
September 19, 2007 Page G-1

An Overview of

KPL

A Kernel Programming Language

Harry H. Porter III, Ph.D.
Department of Computer Science

Portland State University

October 14, 2003

Introduction

This document introduces the KPL programming language, which was designed for use in the BLITZ
Operating System Project. KPL has many of the features in C++ and Java. This document is written for
someone who is already familiar with C++ or Java.

The primary design criterion of the language was simplicity. The intent was to create a language that can
be understood and acquired quickly, e.g., during a University-level course. A secondary design criterion
was to create a language that facilitates readability and reliability of programs. As a consequence, the
syntax emphasizes readability, at the expense of terseness and ease of typing.

 KPL Overview

September 19, 2007 Page G-2

Table Of Contents
Introduction..1
Table Of Contents...2

The Hello-World Program..4

Packages ..4

Compiling...5
Safe and Unsafe..6

Linking and Running...7

The BLITZ Machine..8

The Header and Code Files ..8
The Header File..9

The Code File ...11

Syntax and Grammar..12
Missing Semicolons ..12

Comments...13

Lexical Tokens..14

The If Statement..14
The While, Do-Until, For, and Switch Statements ...15

Basic Data Types..17

Variable Declarations ..18

Global Variables ..19
Constructed Data Types..20

Type Definitions ...21

Arrays...21

Strings ..25
Records ..26

Pointers ..27

Functions..30

Classes ...31
Fields ...34

Methods..35

Creating Objects...37

 KPL Overview

September 19, 2007 Page G-3

Interfaces..40

Infix and Prefix Methods...41
Keyword Methods...42

Pointers to Functions..43

The Assignment Statement ..46

Type Conversions ...47
Static Type Checking ..48

Subtyping Among Array and Record Types ...49

Dynamic Type Checking ...50

Pointer Casting...51
Operators and Expression Syntax ...52

Constants and Enums ...54

Errors and Try-Throw-Catch ..56

Regarding Naming and Scope Rules ...57
Parameterized Classes..59

The Debug Statement..64

Conclusion ...66

 KPL Overview

September 19, 2007 Page G-4

The Hello-World Program

The “Hello-World” program prints a message and stops. The code for this program is broken into two
files.

The first file is named “Hello.h” and is called the header file. Header files have an extension of “.h”.

 -- This is the header file for the "Hello-World" program...
 header Hello
 uses System
 functions
 main ()
 endHeader

The second file is named “Hello.c” and is called the code file. Code files have an extension of “.c”.

 -- This is the code file for the "Hello-World" program...
 code Hello
 function main ()
 print ("Hello, world...\n")
 endFunction
 endCode

The keywords of the language (symbols like if, else, while, header, endHeader, etc.) are shown in
boldface.

Packages

Each program is broken into packages and every package has a name. In this example, there is one
package and it is named “Hello”. For each package, there must be one header file and one code file. The
package and its files will have the same name, except for the extensions of “.h” and “.c”.

Within the header file, there will be exactly one instance of the “header” syntactic construct, which has
this general form:

 header ID ...other things... endHeader

Likewise, the code file will contain a syntactic construct that has the following form:

 code ID ...other things... endCode

A package will use other packages. In this example, the “Hello” package uses the package named
“System”. The relationship between packages is made explicit in the uses clause.

 KPL Overview

September 19, 2007 Page G-5

The uses clause has the following general form:

 uses ID, ID, ..., ID

The uses clause appears only in the header file and appears directly after the package keyword and
package name.

 header Hello
 uses System
 ...
 endHeader

The code in the Hello package calls a function named “print”. This function is defined in the System
package. If the programmer had failed to include “uses System” in the header file, the compiler would
produce an error when compiling the package, to the effect that “The name print is undefined”.

Compiling

Next let’s compile and run this program. In the examples that follow, assume the BLITZ system is
installed on a Unix/Linux system and that the shell prompt is “%”.

The unit of compilation is the package. In other words, each package must be compiled separately and
each compilation will process exactly one package. Here (in pseudo-code) are the steps we must take:

 For each package...
 Compile the package to produce a “.s” file
 Assemble the package to produce a “.o” file
 Link all the object files together to produce an “a.out” file
 Invoke the BLITZ virtual machine to execute the “a.out” file

First, let’s compile the “Hello” package. The KPL compiler is named “kpl”. (User-typed input is shown
like this.)

 % kpl Hello

This will either print some compile-time error messages or will produce a file called

 Hello.s

containing BLITZ assembly code. During the compilation, the compiler will notice that the Hello
package uses the System package. The compiler will read and process the header file for System. The
compiler must have access to the file named “System.h”. However, the code file for System (i.e., the file
named “System.c”) does not need to be accessed when compiling Hello. In fact, the code file may not

 KPL Overview

September 19, 2007 Page G-6

yet have been written. Furthermore, if the System package happens to use other packages (actually, it
does not), then the header files for those packages would also be read and processed by the compiler.

Next, we need to assemble the “.s” file. The BLITZ assembler is named “asm” and can be run with this
command:

 % asm Hello.s

The assembler will produce an object file, with the name “Hello.o”. Normally, the System package will
have been compiled and assembled already, so the files “System.s” and “System.o” will already exist.
The System package is supplied as part of the KPL language and the programmer should not modify it.
Here are the commands to create these files:

 % kpl System -unsafe
 % asm System.s

Safe and Unsafe

For the most part, the KPL language is strongly and safely typed. Bugs created by the programmer may
cause erroneous behavior or generate error messages, but they should not cause a “crash” or core dump.
However, KPL is a systems programming language and, like C and C++, the programmer can use the
language in ways that will cause a crash. For example, the programmer can set a pointer to an arbitrary
value and use it to store arbitrary data into any location in memory.

In KPL, several constructs in the language are considered “unsafe”. Their use could lead to a crash if the
programmer makes a mistake. If the KPL program never uses any unsafe constructs, all failures of the
program will be tightly controlled. Either the program will produce erroneous results, or the runtime
system will catch the bug and print a nice, clean error message. So, if unsafe constructs are avoided, the
programmer should not be able to crash the system, no matter how bad the bug. On the other hand, if the
programmer uses unsafe constructs, then it is possible for a bug to result in a program crash.

The compiler can be used in two modes. In “unsafe” mode, the full language is allowed, including
unsafe constructs. In the “safe” mode, the compiler will not allow any unsafe constructs. If the
programmer uses an unsafe operation, the compiler will print an error message saying that an unsafe
operation appeared in the package.

By default, the compiler is in “safe” mode. The command line flag “-unsafe” must be used when
compiling a package that uses any unsafe constructs.

 KPL Overview

September 19, 2007 Page G-7

Linking and Running

Now that we have compiled all the necessary packages, we need to link them together into one
executable file, which is called the “a.out” file.

The KPL system includes a collection of runtime support routines written in assembly language. All of
this code is included in a single hand-code assembly language file called “Runtime.s”. This file contains
routines involved in program start-up and error handling, as well as some basic character I/O routines.
The programmer should never modify the “Runtime.s” file. Normally, the runtime routines will be
assembled only once, producing a file called “Runtime.o”, with a command like this:

 % asm Runtime.s

The next step is to combine all of the “.o” object files into an executable file. This step is called linking
and is done with a program called “lddd”. Here is the command line:

 % lddd System.o Hello.o Runtime.o –o Hello

The “-o” option indicates that the new file is to be named “Hello”; without it, the file would be named
“a.out”.

Finally, we can run the program with the BLITZ virtual machine emulator. This tool is called “blitz” and
here is the command line to invoke it on our executable, followed by the output. The “-g” option means
to load the executable file into memory and begin executing it.

 % blitz –g Hello
 Beginning execution...
 ================ KPL PROGRAM STARTING ================
 Hello, world...

 ================ KPL PROGRAM TERMINATION ================

Without “-g”, the emulator will enter a command mode, where the user can do things like single-step the
program, examine memory and registers, etc. The BLITZ virtual machine emulator is discussed in the
document titled “The BLITZ Emulator”.

After execution completes, the virtual machine emulator enters the command mode. Normally, the user
would simply “quit” at this point.

 KPL Overview

September 19, 2007 Page G-8

 > q
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 Instructions Executed = 169917
 Time Spent Sleeping = 0
 Total Elapsed Time = 169917
 %

The BLITZ Machine

The BLITZ machine architecture was designed to closely follow contemporary RISC architectures.
Although the architecture and instruction set are somewhat simpler than what is found in most
processors, the architecture is intended to be complete and realistic enough for the implementation of a
complete operating system.

The BLITZ virtual machine emulator completely and accurately models all aspects of a real BLITZ
machine. In fact, the large number of instructions indicated in the example above is due primarily to
delays associated with the serial character device I/O. Like a real computer, I/O devices like disks and
character devices take time to transmit data and these delays are simulated.

The BLITZ machine has 32 general purpose registers, of 32 bits each, and 32 floating-point registers, of
64 bits each. At any time, the CPU is executing in one of two modes. It is either in system mode
(sometimes called kernel mode) or user mode (sometimes called program mode). Certain privileged
instructions can only be executed while in system mode. The CPU has page-table hardware, so that
virtual memory can be implemented. The basic machine has two I/O devices: a disk and a serial
character interface, such as that used to drive a terminal or modem. There are a number of hardware
traps, interrupts, and exceptions that can occur during instruction execution. Examples include (1) page
fault, (2) I/O completion, (3) privileged instruction violation, (4) alignment error, and (5) the system trap
instruction. There is also a timer interrupt which makes it possible to implement time-sliced
multitasking.

The BLITZ machine architecture is described in the document “The BLITZ Architecture”, which also
gives the complete instruction set and describes the assembly language.

