
September 18, 2007  Page F-1 

 
The BLITZ Emulator 

 
 

Harry H. Porter III, Ph.D. 
Computer Science Department 

Portland State University 
 
 
 
 
 
Using The BLITZ Emulator 
 
The BLITZ emulator is a program written in “C” which emulates the BLITZ architecture. In other 
words, the emulator is a virtual machine which simulates in software the behavior of a BLITZ machine. 
This program is named “blitz” and is run on a computer known as the “host” computer. When running 
under Unix, for example, you may start the emulator by typing “blitz” at the Unix prompt. 
 
The emulator begins by reading in a BLITZ program and loading it into memory. Normally, the BLITZ 
executable file is called “a.out” but it can be given another name. The emulator begins by reading data 
from “a.out” and loading it into its internal memory. In effect, the emulator begins by initializing the 
main memory of the BLITZ machine, using the bytes in the “a.out” file. 
 
As an example, assume there is a file called “test.s” containing a BLITZ assembly code program. The 
following sequence can be used to assemble, link, and run this program. In this document, “%” is the 
Unix prompt. We show user input as underlined, boldface. 
 
    % asm test.s 
    % lddd test.o 
    % blitz 
  
The program “asm” is the BLITZ assembler. It takes as input an assembly language program and 
produces an object file called, in this case, “test.o”. 
 
The second program (called “lddd”) is the BLITZ linker. It takes as input one or more object files and 
produces an executable file called “a.out”. The executable file may be renamed with the “-o” command 
line option. 
 
The program called “blitz” is the emulator. It loads an executable file into the main memory of the 
emulated BLITZ machine. By default, the emulator reads from a file called “a.out”, but another file may 
be named on the command line. 
 
The BLITZ emulator is command oriented. It accepts one command at a time and executes each 
command before prompting for the next command. 
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The emulator is meant to be run interactively, with “stdin” and “stdout” connected to an interactive user 
interface. The BLITZ emulator uses the “>” character as a prompt. You type in commands after this 
prompt and the result of each will be displayed. 
 
One command is called “go”; this command begins executing BLITZ machine instructions. Other 
commands allow you to do things like: 
 
    (1)  Look at (and change) the BLITZ registers 
    (2)  Look at (and change) the contents of the BLITZ memory 
    (3)  View the state of the BLITZ machine 
    (4)  Execute a single instruction at a time 
    (5)  Dis-assemble instructions from memory 
    (6)  Manipulate the I/O devices (the serial I/O and the disk) 
    (7)  Quit the emulator 
 
 
The “quit” Command 
 
The “quit” command (which may be abbreviated as “q”) will terminate the BLITZ emulator. 
 
Before terminating, the emulator will print some execution statistics, reflecting all activity since the 
emulator began (or since the last “reset” command). 
 
    > quit 
    Number of Disk Reads    = 0 
    Number of Disk Writes   = 0 
    Instructions Executed   = 18560 
    Time Spent Sleeping     = 0 
        Total Elapsed Time  = 18560 
    % 
 
(The final “%” symbolizes the host / Unix prompt.) 
 
 
The “go” Command 
 
The “go” command (which may be abbreviated as “g”) is used to start execution of the emulator. Once 
execution begins, the BLITZ machine will execute instructions until either an error is detected or the 
BLITZ machine executes a “wait” or “debug” instruction. 
 
Here is an example: 
 
    > go 
    Beginning execution... 
        < output from the BLITZ program > 
    Done!  The next instruction to execute will be: 
    000074: 01000000       wait    
    >  
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The “help” Command 
 
When running the BLITZ emulator, you may type “help”. Below, we show the BLITZ emulator starting 
up and the “help” command being executed.  The “help” command may be abbreviated as “h”. 
 
    % blitz 
    ================================================= 
    =====                                       ===== 
    =====      The BLITZ Machine Emulator       ===== 
    =====                                       ===== 
    =====  Copyright 2001, Harry H. Porter III  ===== 
    =====                                       ===== 
    ================================================= 
 
    Enter a command at the prompt.  Type 'quit' to exit or 'help' for 
    info about commands. 
    > h 
    ======================================================================== 
    This program accepts commands typed into the terminal.  Each command 
    should be typed without any arguments; the commands will prompt for 
    arguments when needed.  Case is not significant.  Some abbreviations 
    are allowed, as shown.  Typing control-C will halt execution. 
 
    The available commands are: 
 
      quit    - Terminate this program 
      q          
      help    - Produce this display 
      h          
      info    - Display the current state of the machine 
      i          
      dumpMem - Display the contents of memory 
      dm         
      setmem  - Used to alter memory contents 
      fmem    - Display floating point values from memory 
      go      - Begin or resume BLITZ instruction execution 
      g          
      step    - Single step; execute one machine-level instruction 
      s          
      t       - Single step; execute one KPL statement 
      u       - Execute continuously until next call, send, or return 
      stepn   - Execute N machine-level instructions 
      r       - Display all the integer registers 
      r1      - Change the value of register r1 
       ...        
      r15     - Change the value of register r15 
      float   - Display all the floating-point registers 
      f          
      f0      - Change the value of floating-point register f0 
       ...        
      f15     - Change the value of floating-point register f15 
      dis     - Disassemble several instructions 
      d       - Disassemble several instructions from the current location 
      hex     - Convert a user-entered hex number into decimal and ascii 
      dec     - Convert a user-entered decimal number into hex and ascii 
      ascii   - Convert a user-entered ascii char into hex and decimal 
      setI    - Set the I bit in the Status Register 
      setS    - Set the S bit in the Status Register 
      setP    - Set the P bit in the Status Register 
      setZ    - Set the Z bit in the Status Register 
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      setV    - Set the V bit in the Status Register 
      setN    - Set the N bit in the Status Register 
      clearI  - Clear the I bit in the Status Register 
      clearS  - Clear the S bit in the Status Register 
      clearP  - Clear the P bit in the Status Register 
      clearZ  - Clear the Z bit in the Status Register 
      clearV  - Clear the V bit in the Status Register 
      clearN  - Clear the N bit in the Status Register 
      setPC   - Set the Program Counter (PC) 
      setPTBR - Set the Page Table Base Register (PTBR) 
      setPTLR - Set the Page Table Length Register (PTLR) 
      pt      - Display the Page Table 
      trans   - Perform page table translation on a single address 
      cancel  - Cancel all pending interrupts 
      labels  - Display the label table 
      find    - Find a label by name 
      find2   - Find a label by value 
      add     - Add a new label, inserting it into the indexes 
      reset   - Reset the machine state and re-read the a.out file 
      io      - Display the state of the I/O devices 
      read    - Read a word from memory-mapped I/O region 
      write   - Write a word to memory-mapped I/O region 
      raw     - Switch serial input to raw mode 
      cooked  - Switch serial input to cooked mode 
      input   - Enter input characters for future serial I/O input 
      format  - Create and format a BLITZ disk file 
      sim     - Display the current simulation constants 
      stack   - Display the KPL calling stack 
      st         
      frame   - Display the current activation frame 
      fr         
      up      - Move up in the activation frame stack 
      down    - Move down in the activation frame stack 
 
    ======================================================================== 
        > 
 
 
Abbreviated Spellings of Some Commands 
 
Some of the commands have abbreviation, which are easier to type. Here are the abbreviations. 
 
    quit       q 
    help       h 
    go         g 
    dumpmem    dm 
    info       i 
    step       s 
    float      f 
    stack      st 
    frame      fr 
 
 
The “dumpmem” Command 
 
The “dumpmem” command (which may be abbreviated “dm”) can be used to display the contents of the 
BLITZ machine’s memory. 
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Each byte of memory is displayed in hex, with 16 bytes per line. Addresses are displayed on the left. On 
the right side, the same 16 bytes are displayed as ASCII, with non-printable characters displayed as 
periods. 
 
Many of the emulator commands require arguments. For example, the “dumpmem” command needs a 
starting address and a length (in bytes). Each command should be typed on a line by itself. The emulator 
will then prompt for any arguments that are needed. 
 
Here is an example: 
 
    > dm 
    Enter the starting (physical) memory address in hex: 200 
    Enter the number of bytes in hex (or 0 to abort): 20 
    00000200:  546F 0000  547F 0000  548F 0000  549F 0000    To..T...T...T... 
    00000210:  54AF 0000  54BF 0000  C0B0 00FF  C1B0 FF04    T...T........... 
    >  
 
This command ignores page tables and virtual address spaces; it displays the actual (i.e., “physical”) 
memory space. 
 
 
The “setmem” Commands 
 
The “setmem” command can be used to modify the contents of the BLITZ machine’s memory. 
 
Here is an example: 
 
    > setmem 
    Enter the (physical) memory address in hex of the word to be modified: 4c 
    The old value is: 
    0x00004C: 0xC120FF04 
    Enter the new value (4 bytes in hex): 123def 
    0x00004C: 0x00123DEF 
    >  
 
The addresses used in this command are physical memory addresses; no page table translation is 
performed.  (For page table translation, see the “trans” command.) 
 
 
Conversion between Hex, ASCII, and Decimal 
 
Occasionally you may need to convert between hex and decimal or see what some ASCII character code 
is.  There are three commands that do such translations: “hex”, “dec”, and “ascii”. 
 
Each command asks you to enter a value.  The command then prints out the value in the other two 
forms. 
 
To see the ASCII code for some character, use the “ascii” command.  For example: 
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    > ascii 
    Enter a single character followed by a newline/return: h 
         hex: 0x00000068     decimal: 104     ascii: "...h" 
    >  
 
To translate a hex value into decimal, use the “hex” command. 
 
    > hex 
    Enter a value in hex: 2468abcd 
         hex: 0x2468ABCD     decimal: 610839501     ascii: "$h.." 
    >  
 
The “hex” command takes up to 4 bytes, which it will also display as four characters.  You can also use 
it to translate a single byte. 
 
    > hex 
    Enter a value in hex: 6a 
         hex: 0x0000006A     decimal: 106     ascii: "...j" 
    >  
 
The “dec” command can be used to translate decimal numbers into hex and into ASCII characters. 
 
    > dec 
    Enter a value in decimal: 107 
         hex: 0x0000006B     decimal: 107     ascii: "...k" 
    >  
 
 
The “dis” Command 
 
The emulator includes a command called “dis” which can be used to disassemble memory. 
 
Here is a fragment of a BLITZ assembly program: 
 
    ... 
    flush: 
        push     r1                 ! save registers 
        push     r2                 ! . 
    flushLoop:                      ! loop 
        cleari                      !   disable interrupts 
        set      outBufferCount,r1  !   r2 = outBufferCount 
        load     [r1],r2            !   . 
        cmp      r2,0               !   if (r2 == 0) 
        be       flushLoopEx        !     break 
        seti                        !   re-enable interrupts 
        jmp      flushLoop          ! end 
    flushLoopEx:                    ! . 
        seti                        ! re-enable interrupts 
    ... 
 
Assume that the BLITZ emulator is running and this program has been loaded into memory. 
 
Below is an example of the “dis” command. In this program, it turns out the above fragment was loaded 
into bytes beginning at address 0x000180. Below, we ask the emulator to disassemble memory starting 
at that address: 
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    > dis  
    Enter the beginning phyical address (in hex): 180 
                       flush: 
    000180: 541F0000       push    r1,[--r15] 
    000184: 542F0000       push    r2,[--r15] 
                       flushLoop: 
    000188: 03000000       cleari   
    00018C: C0100000       sethi   0x0000,r1 
    000190: C1102088       setlo   0x2088,r1    ! decimal: 8328, ascii: " ."  
(outBufferCount) 
    000194: 6B210000       load    [r1+r0],r2 
    000198: 81020000       sub     r2,0x0000,r0  
    00019C: A200000C       be      0x00000C     ! targetAddr = flushLoopEx 
    0001A0: 04000000       seti     
    0001A4: A1FFFFE4       jmp     0xFFFFE4     ! targetAddr = flushLoop 
                       flushLoopEx: 
    0001A8: 04000000       seti     
      ... 
    > 
 
The first thing to notice is that the comments from the “.s” file are lost. The second thing to notice is that 
the instructions are printed in greater detail than in the “.s” file. 
 
Note that information about labels (such as “flush”, “flushLoop”, and “flushLoopEx”) is carried in the 
“a.out” file. While label information is not technically part of the BLITZ program, this information is 
used by the emulator when disassembling, to make the result more meaningful. 
 
Each instruction is printed both in hex and in human-readable mnemonic form. Consider the instruction: 
 
    0001A4: A1FFFFE4       jmp     0xFFFFE4     ! targetAddr = flushLoop 
 
This instruction is at address 0x0001a4. It is a “jump” instruction (whose opcode is hex a1) and has a 
relative offset of –28 (which is ffffe4 in hex). The disassembler adds the information (printed like a 
comment) that the value 0xffffe4 would be the instruction labeled “flushLoop”. 
 
