet loss

 60

� Since the SACK throughput is small, the total energy consumed by

SACK will be at least as high as Reno and Newreno. However,

SACK adds an additional burden in terms of computational

overhead and this results in a higher total energy consumption.

• The energy consumed increases with an increase in RTT. This is clear

because the throughput falls with an increase in RTT.

• We plot the total energy per bit as a function of goodput for the 10% loss

case and a MTU of 512 bytes in Figure 21. As we can clearly see, as the

goodput decreases the energy used increases and there is an inverse

relationship between these two quantities as predicted by equation

Figure 21: Total Energy E per bit and Goodput for 10% packet loss

 61

Figure 22: Idealized Energy EI per bit 1% and 10% packet loss

We take a detour and present a trace of 5% loss case, we used tcptrace4 for

generating the graphs. We also tabulate the packet retransmitted, timeout events for

three TCP protocols Reno, Newreno, and SACK.

4 We modified tcptrace to generate specific graphs.

 62

Figure 23: Evolution of CWND, 5% Packet Loss case

Figure 24: Time-Sequence (ACK), 5% Packet Loss case

 63

 Timeout Pkts Retransmitted
SACK 69 85
Newreno 87 215
Reno 93 204

Table 6: Timeout and Pkts Retransmitted, 5% Loss case

Figure 25: Average Throughput, 5% Packet Loss case

SACK has the highest throughput (Figure 25) it achieves so by maintaining

high cwnd (Figure 23) and lower number of timeouts as compare to Reno and

Newreno. Reno has the poorest performance because when multiple segments are

lost in a window it will be forced to invoke fast-retransmit and recovery algorithm

in quick succession (no partial ACK) which will lead to small cwnd. It seldom

 64

successfully comes out of fast-recovery as Reno’s “ACK clock” is lost and must

wait for retransmission timeout. Figure 24 shows that Reno has longer time periods

where no ACK is received by the sender which leads to timeout. [FF96] also found

the same behavior of these three protocols.

We return to the discussion of loss case. In Figure 22 we plot the ideal

energy EI consumed for the 1% and 10% loss cases. At the 1% loss case we see that

SACK actually consumes more energy than either of Reno or Newreno at both

MTU sizes! This is because, as we noted above, SACK has an added computational

burden that only becomes visible when we discount the idle energy cost. We see a

similar pattern in the 5% and 10% loss cases as well.

Table 7: Summary of Total energy, goodput, and idealized energy

Table 7 summarizes the relative performance of the protocols as measured

by the total energy, the goodput, and the idealized energy for all of the loss and

MTU combinations (we derive these rank orderings based on a comparison of the

mean values of energy, goodput, and idealized energy for the different RTTs and

MTUs). We note that the total energy and goodput are inversely related. Thus, the

 65

protocol that has the highest goodput also has the lowest total energy. We also note

that in all cases except MTU 1500 & 10% packet loss rate SACK has the highest

goodput and the lowest total energy. In this one case, Newreno has the lowest

energy and highest throughput.

When we look at the idealized energy, on the other hand, we see that either

Newreno or Reno use the lowest idealized energy in all cases except in the MTU

512 & 5% packet loss case where SACK and Newreno perform equally well. In

general, we believe that SACK performs poorly with respect to this metric because

of the additional data structures and computation it performs. Newreno and Reno,

on the other hand, have very similar computational overhead. The only reason

Newreno sometimes performs better in some cases (e.g., MTU 512 & 10% packet

loss) is that in fast recovery it retransmits unacked packets before the retransmit

timer goes off. Reno, on the other hand, only retransmits one packet (the one that

received three duplicate acks) and then retransmits the remaining packets when the

retransmit timers go off. Figure 18 plots the number of timeout events for different

MTU sizes. As we can see, at a MTU of 512, Newreno has fewer timeouts than

Reno and thus performs better by this metric. However, even though SACK has the

least number of timeouts, its computational cost is high enough to offset any gain

due to its better throughput.

The lesson here is that if the wireless devices can be designed to enter deep

power saving modes when there is inactivity (i.e., reduce the idle cost as much as

possible), then SACK may not be a good choice for mobile environments. On the

 66

other hand, if the idle power remains high, then SACK definitely results in overall

energy savings.

6.3 Burst Loss Case

Figure 26 plots the energy and idealized energy cost for the experimental

setup described in Table 4. In the energy plot, we plot both the total energy E as

well as the idealized energy (EI) in the same graph. We see that SACK has the

lowest total energy while Newreno has the lowest idealized energy consumption.