The Header and Code Files

A program is made of several packages and each package is described by a header file and a code file.

The header file is the specification for the package. It provides the external interface to that package,
giving all information other packages will need about what is in the package. In the Hello-World
example, the file “Hello.h” specifies the package will contain a function called “main” and tells what

 KPL Overview

September 19, 2007 Page G-9

parameters this function takes and returns. (The main function takes no parameters and returns no
results.)

The code file contains the implementation details for the package. All executable code appears in the
code file. In the Hello-World example, the “Hello.c” file contains the actual code for the main function.

When a package is compiled, its header and code file will be parsed and processed. Also, the header
files for any packages that are used will be parsed and processed. This also includes packages that are
used indirectly, as for example when package A uses package B, which uses package C in turn.
However, only one code file—the code file for the package being compiled—is parsed and processed
during a compilation. In fact, the code files for the “used” packages may not even have been created yet.

For example, assume that package Hello uses package System, as in the above example. When
compiling Hello, the file “System.c” need not even exist. It can be created later and, as long as it
implements the specification given in “System.h”, it can be compiled and linked with Hello with no risk
of error.

What if a header file is used in one compilation and then altered before being used within the
compilation of another package? For example, what if we compile package Hello, then change
“System.h” and compile the System package? To prevent the errors that such a sequence of events
might cause, the runtime system uses a hash-based check at start-up time to ensure (with high
probability) that the object files are all consistent.

In our example, we asked what happens when System.h is changed after Hello has been compiled. The
resulting object files (System.o and Hello.o) can still be linked. It is possible that the linking will fail,
but it may complete without error. For example, the link step would fail if the “print” function were
eliminated altogether from the System package, but the link step would complete if the change only
involved altering the number or types of parameters to the print function. However, when the user tries
to execute the resulting executable file (the “a.out” file), the runtime system will detect the inconsistency
during program start-up and initialization. It will print an error message, and terminate execution.

The Header File

The following things can go into a header file:

 Constant Definitions
 Global Variable Declarations
 Type Definitions
 Error Declarations
 Enumerations
 Function Prototypes
 Class Specifications
 Interfaces

 KPL Overview

September 19, 2007 Page G-10

Here is an example header file containing examples of all of these sorts of components. These constructs
are described in detail in subsequent sections.

 header MyPack
 uses System
 const
 pi = 3.1415
 MAX = 1000
 var
 x, y: int = -1
 perList: ptr to PERSON_LIST
 type
 PERSON_LIST = record
 val: Person
 next: ptr to PERSON_LIST
 endRecord
 errors
 MY_ERROR (id: int)
 OTHER_ERROR (a,b,c: char)
 enum
 NO_ERR = 0, WARNING, NORM_ERR, FATAL_ERR
 functions
 foo (a1: int, a2: char) returns double
 bar (a1, a2: char)
 printErrMess (errCode: int)
 class Person
 superclass Object
 fields
 name: ptr to array of char
 id_num: int
 birthdate: int
 methods
 printID ()
 getAge () returns int
 endClass
 interface Ordered
 messages
 less (other: ptr to Ordered) returns bool
 greater (other: ptr to Ordered) returns bool
 endInterface
 endHeader

 KPL Overview

September 19, 2007 Page G-11

The Code File

The following things can go into a code file:

 Constant Definitions
 Global Variable Declarations
 Type Definitions
 Error Declarations
 Enumerations
 Function Definitions
 Class Specifications
 Class Implementations
 Interfaces

Any construct that may appear in a header file may also appear in a code file. In addition, the code file
will contain function definitions and class implementations. All these things will be discussed later, but
here is an example code file. (Some material is replaced with “...” to shorten this example.)

 code MyPack
 var
 privateVar: ptr to PERSON_LIST
 privErr: int = NO_ERR
 function foo (a1: int, a2: char) returns double
 ...Variable declarations...
 ...Statements...
 endFunction
 function bar (a1, a2: char)
 ...Variable declarations...
 ...Statements...
 endFunction
 function printErrMess (errCode: int)
 ...Variable declarations...
 ...Statements...
 endFunction
 behavior Person
 method printID ()
 ...Variable declarations...
 ...Statements...
 endMethod
 method getAge () returns int
 ...Variable declarations...
 ...Statements...
 endMethod
 endBehavior
 endCode

 KPL Overview

September 19, 2007 Page G-12

Within the header and code constructs, the various components may appear in any order; they need not
be in the order shown here.

Syntax and Grammar

The full syntax of KPL is given in the document titled “Context-Free Grammar of KPL”. In the present
document, a few of the grammar rules are given informally, using ellipsis to suggest missing
information. For details, you’ll want to have the grammar document handy.

In many places, the grammar makes use of “end” keywords. In such cases, there are two matching
keywords: the first serves to identify a syntactic construct and the second serves to terminate the
construct.

For example, a class definition has the form:

 class ...material describing the class... endClass

Here are some other examples.

 header ... endHeader
 record ... endRecord
 interface ... endInterface
 if ... endIf
 while ... endWhile

Note that some keywords contain uppercase characters, which serve to make those keywords more
readable. KPL is case sensitive, so this makes the language a little more difficult to type. However, it
follows the general KPL philosophy that readability is more important than writability. The goal is a
language whose programs are easier to read, comprehend, and debug.

Missing Semicolons

Many programming languages (like C++ and Java) use the semicolon as a statement terminator.
However, in KPL, there is no statement terminator. The grammar has been designed carefully to avoid
any ambiguities that might arise.

Normally, every statement would be placed on a different line, although this is not required. For
example, the following two statements:

 KPL Overview

September 19, 2007 Page G-13

 a = b + c
 d = e * f

could be placed on the same line:

 a = b + c d = e * f

Although placing two statements on one line is not recommended, the compiler parses it the same as if
they were on separate lines. The lack of statement terminators in the language is intended to make the
resulting programs more readable by reducing typographic clutter.

Comments

KPL uses two styles of commenting. In the first style, everything after two hyphens through end-of-line
is a comment.

 x = y – 2 -- Adjust y a little

This is similar to the comment convention in C++ and Java, which use //, but the hyphen is used since it
stands out more.

The second comment convention is /* through */ which is also used in C++ and Java.

 x = y – 2 /* This comment can
 span multiple lines */

The second style of comments can be nested, unlike in C++ and Java. This makes it easy to disable a
block of code which itself contains comments or disabled code.

 /* Disable this code...
 x = a-2
 y = c*7 /* multiply by seven */
 z = b+5
 */

 KPL Overview

September 19, 2007 Page G-14

Lexical Tokens

The KPL grammar uses several types of tokens. Here are some examples of the different types of
tokens. Lexically, KPL is quite similar to Java and C++.

 Examples
 =====================
 KEYWORD if, while, endWhile
 INTEGER 42, 0x1234abcd
 DOUBLE 3.1415, 6.022e23
 CHAR 'a', '\n'
 STRING "hello", "\t\n"
 ID x, my_var_name, yPos
 OPERATOR <=, >, +, -
 MISC PUNCTUATION (,), :, ., ,, ;, =

The If Statement

The if statement in KPL differs from Java or C++ in that it uses the “if ... endIf” syntax instead of
braces for grouping. Here is an example.

 KPL Java and C++
 ================ ===================
 if x > y if (x > y) {
 max = x max = x;
 min = y min = y;
 else } else {
 max = y max = y;
 min = x min = x;
 endIf }

In Java and C++, the conditional expression must be enclosed in parentheses, but in KPL the
parentheses are not required. Of course, they may be included since all expressions may be enclosed in
parentheses.

If there is only one statement in the “then” or “else” part, the braces can be omitted in Java or C++.
However, in KPL, the endIf keyword is always used.

 KPL Java and C++
 ================ ===================
 if x > y if (x > y)
 max = x max = x;
 endIf

 KPL Overview

September 19, 2007 Page G-15

In Java and C++, braces are used to group multiple statements so they can be used in contexts requiring
a single statement. Other languages use “begin...end”. KPL is different; it has no such syntactic
construct for grouping statements. Instead, any context where a statement may be used (such as the body
of an if or while) may contain a sequence of zero or more statements. The proper grouping is always
determined by the placement of keywords like endIf, endWhile, and so on.

KPL also has a single elseIf keyword, which can be used to make nested if statements more readable:

 Nested if example Equivalent, using elseIf
 ================= ========================
 if x == 1 if x == 1
 z = a z = a
 else elseIf x == 2
 if x == 2 z = b
 z = b elseIf x == 3
 else z = c
 if x == 3 elseIf x == 4
 z = c z = d
 else else
 if x == 4 z = e
 z = d endIf
 else
 z = e
 endIf
 endIf
 endIf
 endIf

The While, Do-Until, For, and Switch Statements

The while statement in KPL looks similar to Java and C++. One difference is that KPL uses the while
and endWhile keywords instead of braces to group the statements of the body. Also, the conditional
expression does not have to have parentheses.

 KPL Java and C++
 ================ ===================
 while n > 0 while (n > 0) {
 y = y*2 y = y*2;

 endWhile }

KPL has a do-until statement, which is similar to the do-while statement in Java and C++. (The only
difference is that the termination condition in KPL is reversed from Java/C++, and KPL uses the
keyword until instead of while.)

 KPL Overview

September 19, 2007 Page G-16

 KPL Java and C++
 ================ ===================
 do do {
 n = n-1 n = n-1;

 until n <= 0 } while (n > o);

In KPL, the for statement looks similar to Java and C++, except the endFor keyword is used instead of
braces.

 KPL Java and C++
 ================ ===================
 for (n=1; n<MAX; n=n*2) for (n=1; n<MAX; n=n*2) {

 endFor }

There is a second form of the for statement which is given in the next example. We also give an
equivalent in Java and C++.