Next, take a look at the following instruction from the “.s” file: 
 
        cmp      r2,0               !   if (r2 == 0) 
 
The “cmp” instruction is a “synthetic instruction”. It is really assembled as a “sub” instruction which 
places the result in “r0”. In other words, the result is discarded, although the condition codes are 
modified. This instruction is disassembled as: 
 
    000198: 81020000       sub     r2,0x0000,r0  
 
Next, look at the following instruction from the “.s” file: 
 
        set      outBufferCount,r1  !   r2 = outBufferCount 
 
The “set” instruction is a “synthetic instruction”. It is really equivalent to 2 instructions, a “sethi” 
followed by a “setlo”. It is disassembled as the following two lines. (The second line may wrap to a new 
line in this document.) 
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    00018C: C0100000       sethi   0x0000,r1 
    000190: C1102088       setlo   0x2088,r1    ! decimal: 8328, ascii: " ."  
(outBufferCount) 
 
When the disassembler prints out values like 0x2088, it adds a comment. The comment gives the value 
interpreted as a decimal number, interpreted as ASCII characters, and interpreted as an address label. 
For this particular instruction, the label information is helpful and the decimal and ASCII information is 
not. 
 
The “dis” command disassembles about 30 instructions at a time. The “d” command will disassemble 
another 30 instructions, beginning at whatever address the previous command ended on. Thus, by 
entering “d” commands repeatedly, you can disassemble a lengthy program one page at a time. 
 
 
The “reset” Command 
 
When debugging a BLITZ program, it is sometimes desirable to give up and start over. The “reset” 
command in the emulator will re-initialize the emulator and will re-read the “a.out” executable file. It 
will also reset all registers to zero, reset the state of the I/O devices, and re-read the “.blitzrc” file (if it 
exists) for any non-standard simulation parameters. The effect of “reset” is exactly as if the emulator had 
been quit and then re-started. 
 
A typical debugging session might involve editing, compiling, and assembling a BLITZ program in one 
window, and running the emulator in a second window. After a bug has been found, the user would 
switch to the editing window and re-build the program. Then, after switching to the emulator window, 
the “reset” command could be used to re-read the newly built program. 
 
Another common scenario involves trying to find a bug in a BLITZ program. Perhaps the bug has 
already occurred (i.e., been encountered during execution). The “reset” command could then be used to 
rerun the program from the beginning, in order to observe and more closely understand the bug. 
 
 
The “info” Command 
 
The command “i” (which is short for “info”) can be used to dump the entire state of the CPU. Here is an 
example of the “i” command: 
 
    > i 
    ============================ 
    Memory size = 0x01000000     ( decimal: 16777216    ) 
    Page size   = 0x00002000     ( decimal: 8192        ) 
    .text Segment 
        addr    = 0x00000000     ( decimal: 0           ) 
        size    = 0x00002000     ( decimal: 8192        ) 
    .data Segment 
        addr    = 0x00002000     ( decimal: 8192        ) 
        size    = 0x00002000     ( decimal: 8192        ) 
    .bss Segment 
        addr    = 0x00004000     ( decimal: 16384       ) 
        size    = 0x00000000     ( decimal: 0           ) 
    =====  USER REGISTERS  ===== 
      r0  = 0x00000000     ( decimal: 0 ) 
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      r1  = 0x00000000     ( decimal: 0 ) 
      r2  = 0x00000000     ( decimal: 0 ) 
      r3  = 0x00000000     ( decimal: 0 ) 
      r4  = 0x00000000     ( decimal: 0 ) 
      r5  = 0x00000000     ( decimal: 0 ) 
      r6  = 0x00000000     ( decimal: 0 ) 
      r7  = 0x00000000     ( decimal: 0 ) 
      r8  = 0x00000000     ( decimal: 0 ) 
      r9  = 0x00000000     ( decimal: 0 ) 
      r10 = 0x00000000     ( decimal: 0 ) 
      r11 = 0x00000000     ( decimal: 0 ) 
      r12 = 0x00000000     ( decimal: 0 ) 
      r13 = 0x00000000     ( decimal: 0 ) 
      r14 = 0x00000000     ( decimal: 0 ) 
      r15 = 0x00000000     ( decimal: 0 ) 
    =====  SYSTEM REGISTERS  ===== 
      r0  = 0x00000000     ( decimal: 0 ) 
      r1  = 0x000000AA     ( decimal: 170         ascii: "...."   waitMsg ) 
      r2  = 0x00002088     ( decimal: 8328        ascii: ".. ."   outBufCt ) 
      r3  = 0x00000000     ( decimal: 0 ) 
      r4  = 0x00000000     ( decimal: 0 ) 
      r5  = 0x00000000     ( decimal: 0 ) 
      r6  = 0x00000000     ( decimal: 0 ) 
      r7  = 0x00000000     ( decimal: 0 ) 
      r8  = 0x00000000     ( decimal: 0 ) 
      r9  = 0x00000000     ( decimal: 0 ) 
      r10 = 0x00000000     ( decimal: 0 ) 
      r11 = 0x00000000     ( decimal: 0 ) 
      r12 = 0x00000000     ( decimal: 0 ) 
      r13 = 0x00000000     ( decimal: 0 ) 
      r14 = 0x00000000     ( decimal: 0 ) 
      r15 = 0x00FFFF00     ( decimal: 16776960    ascii: "...." ) 
    =====  FLOATING-POINT REGISTERS  ===== 
      f0  = 0x00000000 00000000   ( value = 0 ) 
      f1  = 0x00000000 00000000   ( value = 0 ) 
      f2  = 0x00000000 00000000   ( value = 0 ) 
      f3  = 0x00000000 00000000   ( value = 0 ) 
      f4  = 0x00000000 00000000   ( value = 0 ) 
      f5  = 0x00000000 00000000   ( value = 0 ) 
      f6  = 0x00000000 00000000   ( value = 0 ) 
      f7  = 0x00000000 00000000   ( value = 0 ) 
      f8  = 0x00000000 00000000   ( value = 0 ) 
      f9  = 0x00000000 00000000   ( value = 0 ) 
      f10 = 0x00000000 00000000   ( value = 0 ) 
      f11 = 0x00000000 00000000   ( value = 0 ) 
      f12 = 0x00000000 00000000   ( value = 0 ) 
      f13 = 0x00000000 00000000   ( value = 0 ) 
      f14 = 0x00000000 00000000   ( value = 0 ) 
      f15 = 0x00000000 00000000   ( value = 0 ) 
    ====================================== 
      PC   = 0x00000074     ( decimal: 116         ascii: "...t" ) 
      PTBR = 0x00000000     ( decimal: 0 ) 
      PTLR = 0x00000000     ( decimal: 0 ) 
                            ---- ----  ---- ----  ---- ----  --IS PZVN 
      SR   = 0x00000034  =  0000 0000  0000 0000  0000 0000  0011 0100 
               I = 1   Interrupts Enabled 
               S = 1   System Mode 
               P = 0   Paging Disabled 
               Z = 1   Zero 
               V = 0   No Overflow 
               N = 0   Not Negative 
    ============================== 
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      Pending Interrupts                = 0x00000008 
        SERIAL_INTERRUPT 
      System Trap Number                = 0x00000000 
      Page Invalid Offending Address    = 0x00000000 
      Page Readonly Offending Address   = 0x00000000 
      Time of next timer event          = 91091 
      Time of next disk event           = 2147483647 
      Time of next serial in event      = 91355 
      Time of next serial out event     = 2147483647 
        Current Time                    = 90354 
        Time of next event              = 91091 
        Time Spent Sleeping             = 966 
          Instructions Executed         = 89388 
      Number of Disk Reads              = 0 
      Number of Disk Writes             = 0 
    ============================== 
    Next instruction to execute will be: 
    000074: 01000000       wait     
    >  
 
 
Examining and Modifying Registers 
 
The “r” command is used to display the contents of the integer registers. 
 
    > r 
    =====  SYSTEM REGISTERS  ===== 
      r0  = 0x00000000     ( decimal: 0 ) 
      r1  = 0x000000AA     ( decimal: 170         ascii: "...."   waitMsg ) 
      r2  = 0x00002088     ( decimal: 8328        ascii: ".. ."   outBufCt ) 
      r3  = 0x00000000     ( decimal: 0 ) 
      r4  = 0x00000000     ( decimal: 0 ) 
      r5  = 0x00000000     ( decimal: 0 ) 
      r6  = 0x00000000     ( decimal: 0 ) 
      r7  = 0x00000000     ( decimal: 0 ) 
      r8  = 0x00000000     ( decimal: 0 ) 
      r9  = 0x00000000     ( decimal: 0 ) 
      r10 = 0x00000000     ( decimal: 0 ) 
      r11 = 0x00000000     ( decimal: 0 ) 
      r12 = 0x00000000     ( decimal: 0 ) 
      r13 = 0x00000000     ( decimal: 0 ) 
      r14 = 0x00000000     ( decimal: 0 ) 
      r15 = 0x00FFFF00     ( decimal: 16776960    ascii: "...." ) 
    ============================== 
    > 
 
At any instant, the BLITZ machine is either in “System Mode” or “User Mode”, as determined by the 
“S” bit in the status word.  The BLITZ machine has two sets of registers; the “r” command will display 
whichever register set is in use. If the machine is in System Mode, the system registers will be displayed 
and if the machine is in User Mode, the user registers will be displayed. 
 
You may also modify individual integer registers with commands such as “r3” and “r12”.  For example: 
 
    > r1 
      SYSTEM r1 = 0x000000AA     ( decimal: 170         ) 
    Enter the new value (in hex): 123abc 
      SYSTEM r1 = 0x00123ABC     ( decimal: 1194684     ) 
    >  
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To display the contents of the floating-point registers, the “float” command (which may be abbreviated 
“f”), can be used: 
 
    > f 
    =====  FLOATING-POINT REGISTERS  ===== 
      f0  = 0x00000000 00000000   ( value = 0 ) 
      f1  = 0x00000000 00000000   ( value = 0 ) 
      f2  = 0x00000000 00000000   ( value = 0 ) 
      f3  = 0x00000000 00000000   ( value = 0 ) 
      f4  = 0x00000000 00000000   ( value = 0 ) 
      f5  = 0x00000000 00000000   ( value = 0 ) 
      f6  = 0x00000000 00000000   ( value = 0 ) 
      f7  = 0x00000000 00000000   ( value = 0 ) 
      f8  = 0x00000000 00000000   ( value = 0 ) 
      f9  = 0x00000000 00000000   ( value = 0 ) 
      f10 = 0x00000000 00000000   ( value = 0 ) 
      f11 = 0x00000000 00000000   ( value = 0 ) 
      f12 = 0x00000000 00000000   ( value = 0 ) 
      f13 = 0x00000000 00000000   ( value = 0 ) 
      f14 = 0x00000000 00000000   ( value = 0 ) 
      f15 = 0x00000000 00000000   ( value = 0 ) 
    ====================================== 
    > 
 
You may also modify individual floating-point registers with commands such as “f3” and “f12”.  For 
example: 
 
    > f5 
      f5 = 0x00000000 00000000   ( value = 0 ) 
    Enter the new value (e.g., 1.1, -123.456e-10, nan, inf, -inf): -5.7 
      f5 = 0xC016CCCC CCCCCCCD   ( value = -5.7 ) 
    >  
 
 
The “Auto-Go” Option 
 
Normally, the emulator begins by asking for a command. It executes the command, displays the result, 
and asks for the next command in a loop. The emulator can also be set to begin execution automatically. 
This is called the “auto-go” feature and may be specified using the command line option “-g”. 
 
    % blitz –g 
 
The “auto-go” option causes the emulator to begin executing the BLITZ program immediately. Only if 
errors occur, will the emulator go into command-line mode. It will display an error message and ask the 
user to enter a command. If the program terminates without any errors, then the emulator will also 
terminate. 
 
 
Single-Stepping Machine Instructions 
 
The “step” command (which may be abbreviated “s”) can be used to single-step the emulator. 
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Entering this command will cause a single BLITZ machine instruction to be executed, and control to be 
returned to the emulator command interface.  After the instruction is executed, the emulator will show 
the instruction that is due to be executed next (not the instruction that was executed) so you can stop 
before an instruction of interest. 
 
In the following example, three instructions are executed. 
 
    > s 
    Done!  The next instruction to execute will be: 
    000078: A1FFFFE0       jmp     0xFFFFE0         ! targetAddr = busywait 
    > s 
    Done!  The next instruction to execute will be: 
                       busywait: 
                       loop: 
    000058: 6B310000       load    [r1+r0],r3 
    > s 
    Done!  The next instruction to execute will be: 
    00005C: 88030002       and     r3,0x0002,r0     ! decimal: 2, ascii: ".."   
    >  
 
Executing a large number of instructions using the “step” command quickly becomes tedious. To speed 
up things, you can use the “stepn” command. The “stepn” instruction begins by asking you how many 
instructions you wish to execute. It then executes this many instructions and suspends execution. 
 
An example of the “stepn” instruction appears next. The program being executed prints the message 
“Hello, world”. In this example, we execute 77 instructions, which is enough to print the first part of the 
message. We see the characters “Hello, ” displayed right after the “Beginning execution...” message. 
 