Figure 26: Summary of Energy and throughput for burst loss

The reason for this behavior is that in the case of a bursty loss, Newreno

will retransmit lost packets without waiting for the retransmit timers to go off

(based on partial ACKs received). SACK, likewise will retransmit these packets as

well (as indicated by the SACKs) but it also has the added overhead of maintaining

 67

SACK-related data. This additional cost results in SACK having a higher idealized

energy cost even though its goodput is the highest (Figure 26).

6.4 Packet Reordering Case

Figures 27 and 28 plot the total energy and idealized energy for the reorder case

(see Table 5). We can summarize the main findings as follows:

• SACK is by far the winner in terms of total energy as well as idealized

energy. The goodput of SACK is also the highest.

Let us first look at the reason for SACK's better goodput (and total energy).

When the sender receives three duplicate ACKs (that also contain information

about holes in the receiver's buffer), the sender retransmits one segment and then

retransmits the segments that corresponded to holes in the receiver's buffer as and

when pipe is less than CWND. Newreno, on the other hand, sequentially

retransmits segments on receipt of partial ACKs. This results in some packets not

being retransmitted early enough and we get timeout events. In our experiments,

we noted that SACK never had any timeouts for the reorder experiments while both

Reno and Newreno had timeout events (Reno more than Newreno).

• The above discussion explains why SACK has a higher goodput and lower

total energy than Newreno and Reno. The reason it also has the lowest

idealized energy is because (1) there are no timeouts for SACK thus

reducing the processing involved, (2) SACK retransmits fewer packets than

Reno and Newreno.

 68

Figure 27: Total energy and idealized energy for 1% packet reordering case

Figure 28: Total energy and idealized energy for 1% packet reordering case

 69

Figure 29: Goodput for reordering case

 70

7. Conclusion

We analyzed the relative performance of TCP Reno, Newreno, and SACK.

We measured performance in wireless network with real TCP/IP stack in FreeBSD

4.3. We introduced new metric Idealized energy, which closely approximates the

protocol processing energy. We also used other two metrics Total energy and

Goodput in analyzing relative behavior of these three protocols. We note the

following:

� The total energy consumed (for any protocol) is inversely proportional to

the throughput.

� The total energy consumed for SACK is the lowest in almost all cases

except for MTU 1500 at a loss rate of 10%. The reason SACK has the

lowest energy cost is that it has the highest throughput and the idle energy

of our device was high (18W). This high idle energy cost plays a

dominating role in the total energy measurements.

� SACK has a poor idealized energy performance due to the fact that SACK

implementations require additional data structures and processing. This is

the reason that SACK performs poorly for the 10% loss case with 1500

MTU -- here the benefits of using SACK do not come into play since the

CWND contains few segments. However, the computational overhead is

still present and this causes SACK to have higher total energy consumption.

 71

� In the case of packet reordering, SACK is by far the winner in terms of total

energy and idealized energy. This is because SACK has no timeouts for the

cases we looked at (both Reno and Newreno have timeouts).

� In the case of bursty losses, SACK has the lowest total energy while

Newreno has a slightly lower idealized energy. The reason is again that

SACK's computational cost overwhelms the gains due to a higher

throughput.

Using the above results we can conclude that when designing a protocol for

a mobile device, we must first consider the operating environment (bursty loss or

random loss, etc.) and then select the appropriate level of protocol complexity since

the computational overhead of a protocol can be significant. In our case, if we

extrapolate and imagine a device with very low idle power consumption then it is

clear that SACK would be a poor choice for most situations.

The total energy consumed for the SACK is the lowest in almost all cases

except for MTU 1500 at the end-to-end loss rate of 10%. The reason SACK has the

lowest energy cost is that it has the highest throughput and ideal energy of our

device was high. This high idle energy cost plays a dominating role in the total

energy consumption.

 72

8. References

[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann, “TCP
Performance Over Satellite Links”, In Proceedings of the 5th International
Conference on Telecommunication Systems, March 1997.

[BA+02] Sorav Bansal et.al., “Energy efficiency and throughput for tcp traffic in
multi-hop wireless networks”, In Proceedings of INFOCOM 2002, New York, NY,
2002.

[BB96] T. D. Burd and R. W. Brodersen, “Processor design for portable systems”,
Journal on CLSI Signal Processing, 13(2/3):203-222, August 1996.

[BHZ98] R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations with TCP
Selective Acknowledgment”, ACM Computer Communications Review, Vol.
28(2), April 1998.

[BPS99] J. Bennett, C. Partridge, and N. Shectman, “Packet Reordering is Not
Pathological Network Behavior”, IEEE/ACM Transactions on Networking,
December 1999.

[CJBM01] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris,
“Span: An Energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks”, In Proceedings of MOBICOM 2001, July 2001

[CT00] J. H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad
hoc networks”, In Proceedings of INFOCOM, Tel-Aviv, Israel, 2000.