 KPL Java and C++
 ================ ===================
 for i = 1 to 100 by 3 for (i=1; i<=100; i=i+3) {

 endFor }

The general form is:

 for LValue = Expr1 to Expr2 by Expr3 ...statements... endFor

The “by Expr3” clause is optional; an increment of 1 is the default if it is missing. The loop always
counts upward. In other words, the termination test is:

 if LValue > Expr3 then terminate the loop

The LValue and the 3 expressions should be of type int. There is also a form where LValue, Expr1, and
Expr2 have type pointer.

This second form of the for loop is not really necessary since the programmer can always achieve the
same effect by using a traditional, C-like version of the for statement. The primary reason for including
the second form is that it makes some loops a little easier for beginning programmers to read and get
right.

In KPL, the break and continue statements work the same as in Java and C++. They may be used in
while, for, and do-until statements. For example:

 KPL Overview

September 19, 2007 Page G-17

 KPL Java and C++
 ================ ===================
 while n > 0 while (n > 0) {

 if ... if (...) {
 break break;
 endIf }

 endWhile }

The switch statement looks similar to the switch statement in Java and C++.

 KPL Java and C++
 ================ ===================
 switch i switch (i) {
 case 2: case 2:
 case 4: case 4:
 ...statements... ...statements...
 break break;
 case 1: case 1:
 case 3: case 3:
 case 5: case 5:
 ...statements... ...statements...
 break break;
 default: default:
 ...statements... ...statements...
 endSwitch }

Just as in Java and C++, the break statement is used to jump to the end of the switch statement;
execution will fall through to the next group of statements if there is no break.

Basic Data Types

KPL has the following basic types of data.

 Type Example Values
 ================ ======================
 int 123, -57, 0xabcd4321
 double 3.1415, -5.2e10
 char 'a', '\n'
 bool true, false

Values of type int are always represented as 32-bit signed values, stored in two’s complement. Values of
type double are always stored using the IEEE 64-bit floating-point standard.

 KPL Overview

September 19, 2007 Page G-18

Even though KPL was designed for one particular CPU architecture, the language makes it clear exactly
how int and double values will be represented so that each program will execute predictably and
identically, regardless of which machine it runs on.

KPL uses the ASCII system, and the usual back-slash escapes may be used in character and string
constants.

There are two values of type bool, represented by the keywords true and false.

C++ traces its roots back to C, in which ints were used for Boolean values. KPL is a little more
particular about conditional expressions than C and C++. In KPL, there is no implicit coercion from ints
to bools; the programmer must make the test explicit.

 KPL C++
 ================ ========================
 if i != 0 ... if (i) ...

Variable Declarations

Variables are declared using a syntax that is shown in the next example:

 KPL Java and C++
 ================ ========================
 var x: int int x;

Several variables can be declared at once, however the var keyword must appear only once, as shown
next. Also, variables may be given initial values, if desired.

 KPL Java and C++
 ================ ========================
 var
 x,y,z: char char x,y,z;
 a,b: double = 1.5 double a = 1.5, b = 1.5;
 i,j: int = f(a) int i = f(a), j = i;

Any variable that is not explicitly initialized will be set to binary zeros. Thus, it is more difficult in KPL
than in C++ to pick up random data values from uninitialized memory. Here are the zero values for the
basic types:

 KPL Overview

September 19, 2007 Page G-19

 Type Default Initial Value
 ================ =====================
 int 0
 double +0.0
 char '\0'
 bool false
 ptr to ... null

Records and objects will have their fields initialized to their zero values. Arrays are initialized by default
to have size zero, which will trigger an error if an attempt is made to access an element.

Global Variables

Every variable is either a local variable or a global variable. Local variables are declared at the
beginning of functions and methods. Local variables only exist while the function or method is being
executed.

Any variable that is declared outside of a function or method is called a “global variable”. Each global
variable is placed in a fixed, unchanging memory location. Consequently, each global variable exists
throughout the execution of the program.

Global variables may be declared either in a header file or in a code file. Where it is declared determines
the visibility of the global variable.

Global variables declared in a header file can be accessed from anywhere in that package and anywhere
in any package that uses the package containing the declaration. However, variables declared in a code
file are accessible only from the code portion of the package containing the declaration. Thus, there is a
facility for information hiding. A global variable is either shared with other packages (by placing its
declaration in the header file) or the variable is private and local to a single package (by declaring it in
the code file).

All variables—local and global—will be initialized. If an initializing expression is provided, it is used; if
not, the variable will be initialized to its zero value.

 KPL Overview

September 19, 2007 Page G-20

Constructed Data Types

KPL has the following complex data types:

 Type Examples
 ================ ================================
 Arrays array [10] of double
 Pointers ptr to array [10] of double
 Records record
 val: double
 next: ptr to MY_REC
 endRecord
 Functions function (a,b: int) returns bool
 Classes class Person
 ...
 endClass
 Interfaces interface Taxable
 ...
 endInterface

These will be discussed in subsequent sections of this document.

In addition, there are three somewhat unusual types, which are not used as frequently as other types:

 anyType
 typeOfNull
 void

The type anyType subsumes all other types. It can only be used in certain contexts. For example, we
cannot have a variable with type anyType, since the compiler cannot know how many bytes will be
needed to store the value. But we might have the following type:

 ptr to anyType

The type typeOfNull would not normally be used by the programmer. This type has only one value, the
null pointer, which is represented with the keyword null. The null value is a pointer whose value is zero.

The type void is used in only in conjunction with pointers, as in

 ptr to void

Normally, all pointer types are type-checked. The use of void effectively turns off type checking for
pointers. A value of type ptr to void can be assigned to/from any other pointer type. The use of type ptr
to void is “unsafe” in the sense discussed earlier in this document.

 KPL Overview

September 19, 2007 Page G-21

Type Definitions

KPL has a “type definition” construct. Here is an example:

 type MY_REC = record
 val: double
 next: ptr to MY_REC
 endRecord

Such a definition then allows “MY_REC” to be used instead of having to re-type the full type
everywhere it is needed.

The general form is

 type ID = ...type...
 ID = ...type...
 ...
 ID = ...type...

Here is an example showing that several type definitions can follow the type keyword.

 type
 MY_PTR = ptr to PERSON_LIST -- Used here
 MY_ARRAY = array [100] of PERSON_LIST -- ...and here
 PERSON_LIST = record ... endRecord -- But, defined here

Notice that the type PERSON_LIST is used before it is defined. This is okay and this occurs in other
places as well. For example, a class may be used at one point in a source code file and defined at a later
point in that file.

Arrays

Array types have the following general form:

 array [...SizeExpr...] of ...type...

Here is an example variable declaration using an array type:

 var a: array [100] of double

The SizeExpr gives the number of elements in the array and must be statically computable so that the
compiler can determine how many bytes to allocate for this variable.

 KPL Overview

September 19, 2007 Page G-22

The numbering of the array elements begins at zero, so this array has elements

 a[0], a[1], ... a[99]

Array elements can be accessed (i.e., read and updated) using the normal bracket notation. For example:

 a[i] = x
 y = a[foo(j)+k]

In KPL, arrays always carry their sizes along with them. Every attempt to access an array element will
be checked at runtime to ensure the index expression is within the bounds of the array. If an attempt is
made to access an array element that is “out of bounds”, a runtime error will halt execution at that
moment. Therefore, the notorious “buffer overrun” errors from C/C++ cannot occur in KPL when arrays
are used.

There are two ways to create an array: the new expression and the alloc expression. Both have a similar
syntax differing only in the keyword used, although each has a very different meaning.

 new ...ArrayType... { ...Initialization... }
 alloc ...ArrayType... { ...Initialization... }

(Here the braces are used directly, and do not indicate multiple occurrences.)

The new expression creates a new array value and returns it. For example, the following will initialize
the variable “a” by setting all its elements to the value –1.23.

 a = new array of double { 100 of –1.23 }

A new expression is an R-Value, not an L-Value. In this way it is similar to an int constant. For
example, you cannot ask for its address, although you could ask for the address of variable “a”.

Note that the SizeExpr in the ArrayType after the new keyword is normally left out, since it is redundant.

 a = new array of double { 100 of –1.23 }
 a = new array [100] of double { 100 of –1.23 } -- Equivalent

The alloc expression allocates memory on the heap, initializes the array, and returns a pointer to it. Here
is an example of the alloc expression:

 var p: ptr to array [5] of int
 ...
 p = alloc array of int { 0, 11, 22, 33, 44 }

Elements of an array allocated on the heap may be accessed using the bracket notation. Whenever
brackets are applied to a pointer to an array—instead of to an array directly—a pointer dereferencing
operation will be automatically inserted by the compiler.

 KPL Overview

September 19, 2007 Page G-23

 p[i] = ... -- p is a pointer
 ... = p[j]

Every element of a newly created array (whether created in a new expression or an alloc expression)
must be given an initial value. The values are listed in order between the braces. A single value may be
copied many times using the syntax

 CountExpression of ValueExpression

For example “100 of –1.234” will initialize 100 elements to the same floating point value. Both the
CountExpression and the ValueExpression may be complex expressions, evaluated at runtime. Here are
more examples of array creation and initialization:

 arr1 = alloc array [13] of double { 1.1, 2.2, 10 of 3.3, 4.4 }
 arr2 = alloc array [n+m] of double { n of 0.0, m of 9.999 }
 arr3 = alloc array [f(k)] of double { f(k) of g(x)*0.5 }

Often the programmer will work with “dynamic arrays”, whose size is not known at compile time. In
such cases, pointers to arrays must be used and the array must be placed on the heap.