    > stepn 
    Enter the number of instructions to execute: 77 
    Beginning execution... 
    Hello, Done!  The next instruction to execute will be: 
    00006C: A2000010       be      0x000010         ! targetAddr = loopExit 
    >  
 
 
Debugging KPL Programs 
 
Consider this program, written in the KPL programming language.  (Line numbers have been added.) 
 
    1    header Hello 
    2      uses System 
    3      functions 
    4        main () 
    5    endHeader 
 
 
    1    code Test 
    2     
    3      function main () 
    4          print ("Hello, world...\n") 
    5          foo () 
    6        endFunction 
    7     
    8      function foo () 
    9        var x: int = 1 
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    10         bar (x + 1) 
    11       endFunction 
    12    
    13     function bar (a: int) 
    14       var y: int = a + 1 
    15         test (y + 1) 
    16       endFunction 
    17    
    18     function test (b: int) 
    19       var z: int = b + 1 
    20         print ("The value of z is ") 
    21         printInt (z) 
    22         nl () 
    23         debug 
    24       endFunction 
    25    
    26   endCode 
 
Here are the commands needed to compile, assemble, and link this program: 
 
    % kpl Test 
    % asm Test.s 
    % kpl System -unsafe 
    % asm System.s 
    % lddd Test.o System.o runtime.o –o Test 
 
To execute the program, the emulator is invoked and the “go” command is issued: 
 
    % blitz Test 
    ================================================= 
    =====                                       ===== 
    =====      The BLITZ Machine Emulator       ===== 
    =====                                       ===== 
    =====  Copyright 2001, Harry H. Porter III  ===== 
    =====                                       ===== 
    ================================================= 
 
    Enter a command at the prompt.  Type 'quit' to exit or 'help' for 
    info about commands. 
    > go 
    Beginning execution... 
    ====================  KPL PROGRAM STARTING  ==================== 
    Hello, world... 
    The value of z is 5 
 
    ****  A 'debug' instruction was encountered  ***** 
    Done!  The next instruction to execute will be: 
    0016AC: 87D00017       or      r0,0x0017,r13  ! decimal: 23, ascii: ".."   
    >  
 
This program prints a message and then calls function “foo”. The function “foo” calls function “bar” 
which then calls function “test”. The function “test” prints the value of a variable and then executes the 
“debug” statement. 
 
The compiler translates the KPL “debug” statement into the “debug” machine instruction. When 
executed, the “debug” instruction causes the emulator to immediately suspend execution, print the 
message 
 
    ****  A 'debug' instruction was encountered  ***** 
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and re-enter the command-line mode. The user may now inspect the state of the BLITZ machine. 
 
The “stack” command can be used to run through the activation record stack and print information 
showing where, in each currently active function, execution is suspended. 
 
    > stack 
       Function/Method        Frame Addr   Execution at... 
       ====================   ==========   ===================== 
       test                    00FFFEA8    Test.c, line 23 
       bar                     00FFFEC4    Test.c, line 15 
       foo                     00FFFEE0    Test.c, line 10 
       main                    00FFFEF8    Test.c, line 5 
    Bottom of activation frame stack! 
    >  
 
At the top of the stack, we see that we are executing in the function “test”.  Furthermore, we can see the 
source code location of the statement being executed.  The “debug” statement is on line 23 in the file 
named “Test.c”.  The function “test” was called from the function “bar” and the call occurs on line 15. 
 
The “stack” command assumes a KPL program has been running.  The command examines the contents 
of memory and extracts the information from the runtime stack.  If memory has been corrupted, this 
command might print erroneous information.  Nonetheless, the “stack” command is useful in debugging 
KPL programs. 
 
The “frame” command can be used to see the current values of local variables.  For example: 
 
    > frame 
    =====  Frame number 0 (where StackTop = 0)  ===== 
    Function Name:    test                    
    Filename:         Test.c 
    Execution now at: line 23 
    Frame Addr:       00FFFEA8 
    frameSize:        12 
    totalParmSize:    4 
                             ========== 
       sp--> -20   00FFFE94:  00000005 
             -16   00FFFE98:  00000005 
             -12   00FFFE9c:  000011D8 
    R.D.ptr:  -8   00FFFEA0:  000016C0 
        r13:  -4   00FFFEA4:  0000000F 
         fp:   0   00FFFEA8:  00FFFEC4 
    RetAddr:   4   00FFFEAc:  000015CC 
                             ========== 
       Args:   8   00fffeb0:  00000004 
 
    PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME: 
    ================================================= 
      b: int 
               8   00FFFEB0:  00000004    value = 4 
      _temp_21 
             -12   00FFFE9C:  000011D8 
      z: int 
             -16   00FFFE98:  00000005    value = 5 
    ================================================= 
    >  
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In this example, the “frame” command prints information from the frame on the top of the stack, which 
is the frame of the currently executing function.  We see the name of the function (“test”) and, within it, 
where execution currently is (line 23 in file “Test.c”).  Next, we see the exact contents of the frame in 
hex (between the ====== markers), as well as offsets and memory addresses. 
 
Then we see the names of the parameters and local variables of this function, along with their types and 
current values.  The values are given in hex.  For some types of data (namely integers, doubles, 
Booleans, characters), the data is also printed in human-readable form. For pointers, we also see the 
word of data pointed to.  The compiler generates temporary variables with names such as “_temp_21” 
and the values of these are also printed. 
 
The stack may contain many frames.  In this example, the stack contains 4 frames. When debugging 
some programs, we may need to look at more than just the top (currently executing) frame.  To look at 
other frames, we use the “up” and “down” commands. 
 
The “stack”, “up”, “down” commands all use a notion of the “current frame position”.  The “down” 
command moves the current position down the stack (away from the top), while the “up” command 
moves it back up.  The “frame” command simply prints the current frame. 
 
For example, the “down” command will take us to the frame of the function that called “test”: 
 
    > down 
    =====  Frame number 1 (where StackTop = 0)  ===== 
    Function Name:    bar                     
    Filename:         Test.c 
    Execution now at: line 15 
    Frame Addr:       00FFFEC4 
    frameSize:        12 
    totalParmSize:    4 
                             ========== 
             -20   00FFFEB0:  00000004 
             -16   00FFFEB4:  00000003 
             -12   00FFFEB8:  00000004 
    R.D.ptr:  -8   00FFFEBC:  000015E0 
        r13:  -4   00FFFEC0:  0000000A 
         fp:   0   00FFFEC4:  00FFFEE0 
    RetAddr:   4   00FFFEC8:  00001514 
                             ========== 
       Args:   8   00FFFECC:  00000002 
 
    PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME: 
    ================================================= 
      a: int 
               8   00FFFECC:  00000002    value = 2 
      _temp_16 
             -12   00FFFEB8:  00000004 
      y: int 
             -16   00FFFEB4:  00000003    value = 3 
    ================================================= 
    > 
 
Here, we see the same information as we saw for the other frame.  We see the name of the function 
“bar”, where execution is (line 15), and the current values of the variables (“a” has value 2 and “y” has 
value 3). 
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Single-Stepping KPL Programs 
 
Consider the “Test” program discussed above.  Let’s restart the program by issuing the “reset” 
command, which resets the CPU and reloads memory. 
 
    > reset 
    Resetting all CPU registers and re-reading file "Test"... 
    >  
 
We can single-step the program by issuing the “t” command, which will execute a single KPL statement 
and re-enter the emulator’s command-line mode.  Here is an example showing the execution of several 
KPL statements: 
 
    > t 
    About to execute FUNCTION ENTRY 
                                       in main (Test.c, line 3)  time = 516 
    > t 
    About to execute FUNCTION CALL (external function) 
                                       in main (Test.c, line 4)  time = 523 
    > t 
    Hello, world... 
    About to execute FUNCTION CALL 
                                       in main (Test.c, line 5)  time = 531 
    > t 
    About to execute FUNCTION ENTRY 
                                       in foo (Test.c, line 8)  time = 550 
    > t 
    About to execute FUNCTION CALL 
                                       in foo (Test.c, line 10)  time = 561 
    > t 
    About to execute FUNCTION ENTRY 
                                       in bar (Test.c, line 13)  time = 580 
    > t 
    About to execute FUNCTION CALL 
                                       in bar (Test.c, line 15)  time = 594 
    > t 
    About to execute FUNCTION ENTRY 
                                       in test (Test.c, line 18)  time = 613 
    > t 
    About to execute FUNCTION CALL (external function) 
                                       in test (Test.c, line 20)  time = 625 
    > t 
    The value of z is 5About to execute FUNCTION CALL 
                                       in test (Test.c, line 22)  time = 642 
    > t 
    About to execute FUNCTION ENTRY 
                                       in nl (System.c, line 48)  time = 655 
    > t 
    About to execute FUNCTION CALL (external function) 
                                       in nl (System.c, line 49)  time = 659 
    > t 
 
    About to execute RETURN statement 
                                       in nl (System.c, line 49)  time = 666 
    > 
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The “t” command executes one KPL statement and then stops.  After stopping, the “t” command prints 
information about the next statement to be executed. 
 
The execution of one KPL statement involves the execution of several machine instructions.  Although 
the algorithm used by the emulator to determine exactly where the statement boundaries are is not 100% 
accurate, it will allow the programmer to walk through a program’s execution at higher-level than 
machine instructions. 
 
However, with large programs, single-stepping can get very tedious. When this happens, the 
programmer should consider the “u” command. 
 
The “u” command will execute many KPL statements at once, and will stop only when a function or 
method is entered.  The “u” command will also stop just before a return is performed. 
 
The “u” command can be used to execute a KPL program quickly, allowing the programmer to get to 
the point of interest.  Once there, the programmer can single-step using the “t” command, or look at the 
variables with the “stack” and “frame” commands. 
 
In the above example, there were no statements other than call and return statements, so there is little 
reason to use the “u”  command. 
 
The next example involves the execution of a larger program, which is not shown.  The “u” command is 
used to enter and leave different methods and functions.  Once in the method called “AddToEnd”, the 
“t” command is used to single-step execution. 
 
    > u 
    About to execute METHOD ENTRY 
                      in List::IsEmpty (List.c, line 49)  time = 11087 
    > u 
    About to execute RETURN statement 
                      in List::IsEmpty (List.c, line 52)  time = 11098 
    > u 
    About to execute METHOD ENTRY 
                      in Thread::Yield (Kernel.c, line 290)  time = 11168 
    > u 
    About to execute FUNCTION ENTRY 
                      in SetInterruptsTo (Kernel.c, line 178)  time = 11197 
    > u 
    About to execute RETURN statement 
                      in SetInterruptsTo (Kernel.c, line 198)  time = 11229 
    > u 
    About to execute METHOD ENTRY 
                      in List::Remove (List.c, line 33)  time = 11270 
    > u 
    About to execute RETURN statement 
                      in List::Remove (List.c, line 46)  time = 11316 
    > u 
    About to execute METHOD ENTRY 
                      in List::AddToEnd (List.c, line 20)  time = 11379 
    > t 
    About to execute IF statement 
                      in List::AddToEnd (List.c, line 24)  time = 11381 
    > t 
    About to execute SEND 
                      in List::AddToEnd (List.c, line 24)  time = 11383 
    > t 
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    About to execute METHOD ENTRY 
                      in List::IsEmpty (List.c, line 49)  time = 11404 
    > t 
    About to execute IF statement 
                      in List::IsEmpty (List.c, line 51)  time = 11406 
    > t 
    About to execute ELSE statement 
                      in List::IsEmpty (List.c, line 54)  time = 11413 
    > t 
    About to execute RETURN statement 
                      in List::IsEmpty (List.c, line 54)  time = 11415 
    > t 
    About to execute THEN statement 
                      in List::AddToEnd (List.c, line 25)  time = 11427 
    > t 
    About to execute ASSIGN statement 
                      in List::AddToEnd (List.c, line 25)  time = 11429 
    > t 
    About to execute RETURN statement 
                      in List::AddToEnd (List.c, line 24)  time = 11440 
    > 
 
 
Note that the “time” displayed shows that this example spanned the execution of 353 machine 
instructions.  The time value can be used in conjunction with the “stepn” command to quickly get to the 
same point again. 
 
Next, we discuss a “trick” which allows us to effectively “back up” program execution.  This can be 
useful when debugging.  We say “effectively” back up because the CPU cannot actually be run in 
reverse. 
 
Let’s assume that after single-stepping the program for a while, we realize that a bug may involve 
something that happened a little earlier.  In the above example, let’s assume that we want to back up the 
execution and see the value of the variable “p” directly before the assignment statement is executed.  In 
other words, we want to back-up execution to time 11429 and look at the value of “p” before the 
assignment statement.  Unfortunately, the assignment statement has already been executed, possibly 
changing the value of “p.” 
 
To “back up” the CPU, we execute the “reset” command to restart the program, followed by “stepn” to 
get to the time of interest, followed by the “frame” command to see the variable’s value. 
 