[DKM+94] F. Douglis, F. Kaashoek, B. Marsh, R. Caceres, K. Lai and J. Tauber,
“Storage Alternatives for Mobile Computers”, In Proceedings of Symposium on
Operating Systems Design and Implementation, OSDI, November 1994.

[FBA+0] J. Flinn, G. Back, J. Anderson, K. Farkas, and D. Grunwald “Quantifying
the energy consumption of a pocket computer and a java virtual machine”, In
Proceedings of the International Conference on Measurement and Modeling of
Computer Systems SIGMETRICS'2000, June 2000.

[FH99] Floyd, S. and T. Henderson, “The Newreno Modification to TCP's Fast
Recovery Algorithm”, RFC 2582, April 1999.

 73

[FN01] Laura Feeny and Martin Nilsson, “Investigating the Energy Consumption
of a Wireless Network Interface in an Ad Hoc Networking Environment”, In
Proceedings of INFOCOM, Anchorage, Alaska, 2001.

[FF96] K. Fall and S. Floyd, “Simulation-based Comparison of Tahoe, Reno, and
SACK TCP”, ACM Computer Communications Review, Vol. 26(3), July 1996, pp.
5 -- 21.

[FS99] Jason Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications”, in Proceedings of the 17th ACM Symposium on Operating Systems
Principles, December, 1999

[FMMP00] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, “An Extension to the
Selective Acknowledgement (SACK) Option for TCP”, RFC 883, July 2000

[GCW95] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for
dynamic speed-setting of a low CPU”, in Proceedings of The First ACM
International Conference on Mobile Computing and Networking, pages 13-25,
November 1995.

[HB01] FreeBSD 4.3 handbook, http://freebsd.org/handbook/index.html (October
2001)

[HK99] Tim Henderson, Randy Katz, “Transport Protocols for Internet-compatible
Satellite networks”, IEEE Journal on Selected Areas of Communications, February
1999.

[Hoe96] J. Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme
for TCP”, In ACM SIGCOMM, August 1996.

[HS00] Paul J. M. Havinga and Gerard J. M. Smit, “Energy-efficient TDMA
medium access control protocol scheduling”, In Proceedings of Asian International
Mobile Computing Conference, (AMOC 2000), November 2000.

[HSB00] Paul J. M. Havinga and Gerard J. M. Smit, M. Bos “Energy efficient
wireless ATM design”, ACM/Baltzer Journal on Mobile Networks and
Applications (MONET), Special issue in Wireless Mobile ATM technologies, Vol.
5, No. 2, 2000.

[HV99] Gavin Holland and Nitin H. Vaidya, “Analysis of TCP performance over
mobile ad hoc networks”, in ACM Mobile Computing and Networking
(MOBICOM'99), pages 219-230, 1999.

 74

[HW96] E.P. Harris and K.W. Warren, “Low Power Technologies: A System
Perspective”, 3rd International Workshop on Mobile Multimedia Communications,
Princeton, NJ, September 25-27, 1996.

[Jac88] Van Jacobson, “Congestion Avoidance and Control”, ACM SIGCOMM,
August 1998.

[JM96] David B Johnson and David A Maltz. Dynamic source routing in ad hoc
wireless networks. In Imielinski and Korth, editors, Mobile Computing, volume
353. Kluwer Academic Publishers, 1996.

[JV02] Eun-Sun Jung, Nitin H. Vaidya, “An Energy Efficient MAC Protocol for
Wireless LANs”, In Proceedings of INFOCOM 2002.

[LKHA94] K. Li., R. Kumpf, P. Horton and T. Anderson, “A Quantitative Analysis
of Disk Drive Power Management in Portable Computers”, In Proceedings 1994
USENIX, San Francisco, CA, pp. 279-291, 1994.

[Lor95] J. Lorch, “A complete picture of the energy consumption of a portable
computer”, Masters Thesis, Computer Science, University of California at
Berkeley, December 1995.

[LSS99] P. Lettieri, C. Schurgers, M. Srivastava, “Adaptive Link Layer Strategies
for Energy Efficient Wireless Networking”, Wireless Networks, ACM/Baltzer,
Vol.5, No.5, pp.339-355, 1999.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgement Options”, RFC 2018, October 1996.

[MSB00] Jerey P. Monks, Prasun Sinha, and Vaduvur Bharghavan. “Limitations of
tcp-elfn for ad hoc networks”, in Proceedings of MoMuC, Tokyo, Japan, October
2000

[NS01] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns/(October 15, 2001).

[Pos81] J. Postel, “Transmission Control Protocol”, RFC 793, September 1981.