In a dynamic array type, the SizeExpr, along with the brackets, is left out:

 array of ...type...

Here is an example:

 var dynArr: ptr to array of double
 ...
 dynArr = alloc array of double { n+m of 0.0 }
 ...
 dynArr [i] = dynArr[j]

The array size will be inferred from the number of initial values in the initialization part. When the array
is created at runtime, the expression “n+m” will be evaluated to determine the amount of memory to be
allocated.

To determine the size of a dynamic array at runtime, the programmer can use the built-in postfix
operator arraySize. This expression returns the number of elements in the array.

 i = dynArr arraySize -- In this example, returns n+m

In the previous examples, the type of the array elements has been a simple type like int or double, but
the element type can be any type, even another array. Here is an example of a 2 dimensional array,
which is nothing more than an array of arrays:

 var arr_2D: array [100] of array [500] of double

 KPL Overview

September 19, 2007 Page G-24

There is a “syntactic shorthand” for specifying arrays of several dimensions. For example, the previous
example could also be written as follows, with no change in meaning. The compiler will simply expand
the following code into the code shown directly above.

 var arr_2D: array [100,500] of double

For array types with more than one dimension, the programmer must specify all sizes, except possibly
the first. In other words, only the first dimension may be dynamic. The remaining dimensions must be
statically known so that compiler can create the proper address calculations.

The grammar allows the asterisk to be used for array types of higher dimension, when the first
dimension is dynamic. The asterisk may only appear in the first dimension. For example:

 var arr_3D: ptr to array [*, 5, 25] of double

Here is some code to initialize the array:

 arr_3D = alloc array [*,5,25] of double
 { 100 of new array [5,25] of double
 { 5 of new array of double
 { 25 of -9.999 } } }

To access elements in a multi-dimensional array, several index expressions must be provided, separated
by commas. For example:

 d = arr_3D [a,b+3,c]

Array accessing, as illustrated above, is also nothing more than a syntactic shorthand for a more
complex expression. For example, the following expressions are completely synonymous:

 arr_3D [a, b+3, c]
 arr_3D [a] [b+3] [c]
 ((arr_3D [a]) [b+3]) [c]

In the case of arrays with dimension greater than 1, the arraySize expression returns the size of the first
dimension only.

 i = arr_3D arraySize

Since each element in a 3 dimensional array is itself a 2 dimensional array, we could always write
something like:

 j = arr_3D[0] arraySize -- Sets j to 5
 k = arr_3D[0,0] arraySize -- Sets k to 25

 KPL Overview

September 19, 2007 Page G-25

Each singly-dimensioned array is stored along with a 4-byte integer giving the number of elements. This
count precedes the first element. For example, the array

 var a: array [100] of double

would require 4 + 100*8 bytes of storage (i.e., 804 bytes), since each double value requires 8 bytes.

When asking for the address of arrays and array elements, note that the address of the array is always 4
bytes less than the address of the first element, since the array size is stored directly before the first
element.

 &a[0] == &a + 4

Strings

Strings are represented as pointers to arrays of characters. For example, the following is type-correct:

 var str: ptr to array of char
 ...
 str = "hello"

We can access the elements of the string, just as we access any array:

 var ch: char
 ...
 ch = str[1] -- sets ch to 'e'
 str[3] = 'k' -- now str points to "helko"

Note that this differs substantially from how strings are dealt with in C/C++. In KPL, there is not
necessarily a terminating ASCII “null” character, although it is certainly possibly to add one:

 str = "hello\0"

The “System” package includes the following routines to print data:

 print (s: ptr to array of char)
 printInt (i: int)
 printHex (i: int) -- prints, e.g., 0x0012ABCD
 printChar (c: char) -- prints non-printables as, e.g., \x05
 printBool (b: bool) -- prints "TRUE" or "FALSE"
 printDouble (d: double)
 nl () -- Short for printChar ('\n')

Here is an example:

 KPL Overview

September 19, 2007 Page G-26

 print ("The value of 'i' is ")
 printInt (i)
 nl ()

Each new string constant appearing in a program will cause a new array to be created. For example, the
following code will create two arrays, even though the string constants contain the same characters:

 str1 = "hello"
 str2 = "hello"

All string arrays will be placed in the “.data” segment and may therefore be updated.

Records

Here is an example using record types:

 type MY_REC = record
 val: double
 next: ptr to MY_REC
 endRecord
 var r: MY_REC

The new expression can be used to create a record value. Each field of the record must be initialized
within the braces.

 r = new MY_REC { val=1.5, next=null }

To access a field in the record, the infix-dot operator is used:

 x = r.val
 r.val = 2.56

The alloc expression can be used to allocate a record and place it in the heap:

 var recPtr: ptr to MY_REC
 ...
 recPtr = alloc MY_REC { val=1.5, next=null }

KPL guarantees to the programmer exactly how all data values (including records, arrays, and objects)
are represented in memory. In the case of records and objects, the fields are placed in memory
sequentially in order, with extra padding bytes inserted where necessary to ensure proper alignment.
Every data value will be word aligned, except char and bool values, which are each stored in a byte.

 KPL Overview

September 19, 2007 Page G-27

Pointers

KPL is similar to C++ in that all pointers are explicit and the programmer can choose whether to work
with data or with pointers to data. In Java, the pointers are all implicit and the programmer has less
control over representation.

Consider these two variables:

 var r: MY_REC
 p: ptr to MY_REC

The variable “r” will require 12 bytes (the size of a MY_REC record) while “p” will require only 4 bytes
since all pointer values are 4 bytes.

To get the address of a variable, use the & operator, which is also used in C and C++:

 p = &r

To refer to the data that the pointer points to, the prefix operator * is used, just as in C and C++:

 r = *p

Records, arrays, and objects may be created using either the new expression or the alloc expression.

The syntax of the alloc construct and the new construct is the same. The new construct creates a new
value which must be used (e.g., copied into a variable) while the alloc construct allocates memory in the
heap, initializes it, and returns a pointer to the allocated memory.

For example, the following alloc expression will create a new record on the heap:

 p = alloc MY_REC { val=1.5, next=null }

To initialize variable “r”, the new expression would be used:

 r = new MY_REC { val=1.5, next=null }

The syntax to chase pointers is the same as in C or C++, so we can access the fields of the record
pointed to by “p” with statements like these:

 x = (*p).val
 (*p).val = 2.5

C++ uses a shorthand of “->” to make dereferencing clearer. KPL uses the infix-dot operator. The
semantics of the dot operator is “If the left operand is a pointer, dereference it first”.

 KPL Overview

September 19, 2007 Page G-28

 KPL Equivalent in C++
 ================ ===================
 x = p.val x = p->val;
 p.val = 2.5 p->val = 2.5;

The above discussion of pointers used records and pointers to records, but pointers to objects work the
same way, as illustrated below.

In the next example, assume there is a class called “Person”. This example shows that KPL code can
look a lot like Java code. (Assume that “name” is a field in class Person and that “computeAge” is a
method from the class.)

 KPL Java
 ================ ===================
 var p: ptr to Person Person p;
 p = new Person {...} p = new Person (...);
 p.name = ... p.name = ...;
 p.computeAge (...) p.computeAge (...);

The programmer can copy entire records, objects, or arrays with code that looks like C++:

 *p = r
 r = *p

The null pointer is symbolized with the keyword null. The null value is represented with the value
0x00000000.

 if p != null ...

Pointer expressions will automatically be coerced to bool values if necessary, so the above test could
also be coded in a way that looks like C++.

 if p ...

When coerced to bool values, non-null pointers are treated as true and null pointers are treated as false.

Whenever a pointer is dereferenced, a runtime check will make sure the pointer is non-null. For
example, this code

 p = null
 ...
 p.name = ... -- Error here

will result in the runtime error

 Attempt to use a null pointer!

 KPL Overview

September 19, 2007 Page G-29

When a runtime error like this occurs, the BLITZ virtual machine will halt emulation and go into
command mode. The user can then type the “st” command to see the activation stack. The top line
shows where in the source code the program was executing when the error occurred.

 Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
 > st
 Function/Method Frame Addr Execution at...
 ==================== ========== =====================
 foo4 00FFFD80 MyPack.c, line 75
 foo3 00FFFD90 MyPack.c, line 71
 foo2 00FFFDA0 MyPack.c, line 67
 foo1 00FFFDB0 MyPack.c, line 63
 main 00FFFEF8 MyPack.c, line 89

The programmer may also work with pointers to other sorts of data, as in:

 var p1: ptr to int
 p2: ptr to char

Pointers can be converted to integers and vice versa, using the asInteger and asPtrTo constructs. The
asInteger operator uses a postfix syntax and asPtrTo uses infix, where the second operand is a type.

 i = p1 asInteger
 p2 = i asPtrTo char

Pointers can also be incremented and decremented directly, as in these examples:

 p1 = p1 + 4
 p2 = p2 – 1

The increment or decrement is always in terms of bytes. This is a subtle difference with C++. In C++,
the expression “p+1” may increment the pointer by an amount that is different than 1 byte, and which is
in fact implementation dependent.

KPL provides the sizeOf operator to determine the size of a type of value. This is a prefix operator,
applied to a type. Since each class is a type, the sizeOf operator can be applied to a class, as in...

 p1 = p1 + sizeOf Person

The use of some of the pointer operations is unsafe. In particular, asPtrTo, pointer increment, and
pointer decrement are all unsafe, while the normal operations of copying, dereferencing, and comparing
for equality are safe. It is safe to take the address of a global variable but unsafe to ask for the address of
a parameter or local variable.