    > reset 
    Resetting all CPU registers and re-reading file "os"... 
    > stepn 
    Enter the number of instructions to execute: 11429 
    Beginning execution... 
    ====================  KPL PROGRAM STARTING  ==================== 
    Initializing Thread Scheduler... 
    Initializing Idle Process... 
    Done!  The next instruction to execute will be: 
    0049C4: 8B1E000C       load    [r14+0x000C],r1  ! decimal: 12   
    > frame 
    =====  Frame number 0 (where StackTop = 0)  ===== 
    Function Name:    List::AddToEnd 
    Filename:         List.c 
    Execution now at: line 25 
    Frame Addr:       0002F410 
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    frameSize:        12 
    totalParmSize:    8 
                             ========== 
       sp--> -20   0002F3FC:  0102D334 
             -16   0002F400:  0002D334 
             -12   0002F404:  00000000 
    R.D.ptr:  -8   0002F408:  00004A50 
        r13:  -4   0002F40C:  00000142 
         fp:   0   0002F410:  0002F44C 
    RetAddr:   4   0002F414:  000123D4 
                             ========== 
       Args:   8   0002F418:  0002D334 
              12   0002F41C:  0002E404 
 
    PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME: 
    ================================================= 
      self: ptr 
               4   0002F414:  000123D4    --> 000123D4:  8B1EFFDC 
      p: ptr 
              12   0002F41C:  0002E404    --> (_P_Kernel_idleThread) 0002E404:  
00011914 
      _temp_19 
             -12   0002F404:  00000000 
      _temp_17 
             -16   0002F400:  0002D334 
    ================================================= 
 
 
The “fmem” Command 
 
The “fmem” command is similar to the “dumpmem” command.  Both commands display the contents of 
the BLITZ machine’s main memory.  The “dumpmem” command displays the contents in hex and in 
ASCII.  The “fmem” command interprets the memory as holding floating-point values and print these. 
 
Here is an example of the same block of memory.  First it is displayed using the “dumpmem” command.  
Second it is displayed with “fmem”. 
 
    > dm 
    Enter the starting (physical) memory address in hex: 40 
    Enter the number of bytes in hex (or 0 to abort): 100 
    00000040:  C010 00FF  C110 FF00  C020 00FF  C120 FF04    ......... ... .. 
    00000050:  C040 0000  C140 0084  6B31 0000  8803 0002    .@...@..k1...... 
    00000060:  A2FF FFF8  6C54 0000  8105 0000  A200 0010    ....lT.......... 
    00000070:  8044 0001  6F52 0000  A1FF FFE0  0200 0000    .D..oR.......... 
    00000080:  A1FF FFB8  4865 6C6C  6F2C 2077  6F72 6C64    ....Hello, world 
    00000090:  210A 0D00  0000 0000  0000 0000  0000 0000    !............... 
    000000A0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    000000B0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    000000C0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    000000D0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    000000E0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    000000F0:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    00000100:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    00000110:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    00000120:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    00000130:  0000 0000  0000 0000  0000 0000  0000 0000    ................ 
    > fmem 
    Enter the beginning phyical address (in hex): 40 
    Dumping 256 bytes as 32 double-precision floating-points... 
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       000040: C01000FF C110FF00   value = -4.00097562471615 
       000048: C02000FF C120FF04   value = -8.00195125129495 
       000050: C0400000 C1400084   value = -32.0000230371961 
    busywait: 
    loop: 
       000058: 6B310000 88030002   value = 2.18316291430363e+208 
       000060: A2FFFFF8 6C540000   value = -4.19865739775962e-140 
       000068: 81050000 A2000010   value = -9.56960205083827e-304 
       000070: 80440001 6F520000   value = -2.22507629429519e-307 
       000078: A1FFFFE0 02000000   value = -6.40656817048898e-145 
       000080: A1FFFFB8 48656C6C   value = -6.40644681309642e-145 
       000088: 6F2C2077 6F726C64   value = 3.3315582820848e+227 
       000090: 210A0D00 00000000   value = 1.59166957876397e-149 
       000098: 00000000 00000000   value = 0 
       0000A0: 00000000 00000000   value = 0 
       0000A8: 00000000 00000000   value = 0 
       0000B0: 00000000 00000000   value = 0 
       0000B8: 00000000 00000000   value = 0 
       0000C0: 00000000 00000000   value = 0 
       0000C8: 00000000 00000000   value = 0 
       0000D0: 00000000 00000000   value = 0 
       0000D8: 00000000 00000000   value = 0 
       0000E0: 00000000 00000000   value = 0 
       0000E8: 00000000 00000000   value = 0 
       0000F0: 00000000 00000000   value = 0 
       0000F8: 00000000 00000000   value = 0 
       000100: 00000000 00000000   value = 0 
       000108: 00000000 00000000   value = 0 
       000110: 00000000 00000000   value = 0 
       000118: 00000000 00000000   value = 0 
       000120: 00000000 00000000   value = 0 
       000128: 00000000 00000000   value = 0 
       000130: 00000000 00000000   value = 0 
       000138: 00000000 00000000   value = 0 
    >  
 
 
Changing the Program Counter 
 
The “setpc” command can be used to change the Program Counter (the “PC” register).  The PC indicates 
where the next instruction will be fetched from.  Changing it will, in effect, cause a branch to the new 
location. 
 
    > setpc 
    Please enter the new value for the program counter (PC): 40 
      PC   = 0x00000040     ( decimal: 64          ascii: '@' ) 
    Next instruction to execute will be: 
    000040: C01000FF       sethi   0x00FF,r1        ! 0x00FFFF00 = 16776960 
    >  
 
 
Interrupt Processing 
 
Recall that the Status Registers in the CPU contains the following bits: 
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    I:   Interrupts Enabled 
    S:   System Mode 
    P:   Paging Enabled 
    Z:   Result is Zero 
    V:   Overflow Occurred 
    N:   Result is Negative 
 
The state of these bits controls the execution behavior of the CPU; for details, consult the document 
titled “The BLITZ Architecture”. These bits can be changed with the following commands: 
 
    setI    - Set the I bit  
    setS    - Set the S bit  
    setP    - Set the P bit  
    setZ    - Set the Z bit  
    setV    - Set the V bit  
    setN    - Set the N bit  
    clearI  - Clear the I bit  
    clearS  - Clear the S bit  
    clearP  - Clear the P bit  
    clearZ  - Clear the Z bit  
    clearV  - Clear the V bit  
    clearN  - Clear the N bit  
 
For example: 
 
    > sets 
    The S bit is now 1: System Mode. 
    > cleari 
    The I bit is now 0: Interrupts Disabled. 
    >  
 
The contents of the Status Register is displayed as part of the “info” command. The leading 26 of the 32 
bits in this registers are unused and will always be zero. 
 
    > info 
    ... 
                            ---- ----  ---- ----  ---- ----  --IS PZVN 
      SR   = 0x0000001F  =  0000 0000  0000 0000  0000 0000  0001 1111 
               I = 0   Interrupts Disabled 
               S = 1   System Mode 
               P = 0   Paging Disabled 
               Z = 0   Not Zero 
               V = 0   No Overflow 
               N = 0   Not Negative 
    ... 
    > 
 
You may see which interrupts have been signaled with the “info” command. 
 
    > info 
    ... 
      Pending Interrupts                = 0x00000002 
        TIMER_INTERRUPT 
    ... 
    > 
 
Unmaskable interrupts will be processed on the next cycle. Maskable interrupts will either be processed 
(if the “I” bit is set) or will remain pending until the “I” bit is changed to 1. 
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Pending interrupts can be cleared with the “cancel” command. This command will cancel both maskable 
and unmaskable interrupts. 
 
    > cancel 
    All pending interrupts have been cancelled. 
    > 
 
When an interrupt is processed, an extra “step” cycle is required. This is illustrated in the next example. 
Prior to what is shown below, we assume a TIMER_INTERRUPT  is pending but the “I” bit in the 
Status Register is “0”. Thus, the interrupt is temporarily masked. 
 
The first command is a “step”, which executes the instruction directly before the “store”. If we were to 
execute another “step” command at this point, the “store” instruction would be executed. 
 
    > s 
    Done!  The next instruction to execute will be: 
    000E84: 6F120000       store   r1,[r2+r0] 
    > 
 
Instead of another “step”, we issue the “seti” command, which changes the Status Register. Now the 
interrupt is no longer masked and interrupt processing will occur next. 
 
    > seti 
    The I bit is now 1: Interrupts Enabled. 
    > 
 
Next, we issue a “step” command. No instruction is executed during this step cycle. Instead, the 
interrupt processing is initiated. 
 
    > s 
    Processing an interrupt and jumping into interrupt vector. 
    Done!  The next instruction to execute will be: 
                       TimerInterrupt: 
    000004: 08000000       reti     
    > 
 
In this program, TIMER_INTERRUPTs are dealt with by simply returning; no computation is 
necessary. Therefore, this program has previously loaded a return-from-interrupt instruction (“reti”) into 
the interrupt vector in low memory, instead of a jump to the interrupt handling routine, which might be 
more typical of an operating system. In this program, the interrupt handler effectively consists of this 
single “reti” instruction. 
 
Finally, we issue another “step” command. During this step cycle, the “reti” instruction is executed and 
control returns to the interrupted code. 
 
    > s 
    Done!  The next instruction to execute will be: 
    000E84: 6F120000       store   r1,[r2+r0] 
    >   
 
If we were to execute another “step” command at this point, the “store” instruction would be executed. 
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Coping with Errors During Emulation 
 
The BLITZ architecture describes how the BLITZ machine will respond to various instructions. 
Included in the BLITZ architecture is information about how various error conditions are handled. For 
example, an attempt to divide by zero will cause an Arithmetic Exception. Such an error will not 
interrupt the emulator. 
 
In fact, all interrupts, including asynchronous hardware interrupts and synchronous exceptions during 
instruction execution, will be processed as specified in the BLITZ architecture. Interrupts will not stop 
instruction emulation. 
 
However, there are several error conditions that the emulator will watch for. These primarily concern the 
I/O devices. For example, if the BLITZ program fails to fetch a character on the serial input before the 
next character arrives, this error will be caught by the emulator. Whenever the emulator catches an error, 
it will print an error message and immediately suspend instruction execution. The command loop will 
then be entered. 
 
The BLITZ architecture requires word alignment on word-length data. I considered requiring double-
word alignment for double-length data, just as many real machines do, but I decided not to require 
double alignment, since it complicates things. The presence of word alignment certainly gives the idea 
of alignment requirements, while having several flavors of alignment (e.g., halfword, word, double) 
adds little more than additional complexity. 
 
 
Probabilistic and Pseudorandom Behavior 
 
The BLITZ emulator includes the simulation of several asynchronous and probabilistic events. Most of 
the BLITZ architecture is deterministic, but things like interrupts will occur at random times. In 
addition, the emulator can simulate things like random disk read/write errors and statistical variation of 
timer interrupts. 
 
In order to simulate such asynchronous or probabilistic behavior, the emulator uses a random number 
generator to determine when asynchronous or probabilistic events are to occur. 
 
The random number generator supplies a sequence of pseudo-random numbers from an initial “random 
number seed”.  The emulator uses numbers from this sequence in determining when to generate 
asynchronous events, etc. Since all random numbers are pseudo-random, the emulator should run 
exactly identically each time, as long as the initial seed is identical. Even though probabilistic behavior 
is being simulated, the behavior of the emulator will be fully repeatable. This is useful in debugging 
BLITZ programs. 
 
To test the behavior of non-deterministic programs, you may supply a different random number seed 
when the emulator starts up. This will cause asynchronous events to be signaled at slightly different 
times. There is a default random seed which can be overridden with the “-r” command line option: 
 
    % blitz –r 123654 
 
Each time the emulator is run with the same random seed, the results should be identical. 
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Unfortunately, there is a second source of non-determinism, besides the random number generator. Input 
for the “serial I/O” device may come from either a file or directly from the user, via the keyboard. If the 
input comes from a file, each run of the emulator using the same seed will be identical; there can be no 
variation. However, if the input comes from the keyboard, then the program may execute differently 
from run to run, even though the random number seed is the same. This is because the timing of the 
serial input interrupts will be governed by the actual arrival times of input characters from the keyboard. 
The BLITZ program will continue to execute (like any real CPU) waiting until the input actually arrives. 
The exact timing of the interrupts will be dependent on the typing of input by the user. If the BLITZ 
program is well-behaved, the input will be handled correctly, independently of the precise timing of 
keystrokes, but if the program contains race conditions, its behavior may be non-repeatable. 
 
 
Emulating the BLITZ Input/Output Devices 
 
The BLITZ computer has two I/O devices. One is a serial I/O interface and the other is a disk. 
 
The serial I/O interface is used for communicating with a human user. The BLITZ emulator will emulate 
the serial I/O device by either getting input from the user (i.e., from “stdin”) or by getting input from a 
file. If a file is used, it is specified with a command line option when the emulator is first invoked. For 
example: 
 
    % blitz –i InFileName 
 
All output to the serial I/O device goes to “stdout”, unless it is re-directed with the “-o” command line 
option: 
 
    % blitz –o OutFileName 
 
Normally, the “-i” and “-o” options will not be used. Normally, the serial I/O will go directly to the 
terminal interface so the running BLITZ program will interact directly with the user. 
 