[PS98] S. Parker, C. Schmechel, “Some Testing Tools for TCP Implementors”,
RFC 2398, August 1998

[Pow95] R.A. Powers, “Batteries for Low Power Electronics”, In Proceedings of
the IEEE, pages 687-693, April 1995

 75

[RH00] R. Ramanathan and R. Rosales-Hain, “Topology Control of Multihop
Wireless networks using transmit power Adjusment”, in Proceedings of
INFOCOM, Tel-Aviv, Israel, 2000.

[RFC768] J. Postel, “User Datagram Protocol”, RFC 768, August 1980.

[RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, “TCP Selective
Acknowledgement Options”, RFC 2018, April 1996.

[RFC2581] Allman, M., Paxson,V. and W. Stevens, “TCP Congestion Control”,
RFC 2581, April 1999.

[RFC2883] S. Floyd et.al., “An Extension to the Selective Acknowledgement
(SACK) Option for TCP”, RFC 2883, July 2000.

[RFC 3042] M. Allman, H. Balakrishnan, “Enhancing TCP's Loss Recovery Using
Limited Transmit”, RFC 3042, January 2001.

[Riz97] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols”, ACM Computer Communication Review, Vol.27, No1, Jan. 1997.

[RM99] V. Rodoplu and T.H. Meng, “Minimum Energy Mobile Wireless
Networks”, IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1333-
1344, August 1999.

[SCI+01] E. Shih, S.H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, A.
Chandrakasan, “Physical Layer Driven Protocol and Algorithm Design for Energy-
Efficient Wireless Sensor Networks”, In Proceedings of MOBICOM 2001, Rome
Italy, July 2001.

[Sim01] Simple Power, http://www.cse.psu.edu/~mdl/SimplePower.html (October
15, 2001)

[SK97] Mark Stemm and Randy H. Katz, “Measuring and reducing energy
consumption of network interfaces in hand-held devices”, IEICE Transactions on
Communications, special Issue on Mobile Computing, vol. E80-B, no. 8, pp. 1125-
31, 1997.

[Spec99] Wireless LAN Medium Access Control and Physical layer Specifications,
August 1999. IEEE 802.11 Standard (IEEE Computer Society LAN MAN Standard
Committee).

 76

[SR98] S. Singh and C. Raghavendra. PAMAS, “Power aware multi-access
protocol with signalling for ad hoc networks”, In ACM Computer Communications
Review, 1998.

[Ste94] W. Richard Stevens, “TCP/IP Illustrated, Volume I: The Protocols”,
Addison Wesley Publishers, 1994.

[SWR98] Suresh Singh, Mike Woo, and C. S. Raghavendra, “Power-aware routing
in mobile ad doc networks”, in Proceddings of MOBICOM, October, 1998.

[TBGP00] V. Tsaoussidis, H. Badr, X. Ge, K. Pentikousis, “Energy/Throughput
Tradeoffs of TCP Error Control Strategies”, in Proceedings of the 5th IEEE
Symposium on Computers and Communications, France, July 2000.

[Tra02] Tcptrace http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html, October
2002.

[WE93] N. H. E. Weste and K. Eshranghian, “Principles of CMOS VLSI Design:
A System Perspective”, Addison Wesley Publishers, 1993

[Wei93] M. Weiser, “Some computer science issues in ubiquitous computing”,
Communication of the ACM, 36:74-83, July 1993.

[WESW98] Hagen Woesner, Jean-Pierre Ebert, Morten Schlager, and Adam
Wolisz , “Power-saving mechanisms in emerging standards for wireless LAN’s:
The MAC level perspective”, IEEE Personal Communications, June, 1998.

[WLBW01] R. Wattenhofer, L. Li, P. Bahl and Y. M. Wang, “Distributed
Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc
Networks”, In Proceedings of IEEE INFOCOM, Anchorage, Alaska, 2001.

[ZP99] Jim Zyren and A. I. Petrick, “Brief Tutorial on IEEE 802.11 Wireless
LANs”, February 1999, www.intersil.com/data/an/an9/an9829/ an9829.pdf.

[ZR97] M. Zorzi, R.R. Rao, “Error Control and Energy Consumption in
Communications for Nomadic Computing”, IEEE Transactions on Computers,
March 1997.

[ZR99] M. Zorzi, R.R. Rao, “Is TCP Energy Efficient?”, in Proceedings of IEEE
MoMuC, November 1999.

[ZRM02] M. Zorzi, M. Rossi and G. Mazzini, “Throughput and energy
performance of tcp on a wideband cdma air interface”, In Journal of Wireless
Communications and Mobile Computing, Wiley 2002, 200.

 77