 KPL Overview

September 19, 2007 Page G-30

Functions

The general form of a function is

 function ID (...Parameters...) [returns ...Type...]
 ...Variable declarations...
 ...Statements...
 endFunction

Here is an example function:

 function foo (a, b: int) returns bool
 var c: int
 c = a + b
 return c > 10
 endFunction

The returns clause is optional. Here is another example in which there are no parameters or return
value:

 function foo2 ()
 print ("hello")
 endFunction

Functions may be invoked (i.e., called) using syntax like Java or C++, except the semicolon is not used.

 myBoolVar = foo (x, y)
 foo2 ()

All functions must appear in the code portion of a package, since they constitute implementation.

Within the header file, the programmer may optionally include a function declaration (i.e., a function
prototype). Here is an example:

 header MyPack
 ...
 functions
 foo (a, b: int) returns bool
 foo2 ()
 foo3 (a: int, b: char, c,d: double)
 ...
 endHeader

For every function that is declared in the header file, there must be a matching function definition in the
code file. However, every function in the code file need not have a matching declaration in the header
file. Whether or not a function has a declaration in the header file determines its visibility.

 KPL Overview

September 19, 2007 Page G-31

For example, if a function is declared in the header file of package MyPack, then that function can be
called from code in MyPack and from code in any other package that uses MyPack. If a function does
not have a declaration in the header file, then that function is private. It may only be called from the
code file of MyPack.

KPL also provides a way to invoke functions written in assembly language. Consider the function
named “Switch” which is coded in assembly language. This function must be assembled separately and
included in the link phase. Within the header file of MyPack, the function “Switch” must be declared
using the external keyword.

 header MyPack
 ...
 functions
 external Switch (x, y: ptr to ThreadControlBlock)
 foo (a, b: int) returns bool
 ...

Note that the function name “Switch” is capitalized to distinguish it from the keyword switch.

KPL does not allow overloading of function names. All functions must have distinct names.

Classes

Classes in KPL are similar to the classes in C++ and Java. Each object is an instance of a class. The
class describes which fields the instances will have and provides methods for operating on the instances
of the class.

KPL also has interfaces, which are similar to the interfaces of Java. Interfaces are discussed later.

A class is defined in two parts or pieces, called the specification and the implementation.

The first part specifies which fields will be in the class and which methods are in the class, but does not
supply the actual code for the methods. The keyword class is used for the specification part.

The second part, which gives the implementation of the class, includes only the code bodies for the
methods. The keyword behavior is used for the implementation part.

As an example, consider a class called “Person”. Here is the specification part for Person:

 KPL Overview

September 19, 2007 Page G-32

 class Person
 superclass Object
 fields
 name: ptr to array of char
 id_num: int
 birthdate: int
 methods
 printID ()
 getAge () returns int
 endClass

Here is the implementation part of Person:

 behavior Person
 method printID ()
 ...Variable declarations...
 ...Statements...
 endMethod
 method getAge () returns int
 ...Variable declarations...
 ...Statements...
 endMethod
 endBehavior

The specification part of a class may be placed in either the header file or the code file. Where the
specification is placed determines the visibility of the class. If placed in the header file, then the class
may be used by any packages that use this package. If placed in the code file, then the class may only be
used within that package.

The behavior part of a class must always be placed in the code file.

The general syntax for the specification part of a class is given next. The notation [...] means “optional”.
The notation {...}+ means “one or more occurrences”. (The actual grammar rule is simplified a little
here.)

 class ID [...Type Parameters...]
 [implements ID, ID, ...]
 superclass ID
 [fields { FieldDeclaration }+]
 [methods { MethodPrototype }+]
 endClass

Type parameters are discussed in a later section.

Here is the syntax for the implementation part.

 KPL Overview

September 19, 2007 Page G-33

 behavior ID
 { Method }
 endBehavior

Each class has exactly one superclass, which is given following the superclass keyword. The root
superclass is called “Object”. It is included in the “System” package and does not have a superclass.

A class may implement zero or more interfaces. These would be given following the implements
keyword. For example:

 class MyClass
 implements InterA, InterB, InterC
 superclass Object
 fields
 ...

The class specification lists the methods that are implemented in the class. However, it only includes a
prototype for each method. A method prototype includes the method name, parameters, and return type,
but does not include the code for the method.

There must be a one-to-one correspondence between the methods listed after the methods keyword in
the specification and the methods provided in the implementation part. In other words, if the
specification says there is a method called “printID” in the class, then an implementation of method
“printID” (with matching parameters and return type) must appear in the behavior construct for the
class.

A class will inherit any and all methods from its superclass, and its super-superclass, and so on up to
“Object”. When a method is included in a class, it must be given a new name or else it will override a
method inherited from the superclass.

KPL does not allow overloading of method names. Two methods may only have the same name if they
are in different classes.

In Java and C++, methods and fields have visibility control (private, public, etc.). KPL does not have
this layer of complexity. Every field and every method can be used wherever the class itself can be used.
In Java and C++, the visibility mechanism is used to restrict and constrain what the programmer can do
with objects; in KPL it is up to the programmer to use objects correctly. For example, if the programmer
feels that some field should be accessed only from code within the class, then it is the programmer’s
responsibility to discipline him or herself and avoid accessing the field from outside the class.

If the programmer really needs a mechanism to disallow some parts of the program from accessing
certain methods or fields, there are several ways of doing it. First, the class specification can be placed
in the code file, making the entire class private to a package. Second, the programmer can work with
interfaces, which can be used to control which methods may be invoked on an object. Finally, the
programmer can create a new wrapper class to allow only certain kinds of access to an underlying
object.

 KPL Overview

September 19, 2007 Page G-34

Fields

Classes may contain fields. For example:

 class MyClass
 ...
 fields
 myField: int
 ...
 endClass

From outside the class, the fields may be accessed using the dot notation:

 var m: MyClass
 ...
 i = m.myField
 ...
 m.myField = j

The field would also be accessed the same way if a pointer to the object is used, instead of the object
itself.

 var p: ptr to MyClass
 ...
 i = p.myField
 ...
 p.myField = j

From within the class, the fields of the class may be accessed directly. For example:

 behavior MyClass
 ...
 method foo (...) returns ...
 ...
 i = myField
 ...
 myField = j
 ...
 endMethod
 ...
 endBehavior

 KPL Overview

September 19, 2007 Page G-35

A class will inherit any and all fields from its superclass, and its super-superclass, and so on up to
“Object”. Fields may be added to a class, but overriding or overloading of fields is not allowed. When a
new field is added to a class, its name must be distinct from the names of all inherited fields.

Java and C++ allow “static” fields, but KPL does not have static fields. A static field is nothing more
than a global variable whose visibility is limited. KPL provides only one concept: the global variable. If
a programmer wants to have a static field called “x” in some class “MyClass”, he or she can simply
create a global variable and give it a name that suggests its use.

 var MyClass_x: ...type...

Then the programmer can simply write “MyClass_x” instead of “MyClass::x”.

Methods

A method is declared in the class’s specification part and implemented in the class’s behavior part.

 class MyClass
 ...
 methods
 ...
 foo (a,b: int) returns int
 ...
 endClass

 behavior MyClass
 ...
 method foo (a,b: int) returns int
 var x: int
 x = a + b
 return x
 endMethod
 ...
 endBehavior

The general form of a method is

 method ID (...Parameters...) [returns ...Type...]
 ...Variable declarations...
 ...Statements...
 endMethod

If there are no parameters and the method does not return a value, the method looks like this:

 KPL Overview

September 19, 2007 Page G-36

 method bar ()
 ...
 endMethod

If the method returns a value, then the method should contain at least one return statement with a value.
If the method does not return a value, then the method may contain a return statement without a value
or may fall out the bottom. This routine does both:

 method printWithNULL (p: ptr to array of char)
 if p == null
 print ("NULL!")
 return
 endIf
 print (p)
 endMethod

Within a method, the keyword self may be used to refer to the receiver object. The type of self is

 ptr to CLASS

where “CLASS” is the class containing the method.

In the next example, “recur” is a recursive method.

 method recur (...)
 ...
 self.recur (...)
 ...
 endMethod

The keyword self may also be used in other ways. For example:

 m.foo (j, self, k)
 ...
 p = self

There is also a keyword super, which has exactly the same type as self. However, super can only be
used in one way; it is used within a method to invoke the inherited and overridden version of the
method.

For example, assume class “Person” has a method called “meth”.

 KPL Overview

September 19, 2007 Page G-37

 class Person
 ...
 methods
 meth (...)
 ...
 endClass

Now assume that a subclass called “Student” overrides “meth”.

 class Student
 superclass Person
 ...
 methods
 meth (...)
 ...
 endClass

Within the implementation of “meth” in Student, the overridden method can be invoked by using super
instead of self:

 behavior Student
 ...
 method meth (...)
 ...
 super.meth (...)
 ...
 endMethod
 ...
 endBehavior

Creating Objects

Instances of classes can be created in one of two ways. The object can be allocated in the runtime heap
or the object can be placed directly into a variable.

To allocate and initialize an object on the heap, the alloc expression is used. For example:

 var perPtr: ptr to Person
 ...
 perPtr = alloc Person { name = "Smith",
 id_num = nextNum+1,
 birthdate = 2003 }

 KPL Overview

September 19, 2007 Page G-38

Here is an example of creating an object with the new keyword and storing the result directly into a
variable.

 var per: Person
 ...
 per = new Person { name = "Smith",
 id_num = nextNum+1,
 birthdate = 2003 }

The alloc expression returns a pointer while the new expression returns a object.

These examples assume that the Person class has three fields, called “name”, “id_num”, and “birthdate”.
After the object is created, the fields are given their initial values, which are listed between the braces.

Whenever an object is created, the programmer has two choices: either all the fields can be initialized
explicitly or they can all be set to their zero values by default.