The BLITZ disk device is emulated using a file on the host computer. All disk reads and disk writes will 
be simulated by getting and putting data to this file. This file is named “DISK” by default, but a different 
name can be given using a command line option to the emulator: 
 
    % blitz –d DiskFileName 
 
 
Memory-Mapped I/O 
 
The BLITZ architecture has no instructions specifically for I/O.  Instead, the BLITZ machine 
communicates with various I/O devices using a technique called “memory-mapped I/O”. With this 
approach, a region of physical memory is set aside for sending data to and receiving data from the 
various I/O devices of the BLITZ machine. 
 
To send data to an external device, the CPU writes data into one of several special, predfined memory 
addresses.  Instead of storing the bits in physical memory, the data is passed through to one of the I/O 
devices as described below.  Likewise, to retrieve data from an external device, the CPU reads from one 
of several special, predefined memory locations.  Instead of fetching data from main memory, the I/O 
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device provides data.  Thus, the memory “load” and “store” commands may be used to interact with and 
control the external I/O devices. 
 
Currently, there are only two devices supported by the BLITZ emulator: a serial interface and a disk 
drive. 
 
Communication with the serial I/O device is through two memory addresses, called 
 
    SERIAL_STATUS_WORD 
    SERIAL_DATA_WORD 
 
Communication with the disk device is through four memory addresses, called 
 
    DISK_STATUS_WORD 
    DISK_COMMAND_WORD 
    DISK_MEMORY_ADDRESS_REGISTER 
    DISK_SECTOR_NUMBER_REGISTER 
 
The following constants describe where the memory-mapped region of memory is and where the various 
I/O addresses are located. (The values given here are the defaults. They may be changed by specifying 
different values in the “.blitzrc” file.) 
 
    MEMORY_MAPPED_AREA_LOW         0x00FFFF00 
    MEMORY_MAPPED_AREA_HIGH        0x00FFFFFF 
 
    SERIAL_STATUS_WORD_ADDRESS     0x00FFFF00 
    SERIAL_DATA_WORD_ADDRESS       0x00FFFF04 
 
    DISK_STATUS_WORD_ADDRESS       0x00FFFF08 
    DISK_COMMAND_WORD_ADDRESS      0x00FFFF08 
    DISK_MEMORY_ADDRESS_REGISTER   0x00FFFF0C 
    DISK_SECTOR_NUMBER_REGISTER    0x00FFFF10 
    DISK_SECTOR_COUNT_REGISTER     0x00FFFF14 
 
Sometimes, these special, predefined memory-mapped I/O addresses are called “registers”, although 
they are quite different from any CPU registers.  Also note that the same address may be used for an 
input address and for an output address.  (This is the case for DISK_STATUS_WORD_ADDRESS and 
DISK_COMMAND_WORD_ADDRESS.) 
 
The memory-mapped region of physical memory is the range of addresses from 
MEMORY_MAPPED_AREA_LOW to MEMORY_MAPPED_AREA_HIGH, inclusive. Normally it is 
256 bytes, as shown above. 
 
All addresses in the memory-mapped region besides those mentioned above for the serial I/O device and 
the disk device are unassigned and should not be used. Any attempt to load or store from those addresses 
will be caught by the emulator. An error message will be printed and instruction emulation will be 
suspended. 
 
Note that these constants are shared by both the emulator and the program being emulated. A change to 
one of these values would require a change to both the BLITZ emulator as well as the BLITZ program 
itself. 
 
 



 The Emulator 

September 18, 2007  Page F-26 

The Serial I/O Device 
 
The BLITZ computer includes a serial I/O device, which allows BLITZ programs to communicate with 
the outside world via a two-way, asynchronous stream of bytes. The serial device is also referred to as 
the “terminal” device. 
 
The serial I/O interface is intended to be a simplified model of a typical interface to a standard UART 
serial interface chip, which in turn interfaces to something like an RS-232 terminal or modem port. 
 
The serial I/O interface might be connected to either a display terminal (such as an old-fashioned 
teletype terminal, which transmits and receives ASCII characters, one-by-one), or to a modem, or to an 
RS-232 type serial interface. With the BLITZ emulator, the serial I/O interface is connected to either the 
terminal you are using (e.g., Unix “stdin” and “stdout”) or to a file (using the –i and –o options on the 
emulator command line). By using stdin and stdout, you can communicate with a running BLITZ 
program simply by typing on the terminal. 
 
The serial I/O interface is asynchronous and two-way, which means that bytes may be transmitted in 
either direction simultaneously, with no timing connection between the input and output flows. 
 
The communication is through two memory-mapped registers, called  
 
    SERIAL_STATUS_WORD 
    SERIAL_DATA_WORD 
 
At any moment, the serial I/O device is either busy sending a character or not, and it is busy receiving a 
character or not. To determine the status of the device, a BLITZ program may read from the 
SERIAL_STATUS_WORD location in memory. The word retrieved will have this format: 
 
      byte 1      byte 2      byte 3      byte 4 
    ==== ====   ==== ====   ==== ====   ==== ==== 
    0000 0000   0000 0000   0000 0000   0000 00RA 
 
    R = OutputReady bit (1=ready, 0=not ready) 
    A = CharacterAvailable bit (1=available, 0=not available) 
 
When the device is ready and capable of sending a new character to the terminal, the OutputReady bit 
will be 1. To start the transmission of a character to the terminal, the BLITZ program should write a 
word to the SERIAL_DATA_WORD. The least significant byte of this word should contain a byte of 
data, which will normally be an ASCII character. (The remaining bytes in word are ignored.) The 
OutputReady bit will change to a zero, and the character will be transmitted. The transmission is not 
instantaneous, but is in fact a rather slow process, so the OutputReady bit will stay zero for some time. 
Later, after the transmission is completed, the device will become ready to receive another character for 
transmission, and the OutputReady bit will once again change to 1. 
 
From time-to-time keys may be pressed on the keyboard (or bytes will be received on the serial I/O 
interface). Each time a key is pressed, the CharacterAvailable bit will change to 1. The BLITZ program 
may then get the character by reading from the SERIAL_DATA_WORD. Whenever the BLITZ 
program reads the SERIAL_DATA_WORD, the CharacterAvailable bit will change to 0. It is the 
BLITZ program’s responsibility to retrieve the characters from the SERIAL_DATA_WORD in a timely 
way; if the data is not retrieved, it will be lost when the next character comes in from the keyboard. (It is 
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not an error to re-read from the SERIAL_DATA_WORD, before CharacterAvailable becomes true 
again for the next character.) 
 
Every time a transmission is completed and the OutputReady bit is changed to 1, a SerialInterrupt will 
occur. Also, every time a character reception is completed and the CharacterAvailable bit is changed to 
1, a SerialInterrupt will occur. (However, when these bits are changed to zero, there will be no 
interrupt.) The BLITZ program may read from the SERIAL_STATUS_WORD as often as desired to 
check the state of the bits. The program should never write to the SERIAL_STATUS_WORD. 
 
The emulator checks for several errors that may occur regarding the proper operation of the serial I/O 
device. If the BLITZ program writes to the SERIAL_STATUS_WORD, an error message will be 
displayed and instruction execution will be suspended immediately. If the BLITZ program attempts to 
send a character to the terminal (by writing to the SERIAL_DATA_WORD) before the terminal is ready 
to display the next character (i.e., while OutputReady is false), an error message will be displayed and 
instruction execution will be suspended immediately. If a character is input (i.e., a key is pressed), 
before the previous input character was retrieved (i.e., before the BLITZ program has read from the 
SERIAL_DATA_WORD), then an error message will be displayed and instruction execution will be 
suspended immediately. 
 
 
Echoing and Buffering of Raw and Cooked Serial Input 
 
With an operating system such as Unix, some rather complex processing is done on character input and 
output to a terminal. For example, whenever the user hits a key on the keyboard, the character is 
normally echoed by Unix and then simply added to a buffer area. The characters in the buffer are 
accumulated as they are typed, but are not given to the user-level program until the user hits the ENTER 
key. Then, the entire line of characters is given to the user-level program all at once. 
 
Unix also handles several control characters specially. For example, when the user hits the backspace 
key, Unix will send characters to the terminal to back up the cursor, display a blank to over-write the 
previous character, and finally reposition the cursor. 
 
When the user hits the ENTER key, many terminals will transmit the ASCII “CR” character, not the 
ASCII “NL” character to the computer. Recall that the CR and NL characters are different. 
 
               ASCII name   C notation   Hex value   Decimal value 
               ==========   ==========   =========   ============= 
    “newline”     NL (or LF)   ‘\n’         0A           10 
    “return”      CR           ‘\r’         0D           13 
 
Unix generally echoes the CR character with two characters: the CR followed by the NL. Then, an NL 
character is added to the buffer, instead of the CR character which was actually received. 
 
With Unix, all of this processing is completely configurable, making it possible to use many different 
types of terminal, each with slightly different behaviors, while not requiring any change to user-level 
programs. For example, all programs expect lines to end with NL, even though some terminals may send 
different characters when the ENTER key is pressed. 
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When the BLITZ emulator uses “stdin” and “stdout” for the serial I/O device, the emulator may run in 
either of two modes: “raw” or “cooked”. The default is “cooked” mode, but you may switch the 
emulator between modes with the “raw” and “cooked” commands. 
 
    > raw 
    Future terminal input will be "raw". 
    > cooked 
    Future terminal input will be "cooked". 
    >  
 
You may also use the command line option “-raw” to put the emulator in “raw” mode. This is 
particularly useful when running with the “auto-go” command line option. 
 
Raw mode is intended to allow the emulator to function more exactly like a real computer. All buffering, 
echoing, and special processing of certain control characters is left to the BLITZ program. The Unix I/O 
processing is turned off and the emulator simply passes the keystrokes through to the BLITZ serial I/O 
device. The BLITZ program must perform all buffering, echoing, and special processing required. If the 
BLITZ program fails to echo characters, it may appear that your computer is dead, since it does not 
seem to respond to keystrokes. Also, the BLITZ program must deal with any differences in different  
types of terminals. The terminal you are using may supply a “CR”, an “LF”, or some other character 
when ENTER is pressed; the BLITZ program must be able to handle each. The bottom line is that this 
puts a lot of extra work on the BLITZ program. 
 
In “cooked” mode, the emulator runs like most normal Unix user-level programs, making use of all the 
special terminal configuration software included in Unix. This allows you to use whichever terminal you 
use normally, without having to put terminal-specific code into your BLITZ program. Whenever you 
type input to be supplied to the BLITZ serial I/O interface, it is buffered, echoed, and processed by Unix 
first. For example, you may correct typing errors with the backspace key and the BLITZ program will 
see only the corrected data. In cooked mode, you must type a full line, followed by ENTER before the 
BLITZ program will see any characters at all. The BLITZ program will always sees a single NL 
character at the end of every line of input. 
 
To accurately model a real OS, your BLITZ program should echo all characters received on the serial 
input. When you are using cooked input, this has the effect of causing a double echoing of input: First 
the Unix terminal drivers will echo the characters as you type them. Then, at the end of the line when 
you type ENTER, all characters will be supplied one at a time to the serial I/O device, and the BLITZ 
program will then (presumably) echo each character. Thus, the line just entered will be redisplayed a 
second time, if the BLITZ program is echoing its input properly. 
 
When debugging programs that process serial input using interrupts, it is useful to be able to control 
exactly which characters are read from the serial device. However, it is difficult to type input to the 
BLITZ computer while also entering commands to the emulator. To alleviate this problem, you may use 
the “input” command, which allows you to type ahead several characters, which will be supplied to the 
serial interface when it is ready. 
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    > input 
    The following characters will be supplied as input to the BLITZ serial 
    input before querying the terminal: 
      "" 
    You may add to this type-ahead buffer now. 
    The terminal is now in "cooked" mode. 
    Enter characters followed by control-D... 
    abc 
    def 
    ^D 
    The following characters will be supplied as input to the BLITZ serial 
    input before querying the terminal: 
      "abc\ndef\n" 
    > 
 
To determine the status of the serial I/O device, the “io” command may be used. This command displays 
information about the serial device, the disk device, and some information about the status of the CPU. 
 
    > io 
    ==========  Serial I/O  ========== 
      Output Status:       Ready 
      Input Status:        Character Not Available 
      Current Input Char:  '\0'    (already fetched by CPU) 
        The following characters are currently in the type-ahead buffer: 
          "abc\ndef\n" 
      Input coming from: stdin 
        Input Mode: Cooked 
    ==========  Disk I/O  ========== 
    ... 
    > 
 
 
The “wait” Instruction 
 
The BLITZ architecture includes an instruction called “wait”.  This instruction will suspend further 
instruction execution and the CPU will go into a low-power wait/sleep state. The only thing that will 
cause instruction execution to resume is an interrupt. If no interrupts occur the CPU will remain forever 
dormant. 
 