In the above examples, the fields were initialized. The fields and their initializing expressions are listed
between the braces. The fields need not be listed in order, but all fields must be listed, including any
inherited fields.

If the programmer doesn’t want to initialize the fields, then the braces and everything between them
should be omitted. The object will be created and each of the fields will be initialized to its zero value.
For example:

 perPtr = alloc Person

It is often the case that creating and initializing an object should be accompanied by some additional
computation. Java and C++ have “constructor” methods for this, but KPL does not have any special
syntax for constructors.

Instead, the KPL convention is to create a method—typically called “init”—to perform all necessary
initialization and computation associated with object creation. Thus, the same effect as constructors is
achieved with features already in the language.

Here is an example using an “init” function. To create an object, the alloc or new expression is used
with no explicit field initialization. Then the init method is immediately invoked. The init method can be
designed to take however many arguments make sense in the application. In our example, we will pass
one argument and initialize the remaining fields with computed or default values.

 perPtr = alloc Person.init("Smith")

Here is a possible definition of the init method:

 KPL Overview

September 19, 2007 Page G-39

 class Person
 ...
 methods
 init (n: ptr to array of char) returns ptr to Person
 ...
 endClass

 behavior Person
 ...
 method init (n: ptr to array of char) returns ptr to Person
 name = n
 last = last + 1
 id_num = last
 -- birthdate defaults to zero
 return self
 endMethod
 ...
 endBehavior

In the above example, the “init” method returned a pointer to the object; this allows us to invoke it in the
same statement that creates the object:

 perPtr = alloc Person.init(...)

However, if the object is not allocated on the heap but is created with a new expression, we would have
to invoke “init” in a separate statement. Since KPL requires the programmer not to ignore a returned
value, we must create a dummy variable to absorb the value:

 var ignore: ptr to Person

 per = new Person
 ignore = per.init(...)

Another approach is to design “init” not to return anything. Here are examples showing how we would
invoke the “init” method in such a design:

 perPtr = alloc Person
 perPtr.init(...)
 per = new Person
 per.init(...)

 KPL Overview

September 19, 2007 Page G-40

Interfaces

KPL has interfaces, which are similar to the interfaces of Java. Here is an example:

 interface MyInter
 messages
 foo1 (a,b: int) returns int
 foo2 (d: double)
 endInterface

Any object that implements the interface “MyInter” must provide at least these two methods, although
the class may have other methods as well. Furthermore, these two methods must have types on their
parameters and return value that match the specification in the interface.

Just as in Java, an interface can extend zero or more other interfaces. Thus, there is multiple inheritance
in the interface hierarchy.

The general syntax of an interface is:

 interface ID [...Type Parameters...]
 [extends ID, ID, ...]
 [messages { MethodPrototype }+]
 endInterface

Type parameters are discussed in a later section.

Note that the keyword here is messages, not methods. Methods are chunks of behavior and therefore
occur in classes; messages describe the protocol for interacting with objects and are therefore specified
in interfaces. Messages are implemented by methods.

A class may implement zero or more interfaces, and this is given in the class specification. For example:

 class ExampleClass
 implements MyInter, AnotherInterface
 superclass ...
 fields
 ...
 methods
 ...
 endClass

The implements clause is optional and may list one or more interfaces. Of course a class will
necessarily implement all the interfaces its superclass implements.

Here is a variable declaration which uses an interface instead of a class.

 KPL Overview

September 19, 2007 Page G-41

 var p: ptr to MyInter

The constraint on “p” is that it must point to an object which has (at least) two methods called “foo1”
and “foo2”, with appropriate parameter typings. Thus, the programmer may invoke those methods on p:

 i = p.foo1 (...)

One class that implements this interface is “ExampleClass”, but there may be other completely unrelated
classes that also implement this interface. The compiler guarantees that, at runtime, p will point to an
instance of ExampleClass or some other class that implements this interface.

Note that the programmer cannot create a variable of type “MyInter” since the compiler has no way to
know how much space to allocate for the variable. The programmer must use a pointer instead.

Infix and Prefix Methods

The traditional method syntax involves parentheses with comma-separated arguments.

 w = x.foo(y,z)

KPL also allows methods to use a “binary operator syntax”. Here is the invocation of a method named
“**” on receiver “x”. There is one argument, indicated by “y”.

 w = x ** y

While this looks different than the invocation of “foo”, it is essentially the same. The method “**” is
invoked on the object “x” and a result is returned.

There is also a “unary operator syntax”. In the next example, the prefix method “~” is invoked on the
object named “x”. Here, a method with no arguments is invoked on object “x”.

 w = ~x

In the binary operator syntax, there is always one argument, while in the unary operator syntax, there is
no argument. In both cases, a result is always returned.

For each operator, the class must contain a corresponding method. For the above examples, let’s assume
that “x” has type “MyClass”; then the definition of “MyClass” will need to contain methods for “foo”,
“**”, and “~” as in:

 KPL Overview

September 19, 2007 Page G-42

 class MyClass
 ...
 methods
 foo (p1, p2: MyClass) returns MyClass
 infix ** (p1: MyClass) returns MyClass
 prefix ~ () returns MyClass
 ...
 endClass

The types of the arguments and returned values in this example all happen to be the same “MyClass”,
but in other programs, they could be any type.

The name of a binary or unary method may be any sequence of the following characters:

 + - * / \ ! @ # $ % ^ & ~ ` | ? < > =

with the exception that the following tokens may not be used as operators:

 /* */ -- =

Keyword Methods

In addition to the normal method syntax and the infix and prefix operator syntax, KPL has another
method syntax which is unlike anything in Java or C++. It is called “keyword syntax” and it was
introduced in the Smalltalk language.

With keyword methods, the name of the method contains colons. Consider the method named

 at:put:

For each colon, there is a single argument. Therefore, we can tell that “at:put:” takes two arguments.
Here is an example where this method is invoked on receiver “x” with arguments “y” and “z”.

 x at: y put: z

Keyword methods may or may not return a result. They may be used in expressions and mixed with the
other methods forms, as shown in the next example:

 myTable at: (myTable lookup: (x ** y)) put: ~z

For each keyword method, the class must contain a corresponding method. Here is a class with methods
for “lookup:” and “at:put:”.

 KPL Overview

September 19, 2007 Page G-43

 class MyClass
 ...
 methods
 lookup: (p: MyClass) returns MyClass
 at: (p1: MyClass) put: (p2: MyClass)
 ...
 endClass

One advantage of keyword syntax over the traditional syntax is that it can be employed to identify
arguments. As an example, contrast the following two method invocations. Both methods are intended
to do the same thing; the only difference is that in one case the programmer has chosen to use the
traditional syntax while, in the other, the keyword syntax has been used and the method renamed
accordingly.

 a.compile (b, c, d, e)
 a compile: b withEnvironment: c outputTo: d optimizations: e

In the first, no clue is given about the identity and meaning of the arguments, but in the second, the
reader can make some guesses about the meanings of the arguments. This sort of intuitive help can make
some programs vastly easier to read and understand.

Keyword syntax may seem rather strange at first, but the experience of Smalltalk shows that it works
well in practice. It can be learned easily and is quickly accepted by novice programmers. KPL provides
the keyword syntax, but if desired, the programmer can simply ignore it and continue to program in the
Java / C++ style.

Pointers to Functions

Functions, which were discussed earlier, are defined with a syntax as suggested by this example:

 function sqrt (a: double) returns double
 ...Variable declarations...
 ...Statements...
 endFunction

and invoked with syntax like this:

 x = sqrt(y)

The function definition defines a name, such as “sqrt”, and a function invocation uses the name. If the
function returns a value, as does sqrt, then the invocation must appear in an expression and the value
must be consumed. If the function does not return a value, the invocation occurs in a call statement.

 KPL Overview

September 19, 2007 Page G-44

In KPL, pointers to code may be stored in variables, by using function types. In the next example, a
variable “f” is defined. This variable will contain a pointer to a function.

 var f: ptr to function (double) returns double

Function types may only be used in conjunction with ptr to. The syntax of a function type is:

 ptr to function (Type, Type, ... Type) [returns Type]

Here are some example function types:

 ptr to function (int, int, int) returns Person
 ptr to function (double, int, char)
 ptr to function () returns ptr to Person

A function pointer may be assigned and compared like other pointers. In the following assignment
statement, the variable f is set to point to the sqrt function.

 f = sqrt

The compiler will check to make sure the type of the sqrt function is compatible with the type of
variable f. In particular, the compiler will ensure the number of arguments is the same, the types of the
arguments are pair-wise equal and that, if there is a return value, both sqrt and f have the same return
type. In other words, two function types are incompatible if they differ in any way.

To invoke a function using a function pointer, the same syntax as a normal function invocation is used.
For example, we can write:

 x = f(y)

A variable such as “f” requires only 4 bytes and is represented as a pointer to the machine instructions
for the function. And like other pointers, it may be null if it has not been set to point to any function. If
an attempt is made to invoke a function using a null function pointer, the error will be caught
immediately and the runtime system will print an error message.

Pointers to functions may be copied, stored, passed as arguments to methods and other functions, and
used like any other value. For example, we might wish to store a number of different function pointers in
an array. Here is the definition of an array called “a”:

 type MY_FUN = ptr to function (double) returns double
 var a: array [10] of MY_FUN

We will need to initialize this array:

 a = new array of MY_FUN { 10 of null }

 KPL Overview

September 19, 2007 Page G-45

Then we can store pointers to various functions in the array:

 a[4] = sqrt
 a[7] = cos
 ...

The syntax for invoking functions is

 ID (arg, arg, ... arg)

so to invoke one of the functions in “a” we cannot write:

 x = a[i] (y)

Instead, the code would look like this:

 f = a[i]
 x = f(y)

When a name such as “sqrt” appears in the program, how does the compiler determine whether it
signifies a pointer or a function invocation?

In the assignment statement

 f = sqrt

the compiler will notice that there are no arguments; it therefore assumes “sqrt” means a pointer to code
and it will copy a pointer. Contrast this to a function invocation, such as is shown next, in which
arguments are present.

 x = sqrt (2.25)

The two forms are syntactically very similar and the absence of statement terminators in KPL
necessitates an additional syntactic detail. Since the next thing after any assignment statement may
legally begin with a left parenthesis, KPL has an additional syntax rule that requires the arguments in a
function invocation to be on the same line as the name of the function. This rule disambiguates what
would otherwise be a parsing problem.

More precisely, the rule says that the opening parenthesis must be on the same line. To avoid parsing
problems, the following sort of thing:

 KPL Overview

September 19, 2007 Page G-46

 foo
 (x,
 y,
 z)

must be re-written to:

 foo (
 x,
 y,
 z)

The Assignment Statement

Here are some example assignment statements:

 i = j * 4
 *p = *q
 p.name = "smith"
 a[k] = foo (b,c)

The general form is

 LValue = Expression

where LValue can have any of the following forms:

 ID
 * LValue
 LValue . ID
 LValue [Expression]
 (LValue)

The asterisk in the second form is used to indicate pointer dereferencing. The dot in the third form is
used to indicate field accessing in objects and records. The brackets in the forth form are used to indicate
array accessing. Parentheses can be used for grouping, as in:

 (* p) [i] = x
 * (p [i]) = x

Confusion between = and == by C++/Java programmers has been the source of many bugs.

 if (i = max) ... // A common C++/Java mistake
 if (i == max) ...

 KPL Overview

September 19, 2007 Page G-47

In KPL, the assignment symbol (=) is not an operator, as it is in C++ and Java. In keeping with KPL’s
philosophy of emphasizing program correctness at the expense of conciseness and efficiency, it was
decided that = would not be usable as an expression, which makes the following illegal:

 if i = max ... -- Syntax error!

Also, in KPL integers are not implicitly coerced to type bool. Thus, the above statement must be coded
as:

 i = max -- Use this instead
 if i != 0 ...

Type Conversions

KPL provides several built-in, predefined functions. These use the standard function invocation syntax,
but they are recognized by the compiler as special. The compiler will generate machine instructions to
perform the operation and will insert this code directly inline. There are no corresponding function
definitions for these operations.

Most of these built-in functions perform data type conversions. Here are the built-in conversion
functions. (In the following, assume that the variables i, c, d, b, and p have types int, char, double,
bool, and ptr, respectively.)

 i = charToInt (c) -- Convert ASCII into –128..127
 c = intToChar (i) -- Ignore high-order 24 bits
 d = intToDouble (i) -- Never a loss of accuracy
 i = doubleToInt (d) -- Truncates (e.g., -4.9 => -4)
 b = ptrToBool (p) -- Null=>false, Other=>true

Other built-in functions yield floating point values that cannot be easily obtained otherwise:

 d = posInf () -- Returns positive infinity
 d = negInf () -- Returns negative infinity
 d = negZero () -- Returns –0.0, which differs from 0.0

The compiler will automatically insert the following type conversions whenever they are needed.

 charToInt
 intToDouble
 ptrToBool

Here are some examples, showing the use of automatically inserted type conversions:

 KPL Overview

September 19, 2007 Page G-48

 i = 'A' -- Set i to 65
 d = 123 -- Set d to 123.0
 while p -- Walk a linked list
 ...
 p = p.next
 endWhile

Any other conversion must be programmed explicitly.

 i = 123.0 -- Error: need to use 'doubleToInt'
 c = 65 -- Error: need to use 'intToChar'

Static Type Checking

Next, we consider type checking when objects and classes are involved. For the following examples,
assume that we have two classes called “Person” and “Student”. Assume Student is a subclass of Person.

Here are two variables:

 var per: Person
 st: Student

Each of these variables holds the entire object, not a pointer to the object. Even though Student is a
subclass of Person, the following assignments are not allowed:

 per = st -- Compile-time error!
 st = per -- Compile-time error!

The reason that these assignments is not allowed is that, in general, the variables will have different
sizes. In order to perform the assignments, data would need to be discarded or added. If this is what is
desired, the programmer must code it explicitly.

Next, consider using pointers to the objects:

 var perPtr: ptr to Person
 stPtr: ptr to Student

The following assignment is legal:

 perPtr = stPtr -- Okay

In KPL, any pointer that is declared to have type “ptr to C”, where C is a class, will be guaranteed to
point at runtime to an instance of C or one of C’s subclasses. Likewise, any pointer that is declared to

 KPL Overview

September 19, 2007 Page G-49

have type “ptr to I”, where I is an interface, will be guaranteed to point at runtime to an instance of
some class that implements interface I. This is the same type rule as in Java.

This guarantee is made as long as only safe constructs are used. The programmer can use constructs
(such as asPtrTo, described below) to violate this invariant.

If perPtr points to an instance of class Person and we send a message using perPtr, we will invoke a
method defined in class Person.

 perPtr.meth(...args...)

However, perPtr might point to an instance of one of Person’s subclasses, like Student (or even to an
instance of a subclass of a subclass of Person, and so on). Assume perPtr points to an instance of class
Student and we send the same message. If “meth” has been overridden and redefined in Student, then we
will invoke the new method. Otherwise, if meth is inherited without being overridden, we will invoke
the method defined in Person.

The following assignment is not allowed. While perPtr might point to a Student at runtime, the compiler
cannot guarantee this.

 stPtr = perPtr -- Compile-time error!

Explicit casting, using the asPtrTo construct, is discussed later.

Subtyping Among Array and Record Types

One array may be copied to another. In the following example, all 10 elements will be copied.

 var arr1, arr2: array [10] of Person
 ...
 arr1 = arr2

To make the assignment, the arrays must have the same type. There is no subtype relationship between
array types, even when pointers are used. For example:

 var p1: ptr to array [10] of Person
 p2: ptr to array [10] of Student
 ...
 p1 = p2 -- Compile-time error!
 p2 = p1 -- Compile-time error!

 KPL Overview

September 19, 2007 Page G-50

Likewise, there is no subtype relationship between record types. Two record types are equal if and only
if they have the same fields, with the same names in the same order, and the fields have pair-wise types
that are equal.

 var r1: record
 f1: ptr to Person
 endRecord
 r2: record
 f1: ptr to Person
 endRecord
 r3: record
 f1: ptr to Student
 endRecord
 ...
 r1 = r2 -- Okay
 r1 = r3 -- Compile-time error!

Dynamic Type Checking

Given a pointer variable (like “perPtr” above), KPL provides two built-in operations to determine what
sort of object it points to at runtime: isInstanceOf and isKindOf.

The isInstanceOf operator uses binary infix syntax, where the first operand points to an object and
where the second operand is a class. It returns a bool value. In the next example, isInstanceOf is used to
determine whether perPtr points to an instance of class Student.

 var perPtr: ptr to Person
 ...
 if perPtr isInstanceOf Student
 print ("Got a Student!")
 endIf

The isInstanceOf operator returns true if the first operand points to an instance of the named class.
Note that if perPtr had pointed to an instance of some subclass of Student, the isInstanceOf expression
would have returned false.

To perform the more inclusive test, KPL has another binary infix operator named isKindOf, whose first
operand points to an object and whose second operand is a class or interface. In the next example,
assume that “PartTimeStudent” is a subclass of Student.

 if perPtr isKindOf Student
 print ("Got a Student or PartTimeStudent!")
 endIf

 KPL Overview

September 19, 2007 Page G-51

Note that the isInstanceOf operator in KPL is different from the “instanceof” operator in Java. The
isKindOf operator in KPL behaves the way Java’s “instanceof” behaves.

Pointer Casting

KPL provides a built-in postfix operator called asInteger, which can be used to convert any pointer into
an integer.

 i = p asInteger
 j = p.next asInteger + 4

To convert an integer into a pointer, the asPtrTo operator is used. This is an infix operator whose first
operand is an integer expression and whose second operand is a type, not an expression.

 Expression asPtrTo Type

For example:

 (i+20) asPtrTo array of double

The asPtrTo operator will simply copy the 32-bit value, without any runtime type checking.

 var p1: ptr to Person
 ...
 p1 = i asPtrTo Person

Of course, the static type checking still occurs.

 var p2: ptr to Person
 ...
 p2 = i asPtrTo Person -- Okay
 ...
 p2 = i asPtrTo double -- Compile-time type error

The asPtrTo operator may also be used to cast a pointer from one type to a pointer of another type.

A typical use of pointer casting is shown in the next example. Assume that “perPtr” may point to any
kind of Person, including a Student object. Given a pointer, the programmer may wish to determine if
the pointer points to a Student and, if so, do something with it.

 KPL Overview

September 19, 2007 Page G-52

 var perPtr: ptr to Person
 stPtr: ptr to Student
 ...
 if perPtr isKindOf Student
 stPtr = perPtr asPtrTo Student
 ...Do something using stPtr...
 endIf

Since pointers can also be incremented and decremented directly, pointer casting is not necessary in
some cases, such as:

 p = p + 4 -- Increment a pointer
 p = p – 4 -- Decrement a pointer

Pointers may also be subtracted from one another, resulting in an integer.

 i = p – q -- The difference between two pointers is an int

However, pointers may not be added:

 i = p + q -- Compile-time error

The asInteger operation is safe, but the asPtrTo operation is considered unsafe since an error in its use
may lead to a system crash.