How does the emulator handle the “wait” instruction?  When does the emulator suspend emulation and 
return to the command interface? 
 
The emulator handles the “wait” instruction as follows:  If there is disk activity that is not yet complete 
or serial output activity that is not yet complete, then the emulator will continue until the activity is 
completed. Otherwise,  the emulator may suspend emulation, depending on the status of the serial input. 
 
If serial input is coming from “stdin” and interrupts are enabled, then the emulator will wait for user 
input and then will continue execution by signaling an interrupt. If serial input is coming from “stdin” 
but interrupts are disabled, then the emulation will halt. If input is coming from a file and we have 
reached the end of file, then emulation will halt. Otherwise, if there is more left in the input file, 
emulation will continue. 
 
Note that the emulator will ignore timer interrupts in determining whether to halt emulation. There will 
always be another timer interrupt, so timer interrupts would keep emulation going forever and emulation 
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would never halt if the emulator paid attention to timer events. In other words, if execution is suspended 
on a “wait” instruction and the only thing that could cause an interrupt is a timer event, then emulation 
will be suspended. 
 
(Note that this may cause difficulties in certain kinds of programs. Imagine a program that simply counts 
timer interrupts in order to wait a certain amount of time, and then prints a message after (say) 10 
interrupts. The program begins by initializing a counter then performs a “wait”. This program will not be 
emulated correctly, since the emulator will suspend emulation after the “wait” is encountered.) 
 
 
The Disk Device 
 
A BLITZ computer includes a disk drive, and the BLITZ emulator simulates a virtual disk drive. 
 
Real disk drives store bytes in sectors. For example a sector might have 8K bytes. The sector is the 
minimum unit of data transfer. The main operations are “read a sector” and “write a sector”. Sectors are 
arranged in tracks. Each track traces out a concentric circle on a rotating magnetic platter. 
 
Generally a disk has several platters rotating together on one axis. Consequently, tracks are arranged in 
cylinders. For example, a disk with 5 platters and a read/write head on each side of each platter would 
have 10 tracks per cylinder, All 10 of the read/write heads are attached to a single, comb-like arm, so all 
10 heads move together. To read any sector within a single cylinder, no arm movement is necessary if 
the arm is already positioned on the correct cylinder. 
 
To read or write a sector, the read-write heads must be moved to the correct cylinder. This is called the 
“seek time”. The seek involves physically moving the arm, the time of which is proportional to the 
length moved. After the movement, a “settle” time occurs, during which the vibrations in the arm 
created by the movement die out. In addition, the disk platter is constantly rotating, so an additional 
delay involves waiting until the desired sector comes under one of the read/write heads. This is called 
the “rotational delay”. Finally, the data is transferred at a constant rate determined by how fast the disk 
is spinning. This is called the “transfer time” or “transfer rate” and is measured in bytes per second. 
 
Often disks are described using “transfer rate” and “average access time”.  The “access time” is the sum 
of the seek time, the settle time, and the rotational delay, and will vary from operation to operation 
depending on where the disk heads are before the operation.  
 
In the virtual disk provided by the BLITZ emulator, things are simplified. First, there is only one platter 
and only one side is used; in other words, there is just one track per cylinder. Consequently, we view the 
disk as an integral number of tracks. Each track contains a number of sectors, numbered from zero up to 
some maximum sector number, given by SECTORS_PER_TRACK. 
 
The size of each sector is identical to the page size in the machine, which is 8K bytes (i.e., 8192 bytes). 
 
The actual disk data is kept in a separate file on the host system. Normally, this file is named “DISK” 
and is opened when the BLITZ emulator begins. The size of the virtual disk will be an integral number 
of tracks. The actual number of tracks will be determined based on the size of the DISK file, when the 
emulator starts up. A different filename (other than “DISK”) may be specified with the “-d filename” 
command line option to the BLITZ emulator. 
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The DISK file can be created using an emulator command called “format”. The format command will 
ask for the desired number of tracks. It will then create and initialize the file. This command can also be 
used to change the size of the file. 
 
The format of data stored in the DISK file should not be of concern to the BLITZ programmer, but it 
consists of a 4 byte “magic number” at the beginning of the file, followed by N sectors of data bytes. 
Thus, it has the following format: 
 
    Size  Description 
    ====  =============================================== 
      4   Magic number 0x53504B64 (ASCII code for "BLZd") 
    8192  Sector 0 
    8192  Sector 1 
    8192  Sector 2 
       ... 
    8192  Sector K-1 
 
We can summarize the virtual disk as follows: 
 
    Filename:                    "DISK" 
    Number of Tracks per Disk:    <variable> 
    Number of Sectors per Track: 16 
    Number of Bytes per Sector:  8K (8192 bytes) 
 
We can measure the size of the disk in tracks: 
 
    NUMBER_OF_TRACKS 
 
or in sectors: 
 
    NUMBER_OF_SECTORS = NUMBER_OF_TRACKS * SECTORS_PER_TRACK 
 
or in bytes: 
 
    NUMBER_OF_BYTES = NUMBER_OF_SECTORS * BYTES_PER_SECTOR 
 
For example, a typical DISK file might have the following size: 
 
    NUMBER_OF_TRACKS = 100 
    NUMBER_OF_SECTORS = 1,600 
    NUMBER_OF_BYTES = 13,107,200 
 
The sectors on the disk are number from 0 up to the maximum: 
 
    0, 1, 2, ... , NUMBER_OF_SECTORS-1 
 
The basic operations that the BLITZ programmer can do are: 
 
    Read K Sectors into Memory 
    Write K Sectors from Memory 
 
The disk is controlled by reading and writing the following memory-mapped I/O registers. Each is a 32-
bit word in the memory-mapped I/O region of physical memory. 
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    DISK_STATUS_WORD 
    DISK_COMMAND_WORD 
    DISK_MEMORY_ADDRESS_REGISTER 
    DISK_SECTOR_NUMBER_REGISTER 
    DISK_SECTOR_COUNT_REGISTER 
 
The disk is either busy reading or writing, or is free and available. The DISK_STATUS_WORD may be 
read at any time. The following values indicate the status of the disk and the result of the last disk 
operation. 
 
    DiskBusy                      0x00000000 
    OperationCompletedOK          0x00000001 
    OperationCompletedWithError1  0x00000002 
    OperationCompletedWithError2  0x00000003 
    OperationCompletedWithError3  0x00000004 
    OperationCompletedWithError4  0x00000005 
    OperationCompletedWithError5  0x00000006 
 
The following commands may be written to the DISK_COMMAND_REGISTER: 
 
    DiskReadCommand   0x00000001 
    DiskWriteCommand  0x00000002 
 
The “read” operation will transfer 1 or more sectors from the disk into memory. To perform a read 
operation, the BLITZ program must take the following steps. 
 
First, the DISK_SECTOR_NUMBER_REGISTER, DISK_SECTOR_COUNT_REGISTER and the 
DISK_MEMORY_ADDRESS_REGISTER must be loaded (in any order). Then the program must 
move the “DiskReadCommand” to the DISK_COMMAND_WORD. 
 
The number of sectors to be transferred must be placed in the DISK_SECTOR_COUNT_REGISTER. 
This should be between 1 and NUMBER_OF_SECTORS. The sector from the disk should then be 
loaded into the DISK_SECTOR_NUMBER_REGISTER. This number must be between 0 and 
NUMBER_OF_SECTORS-1. It is an error to attempt to read or write beyond the end of the disk. The 
DISK_MEMORY_ADDRESS should be loaded with the physical memory address into which to place 
the data. It is an error to attempt transfer data to/from any address which is not in physical memory. In 
addition, you may not transfer data to/from any address in the memory-mapped I/O area. 
 
After the command has been issued, the disk will become busy for some time. When the operation is 
finished, the status will change to either “Operation Completed OK” or “Operation Completed with 
Error”. 
 
The “write” operation is very similar to the “read” operation: First, the following registers should be 
loaded: 
 
    DISK_MEMORY_ADDRESS_REGISTER 
    DISK_SECTOR_NUMBER_REGISTER 
    DISK_SECTOR_COUNT_REGISTER 
 
in any order. Then the “DiskWriteCommand” command should be written to the 
DISK_COMMAND_WORD. The disk will be busy while the data is moved from the memory to the 
disk. Then the disk status will change to “Operation Completed OK” or “Operation Completed with 
Error”. 
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After issuing a DiskReadCommand or a DiskWriteCommand, the disk will become busy for a while. 
When the operation completes (either normally or with an error), a DiskInterrupt will occur and the disk 
status will change to OperationCompletedOK or OperationCompletedWithError. 
 
The following are considered errors and will result in the DISK_STATUS_WORD being 
“OperationCompletedWithError”. The status will remain unchanged until the next “read” or “write” 
operation is initiated (i.e., until the DISK_COMMAND_WORD is written to). 
 
(Error 1)  The MEMORY_ADDRESS_REGISTER is not aligned on a memory page boundary. The last 
13 bits of the REGISTER should always be zeros. Also, the SECTOR_COUNT_REGISTER is not 
positive. 
 
(Error 2)  The MEMORY_ADDRESS_REGISTER and length specification include memory addresses 
that are not legal physical addresses or that are in the memory-mapped I/O area. 
 
(Error 3)  The DISK_SECTOR_NUMBER_REGISTER and length specification include a sector that is 
not between 0 and NUMBER_OF_SECTORS-1. 
 
(Error 4)  The DISK had some sort of a I/O error. This could be a “soft error”, in which case the 
operation will succeed if re-tried, or it could be a “hard error”, in which case the operation will never 
succeed if re-tried. It is assumed that the disk controller itself has re-tried the operation a few times. 
Therefore, any errors reported here can be assumed to be “hard” errors. It is better for the BLITZ 
program to print a message for the user and give up when I/O errors occur. Perhaps the user can correct 
the error (e.g., by reconnecting a disk cable) and re-try the operation later. 
 
In a real disk, each sector is written with a header and trailer, and error-checking codes are computed 
and written on the disk, in addition to the actual data bytes. In a most disk drives, headers and trailers are 
handled entirely by the disk controller, not by the CPU. The BLITZ system emulates such an approach, 
assuming headers and trailers are handled by the device controller. Consequently the details of the 
header, trailer, and error-checking codes are not specified. The BLITZ program only needs to concern 
itself with the actual bytes of data, not with headers, trailers, or error-checking codes. 
 
Several things can go wrong during a disk operation and there can be “soft” or “hard” errors during and 
disk operation. For example, a disk read operation may have a failure in the error-checking process; this 
would be a soft error, since it will generally disappear upon a re-try. Or the disk may be disconnected or 
the power may be turned off, which would be a hard error. 
 
(Error 5)  Invalid Command Word. The program has attempted to store something besides 
DiskReadCommand or DiskWriteCommand into the command register. 
 
In addition to checking for the errors listed above, the BLITZ emulator also performs additional error 
checking on the use of the disk device by the BLITZ program. The emulator checks to make sure that 
the DISK_SECTOR_NUMBER_REGISTER, DISK_MEMORY_ADDRESS_REGISTER, and 
DISK_SECTOR_COUNT_REGISTER are each loaded exactly once before each read or write 
operation. It also checks to make sure that bytes in the memory buffer being transferred to or from disk 
are not accessed by the CPU while the disk operation is still in progress. If any errors like this are 
detected, a message is displayed and BLITZ instruction execution is immediately suspended. 
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When a DISK file is created or enlarged by the “format” command, the data in the file must be 
initialized. The “format” command will initialize all new sectors with ASCII character data giving the 
sector number. The data will consist of a pattern of repeating characters. For example, assume that a 
DISK file with just 1 track (16 sectors) is created. Here is how the file would be initialized: 
 
    00000000:  5350 4B64  3C2D 2D2D  4245 4749  4E4E 494E    BLZd<---BEGINNIN 
    00000010:  4720 4F46  2053 4543  544F 522D  2D2D 2D2D    G OF SECTOR----- 
    00000020:  2D2D 2D2D  2D2D 2D2D  2D2D 6469  736B 2073    ----------disk s 
    00000030:  6563 746F  7220 3030  3030 3030  2064 6973    ector 000000 dis 
    00000040:  6B20 7365  6374 6F72  2030 3030  3030 3020    k sector 000000  
    00000050:  6469 736B  2073 6563  746F 7220  3030 3030    disk sector 0000 
    00000060:  3030 2064  6973 6B20  7365 6374  6F72 2030    00 disk sector 0 
    00000070:  3030 3030  3020 6469  736B 2073  6563 746F    00000 disk secto 
    00000080:  7220 3030  3030 3030  2064 6973  6B20 7365    r 000000 disk se 
    00000090:  6374 6F72  2030 3030  3030 3020  6469 736B    ctor 000000 disk 
    000000A0:  2073 6563  746F 7220  3030 3030  3030 2064     sector 000000 d 
    000000B0:  6973 6B20  7365 6374  6F72 2030  3030 3030    isk sector 00000 
    000000C0:  3020 6469  736B 2073  6563 746F  7220 3030    0 disk sector 00 
    000000D0:  3030 3030  2064 6973  6B20 7365  6374 6F72    0000 disk sector 
    000000E0:  2030 3030  3030 3020  6469 736B  2073 6563     000000 disk sec 
    000000F0:  746F 7220  3030 3030  3030 2064  6973 6B20    tor 000000 disk  
    00000100:  7365 6374  6F72 2030  3030 3030  3020 6469    sector 000000 di 
    00000110:  736B 2073  6563 746F  7220 3030  3030 3030    sk sector 000000 
    00000120:  2064 6973  6B20 7365  6374 6F72  2030 3030     disk sector 000 
      ... 
    00001FA0:  3020 6469  736B 2073  6563 746F  7220 3030    0 disk sector 00 
    00001FB0:  3030 3030  2064 6973  6B20 7365  6374 6F72    0000 disk sector 
    00001FC0:  2030 3030  3030 3020  6469 736B  2073 6563     000000 disk sec 
    00001FD0:  746F 7220  3030 3030  3030 2D2D  2D2D 2D2D    tor 000000------ 
    00001FE0:  2D2D 2D2D  2D2D 2D2D  2D2D 2D2D  2D2D 2D2D    ---------------- 
    00001FF0:  2D2D 2D45  4E44 204F  4620 5345  4354 4F52    ---END OF SECTOR 
    00002000:  2D2D 2D3E  3C2D 2D2D  4245 4749  4E4E 494E    ---><---BEGINNIN 
    00002010:  4720 4F46  2053 4543  544F 522D  2D2D 2D2D    G OF SECTOR----- 
    00002020:  2D2D 2D2D  2D2D 2D2D  2D2D 6469  736B 2073    ----------disk s 
    00002030:  6563 746F  7220 3030  3030 3031  2064 6973    ector 000001 dis 
    00002040:  6B20 7365  6374 6F72  2030 3030  3030 3120    k sector 000001  
    00002050:  6469 736B  2073 6563  746F 7220  3030 3030    disk sector 0000 
    00002060:  3031 2064  6973 6B20  7365 6374  6F72 2030    01 disk sector 0 
      ... 
    0001FF10:  6563 746F  7220 3030  3030 3135  2064 6973    ector 000015 dis 
    0001FF20:  6B20 7365  6374 6F72  2030 3030  3031 3520    k sector 000015  
    0001FF30:  6469 736B  2073 6563  746F 7220  3030 3030    disk sector 0000 
    0001FF40:  3135 2064  6973 6B20  7365 6374  6F72 2030    15 disk sector 0 
    0001FF50:  3030 3031  3520 6469  736B 2073  6563 746F    00015 disk secto 
    0001FF60:  7220 3030  3030 3135  2064 6973  6B20 7365    r 000015 disk se 
    0001FF70:  6374 6F72  2030 3030  3031 3520  6469 736B    ctor 000015 disk 
    0001FF80:  2073 6563  746F 7220  3030 3030  3135 2064     sector 000015 d 
    0001FF90:  6973 6B20  7365 6374  6F72 2030  3030 3031    isk sector 00001 
    0001FFA0:  3520 6469  736B 2073  6563 746F  7220 3030    5 disk sector 00 
    0001FFB0:  3030 3135  2064 6973  6B20 7365  6374 6F72    0015 disk sector 
    0001FFC0:  2030 3030  3031 3520  6469 736B  2073 6563     000015 disk sec 
    0001FFD0:  746F 7220  3030 3030  3135 2D2D  2D2D 2D2D    tor 000015------ 
    0001FFE0:  2D2D 2D2D  2D2D 2D2D  2D2D 2D2D  2D2D 2D2D    ---------------- 
    0001FFF0:  2D2D 2D45  4E44 204F  4620 5345  4354 4F52    ---END OF SECTOR 
    00020000:  2D2D 2D3E                                     ---> 
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The “io” Command 
 
The current status of the serial I/O device and the disk device can be seen with the “io” command. For 
example: 
 
    > io 
    ==========  Serial I/O  ========== 
      Output Status:       Ready 
      Input Status:        Character Not Available 
      Current Input Char:  '\0'    (already fetched by CPU) 
        The following characters are currently in the type-ahead buffer: 
          "" 
      Input coming from: stdin 
        Input Mode: Cooked 
    ==========  Disk I/O  ========== 
      The file used for the disk: "DISK" 
        DISK File is currently opened. 
      Disk size: 
        Total Tracks = 3 
        Total Sectors = 48 
        Sectors per track = 16 
      Current Status: 
        Positioned at Sector = 0 
        Current Disk Status  = OPERATION_COMPLETED_OK 
        Future Disk Status   = OPERATION_COMPLETED_OK 
      Area of memory being read from / written to: 
        diskBufferLow  = 0x00000000 
        diskBufferHigh = 0x00000000 
      Memory-Mapped Register Contents: 
        DISK_MEMORY_ADDRESS_REGISTER = 0x00000000 
        DISK_SECTOR_NUMBER_REGISTER  = 0x00000000 
        DISK_SECTOR_COUNT_REGISTER   = 0x00000000 
      Number of Disk Reads  = 0 
      Number of Disk Writes = 0 
    ============================== 
      CPU status: 
        Interrupts:   Disabled 
        Mode:         System 
        Pending Interrupts: 
          TIMER_INTERRUPT 
      Time of next timer event........ 1001 
      Time of next disk event......... 2147483647 
      Time of next serial in event.... 0 
      Time of next serial out event... 2147483647 
        Current Time.................. 0 
        Time of next event............ 0 
    ============================== 
    > 
 
The I/O devices are activated by reading and writing words in the “memory-mapped” region of physical 
memory. 
 
You can do this from the command line in the emulator using the “read” and “write” commands. For 
example, you can retrieve the status of the serial I/O device by reading from the 
SERIAL_STATUS_WORD (at address 0x00ffff00) as follows: 
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    > read 
    This command can be used to read a word of memory that is in the 
        memory-mapped I/O region, retrieving I/O device status or data. 
    Enter the (physical) memory address in hex of the word to be 
    read from: ffff00 
    Reading word...   address = 0xFFFF00    value = 0x00000002 
    > 
 
The value is “0x00000002”, which indicates that the output is ready to receive a character but that no 
character is available on the input. 
 
You can write a value to a memory-mapped word using the “write” command. If we write to the 
SERIAL_DATA_WORD (i.e., address 0x00ffff04), it will cause a character to be written. In the 
following example, we write a word containing the ASCII code for the letter “a”, which is 0x61. Notice 
that there is an “a” printed out immediately. 
 
      > write 
      This command can be used to write to a word of memory that is in the 
        memory-mapped I/O region, sending data or commands to the I/O device. 
      Enter the (physical) memory address in hex of the word to be 
      written to: ffff04 
      Enter the new value (4 bytes in hex): 00000061 
      aWriting word...   address = 0xFFFF04    value = 0x00000061 
      >  
 
 
The “.blitzrc” File: Changing Emulation Parameters 
 
There are a number of simulation parameters that may be changed. The parameters that can be changed 
are listed below, along with their default values. 
 
    KEYBOARD_WAIT_TIME                30000 
    KEYBOARD_WAIT_TIME_VARIATION        100 
    TERM_OUT_DELAY                      100 
    TERM_OUT_DELAY_VARIATION             10 
    TIME_SLICE                         5000 (0=no timer interrutps) 
    TIME_SLICE_VARIATION                 30 
    DISK_SEEK_TIME                    10000 
    DISK_SETTLE_TIME                   1000 
    DISK_ROTATIONAL_DELAY               100 
    DISK_ACCESS_VARIATION                10 
    DISK_READ_ERROR_PROBABILITY         500 (0=never,1=always,n="about 1/n") 
    DISK_WRITE_ERROR_PROBABILITY        500 (0=never,1=always,n="about 1/n") 
    INIT_RANDOM_SEED             1829742401 
    MEMORY_SIZE                  0x01000000 (decimal: 16777216) 
    MEMORY_MAPPED_AREA_LOW       0x00FFFF00 
    MEMORY_MAPPED_AREA_HIGH      0x00FFFFFF 
    SERIAL_STATUS_WORD_ADDRESS   0x00FFFF00 
    SERIAL_DATA_WORD_ADDRESS     0x00FFFF04 
    DISK_STATUS_WORD_ADDRESS     0x00FFFF08 
    DISK_COMMAND_WORD_ADDRESS    0x00FFFF08 
    DISK_MEMORY_ADDRESS_REGISTER 0x00FFFF0C 
    DISK_SECTOR_NUMBER_REGISTER  0x00FFFF10 
    DISK_SECTOR_COUNT_REGISTER   0x00FFFF14 
 
When the emulator starts up, it looks to see if a file named “.blitzrc” exists. If it does not, then the 
default values are used. If “.blitzrc” is found, then it will contain values which are read in and used 
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instead of the defaults. (The emulator will also re-read the “.blitzrc” file when the “reset” command is 
issued.) 
 
The emulator command “sim” can be used to view the current settings, and produces a display like the 
list above. The “sim” command may also be used to create a new “.blitzrc” file; this is convenient since 
the user can then edit the file to modify one or two of the values as necessary. 
 
The “sim” command will ask if you wish to create a new “.blitzrc” file. If you say “yes”, then it will 
write out a new file using the current values. Here is what the “sim” command looks like: 
 
    > sim 
    ====================  Simulation Constants  ========================= 
      KEYBOARD_WAIT_TIME                 30000 
      KEYBOARD_WAIT_TIME_VARIATION         100 
        ... 
      DISK_SECTOR_NUMBER_REGISTER   0x00FFFF10 
      DISK_SECTOR_COUNT_REGISTER    0x00FFFF14 
    ===================================================================== 
 
    The simulation constants will be read in from the file ".blitzrc" 
    if it exists when the emulator starts up.  If the file does not 
    exist at startup, defaults will be used.  You may edit the ".blitzrc" 
    file to change the values and then restart the emulator. 
 
    Would you like me to write these values out to the file ".blitzrc" now?  
 
If the user answers “yes”, then a file will be created. The file will look like this: 
 
    ! BLITZ Simulation Constants 
    ! 
    ! This file is read by the BLITZ emulator when it starts up and after a 
    ! "reset" command.  This file is used to initialize various values that 
    ! will be used by the emulator. 
    ! 
    ! This file was produced by the emulator (with the "sim" command). It may 
    ! be edited to change any or all values. 
    ! 
    ! Each line has variable name followed by an integer value.  A value may 
    ! be specified in either decimal (e.g., "1234") or hex (e.g., 
    ! "0x1234abcd").  Values may be left out if desired, in which case a 
    ! default will be used.  In the case of the random seed, any value 
    ! specified here will override a value given with a command line 
    ! option (-r). 
    ! 
    ! 
    KEYBOARD_WAIT_TIME                 30000 
    KEYBOARD_WAIT_TIME_VARIATION         100 
      ... 
    DISK_SECTOR_NUMBER_REGISTER   0x00FFFF10 
    DISK_SECTOR_COUNT_REGISTER    0x00FFFF14 
 
 
The Page Table Commands 
 
At any time, these two BLITZ registers describe a page table: 
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    PTBR: Page Table Base Register 
    PTLR: Page Table Length Register 
 
The “pt” command will print out the current page table. It will use the current values of these registers to 
find the bytes in memory and will then interpret them as a page table. 
 
Here is an example of the “pt” command. 
 
    > pt 
      Page Table: 
        base   (PTBR) = 0x00001000 
        length (PTLR) = 0x0000000C 
        This table describes a logical address space with 0x00006000 
                                     (decimal 24576) bytes (i.e., 3 pages) 
 
        addr      entry        Logical  Physical  Undefined Bits  Dirty 
      ========   ========     ========  ========  ==============  ===== 
      00001000:  00344003     00000000  00344000       000          0 
      00001004:  00346007     00002000  00346000       000          0 
      00001008:  0036200F     00004000  00362000       000          1 
 
                                              Referenced  Writeable  Valid 
                                              ==========  =========  ===== 
                                                  0           1        1 
                                                  1           1        1 
                                                  1           1        1 
    > 
 
The “pt” command prints out a single line for each page table entry. In this example, the table has 3 
entries. (In this document, the display will not fit on one line and it is has been reformatted to fit the 
available space.) 
 
The format and operation of the page table entries is described in the BLITZ architecture document. 
 
For each page table entry, the “pt” command displays the actual 4 byte entry under the heading “entry”. 
On the same line, the command also displays the interpretation of these bits under the headings 
“Logical”, “Physical”, “Undefined Bits”, “Dirty”, “Referenced”, “Writeable”, and “Valid”. 
 
Occasionally it is useful to see how some particular logical (or “virtual”) address will be interpreted 
using the current page table. The “trans” command can be used for this. 
 
The “trans” command will ask for a logical address. It will then consult the page table to determine 
which physical address will be accessed. When the page table is used during program execution, it may 
be updated. The “trans” command will ask whether or not you wish to update the page table. Exceptions 
may also occur, and the “trans” command will ask whether you wish to cause a excecption. 
 
Here is an example of the “trans” command. First, we use the “setp” command to turn on page table 
translation. 
 
    > setp 
    The P bit is now 1: Paging Enabled. 
    Next instruction to execute will be: 
    344000: 00000000       nop 
 



 The Emulator 

September 18, 2007  Page F-39 

Next, we issue the “trans” command. We supply a virtual address of 0x000468. We are interested in 
reading this word, without update, so we answer “yes” to the question about “read-only”. Such an 
operation would set the “Referenced” bit, but would not set the “Dirty” bit. However, we do not want to 
actually modify the page table, so we answer “no” to the last question. 
 
    > trans 
    Please enter a logical address: 468 
    Will this be a read-only operation (y/n)? y 
    After figuring out the affect of this memory access, do you want me to 
    update the page table and signal exceptions, if any, as if this 
    operation were performed (y/n)? n 
    Calling: 
        translate (logicalAddr=0x00000468, reading=TRUE, 
                            wantPrinting=TRUE, doUpdates=FALSE) 
    *****  PAGE TRANSLATION BEGINNING  ***** 
       Logical address             = 0x00000468 
         Page Number               = 0x00000000 
         Offset into page          = 0x00000468 
       Status[P] = 1, Paging is turned on 
       Page Table: 
                base               = 0x00001000 
                length             = 0x0000000C 
                addr of last entry = 0x00001008 
       Page number (shifted)       = 0x00000000 
       Address of page table entry = 0x00001000 
       Page table entry            = 0x00344003 
           Frame number = 0x00344000 
           V=1 (Page is valid) 
           W=1 (Page is writable) 
           R=0 (Page has not been referenced) 
           D=0 (Page not dirty) 
       Setting the referenced bit 
       Physical address            = 0x00344468 
       Modified page table entry   = 0x00344007 
         (Page table entry was NOT modified) 
       Translation completed with no exceptions  
    The value of the target word in physical memory was not changed. 
    It is... 
      0x344468: 0x00000000 
    The page table has not been modified by this command. 
    >  
 
The “Page Table Base Register” can be modified with the “setptbr” command.  For example: 
 
    > setptbr 
    Enter the new value for the Page Table Base Register (PTBR) in hex: 2000 
      PTBR = 0x00002000     ( decimal: 8192        ) 
    >  
 
The “Page Table Length Register” can be modified with the “setptlr” command.  For example: 
 
    > setptlr 
    Enter the new value for the Page Table Length Register (PTLR) in hex: 10 
      PTLR = 0x00000010     ( decimal: 16              HardwareFault ) 
    >  
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Assembly Labels in the Emulator 
 
A BLITZ assembly language program will define a number of “labels”. Typically these are the targets of 
branch and call statements. 
 
Consider this assembly code fragment: 
 
    getChLoop:                              ! loop 
            cleari                          !   disable interrupts 
            load    [r2],r3                 !   if (inBufferCount != 0) 
            cmp     r3,0                    !   . 
            bne     getChExit               !     then break 
            seti                            !   enable interrupts 
            jmp     getChLoop               ! end 
    getChExit:                              ! . 
 
This code defines the labels “getChLoop” and “getChExit”. When the linker determines where in 
memory this code will be placed, the linker will assign specific values to these labels. For example, the 
linker might place this code at location 0x000D10 in memory. Thus, these two labels will have these 
values after linking: 
 
    getChLoop     000D10 
    getChExit     000D28 
 
The information about labels is not part of the program and is not used during the execution. Instead, the 
CPU uses relative and absolute byte addresses. Nonetheless, the labels and their values are placed in the 
executable file, along with the program bytes and the emulator reads this information in when it reads an 
executable file. 
 
The emulator uses the label information when memory is disassembled. For example, if we disassemble 
the memory area containing these instructions, we will see the following. The disassembler inserts labels 
such as “getChLoop” and “getChExit” into the display, making it easier to understand. 
 
    > dis 
    Enter the beginning phyical address (in hex): 000d10 
                       getChLoop: 
    000D10: 03000000       cleari   
    000D14: 6B320000       load    [r2+r0],r3 
    000D18: 81030000       sub     r3,0x0000,r0 
    000D1C: A300000C       bne     0x00000C         ! targetAddr = getChExit 
    000D20: 04000000       seti     
    000D24: A1FFFFEC       jmp     0xFFFFEC         ! targetAddr = getChLoop 
                       getChExit: 
    000D28: 81330001       sub     r3,0x0001,r3     ! decimal: 1, ascii: ".."   
    000D2C: 6F320000       store   r3,[r2+r0] 
    ... 
    > 
 
In the BLITZ architecture, all jump, branch, and call instructions contain 24-bit relative offsets. In this 
example, the “jmp” instruction contains a relative offset of –20 (as a 24-bit hex value, 0xFFFFEC). The 
disassembler indicates that the target of the “jmp” is the instruction labeled “getChLoop”. 
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To see all labels and their values, you can use the “labels” command. The list is printed twice. First, it is 
sorted alphabetically by the label name; second it is sorted by label value. (These lists are usually quite 
long; here we omit most of the output.) 
 
    > labels 
    Ordered alphabetically: 
        Label                          Hex Value  (in decimal) 
        ============================== =========  ============ 
        AddressException                0000001C            28 
        AddressExceptionHandler         0000007C           124 
        ... 
        getChElse                       00000D4C          3404 
        getChExit                       00000D28          3368 
        getChLoop                       00000D10          3344 
        getChar                         00001098          4248 
        ... 
        putStLoop                       00000E0C          3596 
        ready                           00000C4C          3148 
    Ordered by value: 
        Label                          Hex Value  (in decimal) 
        ============================== =========  ============ 
        PowerOnReset                    00000000             0 
        _entry                          00000000             0 
        TimerInterrupt                  00000004             4 
        DiskInterrupt                   00000008             8 
        ... 
        putChar2                        00000D74          3444 
        putChLoop                       00000DA0          3488 
        putChExit                       00000DB8          3512 
        putChElse                       00000DDC          3548 
        ... 
        outBufferCount                  00006114         24852 
        _Global_memoryArea              00006118         24856 
        _Global_nextCharToUse           0000882C         34860 
    > 
 
To find the value of a specific label, you can use the “find” command: 
 
    > find 
    Enter the first few characters of the label; all matching 
    labels will be printed: getCh 
        Label                          Hex Value  (in decimal) 
        ============================== =========  ============ 
        getChElse                       00000D4C          3404 
        getChExit                       00000D28          3368 
        getChLoop                       00000D10          3344 
        getChar                         00001098          4248 
        getChar2                        00000CE4          3300 
    >  
 
If you know the value, but not the label, you may use the “find2” command: 
 
    > find2 
    Enter the value to find (in hex): d28 
      00000D28   (decimal: 3368)   getChExit 
    > 
 
You may also create a new label with the “add” command. For example: 
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    > add 
    Enter the name of the new label: myLabel 
    Enter the value of the new label (in hex): d1c 
    Label "myLabel" has been added. 
    > 
 
If we disassemble the same section of code as above, we will now see that the newly created label will 
be used just like any other label: 
 
    > dis 
    Enter the beginning phyical address (in hex): d10 
                       getChLoop: 
    000D10: 03000000       cleari   
    000D14: 6B320000       load    [r2+r0],r3 
    000D18: 81030000       sub     r3,0x0000,r0 
                       myLabel: 
    000D1C: A300000C       bne     0x00000C         ! targetAddr = getChExit 
    000D20: 04000000       seti     
    000D24: A1FFFFEC       jmp     0xFFFFEC         ! targetAddr = getChLoop 
                       getChExit: 
    000D28: 81330001       sub     r3,0x0001,r3     ! decimal: 1, ascii: ".."   
    000D2C: 6F320000       store   r3,[r2+r0] 
    ... 
    > 
 
Of course the new label is added only to the tables maintained by the emulator. As soon as you quit the 
emulator (or execute the “reset” command), the newly added label will be gone. 
 
In addition to printing decimal and ASCII equivalents, the disassembler also displays label information 
whenever it can. Sometimes this additional information is useful; other times it is meaningless and not 
useful. Consider this fragment of assembly code: 
 
    putChar: 
                 push    r14                     ! Function Entry: 
                 mov     r15,r14                 ! .  Setup the standard frame 
                 push    r13                     ! . 
                 set     RoutineDescriptor_putChar,r1 
                 push    r1                      ! . 
                 mov     0,r13                   ! . 
                 loadb   [r14+8],r1              ! Move the parameter into r1 
                 cmp     r1,'\n'                 ! IF (char != '\n') 
                 be      callputChar2            ! . 
                 cmp     r1,'\t'                 ! .  AND (char != '\t') 
                 be      callputChar2            ! . 
                 cmp     r1,' '                  ! .  AND (char < ' ' 
                 bl      fixChar2                ! . 
                 cmp     r1,0x7e                 ! .     OR char > 0x7e) 
                 ble     callputChar2            ! . 
    fixChar2:                                    ! . 
                 mov     '?',r1                  !     char := '?' 
    callputChar2:                                ! END IF 
                 call    putChar2                ! Call putChar2 
    ... 
 
When disassembled, it prints like this. (Several of the long lines may wrap-around in this document.) 
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    > dis 
    Enter the beginning phyical address (in hex): ff8 
                       putChar: 
    000FF8: 54EF0000       push    r14,[--r15] 
    000FFC: 67EF0000       or      r15,r0,r14 
    001000: 54DF0000       push    r13,[--r15] 
    001004: C0100000       sethi   0x0000,r1       ! 0x00001064 = 4196 
(RoutineDescriptor_putChar) 
    001008: C1101064       setlo   0x1064,r1 
    00100C: 541F0000       push    r1,[--r15] 
    001010: 87D00000       or      r0,0x0000,r13 
    001014: 8C1E0008       loadb   [r14+0x0008],r1 ! decimal: 8  (DiskInterrupt) 
    001018: 8101000A       sub     r1,0x000A,r0    ! decimal: 10, ascii: ".."   
    00101C: A2000020       be      0x000020        ! targetAddr = callputChar2 
    001020: 81010009       sub     r1,0x0009,r0    ! decimal: 9, ascii: ".."   
    001024: A2000018       be      0x000018        ! targetAddr = callputChar2 
    001028: 81010020       sub     r1,0x0020,r0    ! decimal: 32, ascii: ". "  
(PageInvalidException) 
    00102C: A400000C       bl      0x00000C        ! targetAddr = fixChar2 
    001030: 8101007E       sub     r1,0x007E,r0    ! decimal: 126, ascii: ".~"   
    001034: A5000008       ble     0x000008        ! targetAddr = callputChar2 
                       fixChar2: 
    001038: 8710003F       or      r0,0x003F,r1    ! decimal: 63, ascii: ".?"   
                       callputChar2: 
    00103C: A0FFFD38       call    0xFFFD38        ! targetAddr = putChar2 
    ... 
    > 
 
First consider the assembly source code instruction: 
 
    cmp     r1,'\n'                 ! IF (char != '\n') 
 
which is disassembled as: 
 
    sub     r1,0x000A,r0    ! decimal: 10, ascii: ".." 
 
Recall that the compare instruction “cmp” is a synthetic instruction; it is actually assembled as a subtract 
instruction, with the result stored into “r0” (i.e., the result is discarded). The disassembler prints the 
instruction as it actually is. 
 
When a literal value is included in an instruction, the disassembler will print it in hex (e.g., “0x000A”). 
In the comment area, the disassembler also prints this value in decimal and in ASCII. (The literal is two 
bytes long, so the disassembler prints two ASCII characters, enclosed in quotes. Since the neither “00” 
nor “0A” are considered printable characters, the disassembler prints two dots between the quotes.) 
 
Next consider the assembly source code instruction: 
 
    cmp     r1,' '                  ! .  AND (char < ' ' 
 
which is disassembled as: 
 
    sub     r1,0x0020,r0    ! decimal: 32, ascii: ". "  (PageInvalidException) 
 
Of the two bytes in the literal value (0x00 and 0x20), the first is not a printable ASCII character code 
and the second is the ASCII “space” character; between the quotes we see first a dot, then a space. 
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By coincidence, the literal value in this instruction also happens to be the value of a label named 
“PageInvalidException”. The disassembler also includes this information, although it is not relevant or 
helpful in this case. 
 
When the disassembler encounters a “sethi” instruction followed by a “setlo” instruction, it assumes 
they are the result of a synthetic “set” instruction.  For example, consider the assembly source 
instruction: 
 
    set     RoutineDescriptor_putChar,r1 
 
which is disassembled as: 
 
    001004: C0100000       sethi   0x0000,r1       ! 0x00001064 = 4196 
(RoutineDescriptor_putChar) 
    001008: C1101064       setlo   0x1064,r1 
 
The disassembler puts together the two literals (0x0000 and 0x1064) in the two instructions to get a 
combined 32-bit value. This value is printed in decimal (4196) and as a label (if a label with this value 
exists). In this case, the label is meaningful and helpful, while the decimal value is not. 
 
 