Operators and Expression Syntax

KPL has many of the same operators as C++ and Java. Furthermore, the syntax of expressions is very
similar, so the operators from C++ and Java are parsed using the same precedence and associativity rules
as in C++ and Java.

The various expression operators are listed here, along with a few remarks. The operators are grouped
and listed from lowest precedence to highest precedence.

 KPL Overview

September 19, 2007 Page G-53

 ================= (Lowest Precedence) =================
 All keyword messages, e.g., x at:y put:z
 ===
 All infix operators not mentioned below
 ===
 || Short-circuit OR for bool operands
 ===
 && Short-circuit AND for bool operands
 ===
 | Bitwise OR for int operands
 ===
 ^ Bitwise XOR for int operands
 ===
 & Bitwise AND for int operands
 ===
 == Can compare basic types, pointers,
 != and objects, but not records or arrays
 ===
 < Can compare int, double, and
 <= pointer operands
 >
 >=
 ===
 << Shift int operand left
 >> Shift int operand right arithmetic
 >>> Shift int operand right logical
 ===
 + Can also add ptr+int
 - Can also subtract ptr-int and ptr-ptr
 ===
 *
 / For int, always truncates down; -7/3 => -3
 % Modulo operator for integers
 ===
 Prefix - For int and double operands
 Prefix ! For int and bool operands
 Prefix * Pointer dereferencing
 Prefix & Address-of
 All other prefix methods
 ===

 KPL Overview

September 19, 2007 Page G-54

 . Message Sending: x.foo(y,z)
 . Field Accessing: x.name
 asPtrTo
 asInteger
 arraySize
 isInstanceOf
 isKindOf
 [] Array Accessing: a[i,j]
 ===
 () Parenthesized expressions: x*(y+z)
 constants e.g., 123, "hello"
 keywords i.e., true, false, null, self, super
 variables e.g., x
 function call e.g., foo(4)
 new e.g., new Person{name="smith"}
 alloc e.g., alloc Person{name="smith"}
 sizeOf e.g., sizeOf Person (in bytes)
 ================= (Highest Precedence) ================

Constants and Enums

The programmer may associate names with constant values, using the const construct. Here is an
example:

 const
 MAX = 1000
 HALF_MAX = MAX / 2
 PI = 3.14159265358979
 DEBUG = false
 NEWLINE = '\n'
 MESSAGE = "Hello, world!"
 EMPTY_LIST = null

The compiler must be able to evaluate all of the expressions in const definitions at compile-time.

Note that the value of “HALF_MAX” is an expression, but this is okay since it can be evaluated at
compile-time. The expressions in const definitions may involve only immediate values and other const
definitions, even though they may use a const definition that occurs later in the file. For example:

 KPL Overview

September 19, 2007 Page G-55

 header
 ...
 const
 A = 100
 ...
 const
 B = C*3
 ...
 const
 C = A-9
 ...
 endHeader

The expression after the “=” must have one of the following types:

 int
 double
 bool
 char
 ptr to array of char -- i.e., a string constant
 null

The compiler will make an effort to evaluate all expressions in the program at compile-time. For
example, the following statement

 i = HALF_MAX + 3

will be simplified and compiled identically to

 i = 503

KPL also includes an enum construct. Here is an example:

 enum NO_ERR, WARNING, NORMAL_ERR, FATAL_ERR

The enum is shorthand for a sequence of const definitions, defining sequential integer constants. In this
example, the above enum is equivalent to the following:

 const
 NO_ERR = 1
 WARNING = 2
 NORMAL_ERR = 3
 FATAL_ERR = 4

The default starting value is 1, but you may specify a different starting value. The general form is:

 enum ID [= ...Expression...] { , ID }

 KPL Overview

September 19, 2007 Page G-56

The Expression must be an integer expression which can be evaluated at compile-time. For example:

 enum A=charToInt('A'), B, C, D, E

Both const and enum constructs may appear in either the header file or the code file. The placement of
the const or enum determines the visibility of the names it defines. The recommendation is that the
names defined const and enum definitions be fully capitalized, as in the above examples.

Errors and Try-Throw-Catch

KPL has a try-throw-catch mechanism like Java, but with somewhat simpler semantics.

The try statement includes a body of statements and a number of catch clauses. Here is an example:

 try
 ...Body Statements...
 catch myError (i: int)
 ...Statements...
 catch error2 (a,b: char)
 ...Statements...
 catch FATAL_ERR ()
 ...Statements...
 endTry

As in Java, the “body statements” are executed first. If no error is thrown, none of the catch clauses is
executed. If an error is thrown during the execution of the body statements, then a matching catch is
searched for.

If a matching catch clause is found in the try statement, the corresponding error handling statements are
executed. The body statements are never re-entered or returned to; instead execution continues with the
statement after the endTry. It is also possible that the error handling statements in the catch clause will
contain a return, break, continue, or throw statement, which will cause execution to leave the try
statement.

If no matching catch clause is found, then the try statement itself terminates and the error is propagated
upward and outward.

An error can be thrown explicitly by executing a throw statement. Here is an example throw statement:

 throw myError (5)

An error may also be thrown by the runtime system during the course of program execution.

 KPL Overview

September 19, 2007 Page G-57

Argument values may be passed to the error handling statements. In KPL, the throw-catch process is
similar to a function invocation since argument values are copied to parameter variables. However,
unlike Java, there is no “error object” and errors are not related in any hierarchy.

In KPL, each error must be declared. Here is an error declaration:

 errors
 myError (i: int)
 error2 (a,b: char)
 FATAL_ERR ()

The error declaration tells the compiler how many and what types of arguments are expected when a
given error is thrown or caught. The compiler then checks the throw statements and catch clauses,
much like it checks function definitions and call statements.

An error declaration may occur in either a header or code file. If an error is declared in the code file, it
may only be thrown and caught by code in that package. If declared in the header file, the error can be
thrown and/or caught in any package that uses that package. Each error must be declared exactly once.

In Java, the try statement has a “finally” clause, with rather complex semantics. KPL does not have a
“finally” clause.

In Java, each method must say which errors it might throw. These are listed in the method header after
the “throws” keyword and the Java compiler ensures that all errors will be caught by some try
statement. There is no corresponding construct in KPL. Thus, it is possible for a method or function to
throw an error that is uncaught. When this occurs, the runtime system will throw a second general-
purpose “uncaught-error” error. If this too is not caught, a fatal runtime error will occur and execution
will halt.

Regarding Naming and Scope Rules

Many programming languages allow lexical scoping of variable declarations: variables in inner scopes
will hide variables declared in outer scopes. For example:

 begin -- This is not KPL
 var x: int
 ...
 begin
 var x: int
 ...
 end
 end

 KPL Overview

September 19, 2007 Page G-58

KPL adopts the exact opposite philosophy: in KPL, name hiding is not allowed. The names of
parameters and locals must be different and must be different from global variables. Also, things of
different sorts, like types, constants, errors, functions, classes, interfaces, and global variables must all
have different names.

For example, a type definition and a global variable may not have the same name:

 type t = record ... endRecord
 var t: int -- Compile-time error

Here is another example, showing that local names may not collide with or hide global variable names.

 var i: int
 ...
 function foo (...)
 var i: int -- Compile-time error
 ...
 endFunction

While this might seem overly restrictive, the KPL scoping rules are intended to make programs clearer
and more reliable. Having multiple entities with the same name may introduce confusion and increase
opportunities for bugs. In KPL, the programmer has to do a little more work when writing programs, but
the resulting programs are easier to read and understand.

After all, it is not hard to ensure that all variables have different names. A variable name can easily be
made unique by adding a character or two to its name.

 var i2: int

When some package uses several other packages, it is possible that two of the used packages both
contain variables with the same name. In such case a “name collision” occurs. For example, assume that
package X uses packages A and B. Assume that package A defines a variable called “myVar” and
package B defines another variable, by coincidence also called “myVar”. Within package X, a problem
arises: what does “myVar” refer to?

In KPL, name collisions are not allowed. Within each package, each different entity must have a
different name.

Since it is not always practical to modify any package at will, the uses clause has additional syntax that
allows entities from another package to be renamed. The renaming clause is used to avoid name
collisions.

In this example, package X could be coded like this:

 KPL Overview

September 19, 2007 Page G-59

 package X
 uses
 A renaming myVar to myVarA,
 B renaming myVar to myVarB
 ...
 endPackage

Within package X, the variable from A will be referred to using the name “myVarA” and the variable
from B will be called “myVarB”.

The general form of the uses clause is this:

 uses OtherPackage { , OtherPackage }

Where OtherPackage has this form:

 ID [renaming ID to ID { , ID to ID }]

A package may define and export the following kinds of things for use in other packages.

 constants
 types
 global variables
 functions
 classes
 interfaces
 errors

Within any package, all of the above entities must have unique names, regardless of whether they are
defined in the package or inherited from another package, and regardless of whether any reference to
them actually occurs in the package. The renaming clause can be used to rename any of these, as
necessary, to avoid name collisions.

Parameterized Classes

Classes may be parameterized. Here is an example with two parameterized classes:

 KPL Overview

September 19, 2007 Page G-60

 class List [T:anyType]
 superclass Object
 fields
 first: ptr to ListItem [T]
 last: ptr to ListItem [T]
 methods
 Prepend (p: ptr to T)
 Append (p: ptr to T)
 Remove () returns ptr to T
 IsEmpty () returns bool
 ApplyToEach (f: ptr to function (ptr to T))
 endClass

 class ListItem [T:anyType]
 superclass Object
 fields
 elementPtr: ptr to T
 next: ptr to ListItem [T]
 endClass

The idea is that instances of class “List” will contain a number of elements of type T, where the type of
the elements can be any type. We can have lists of integers, lists of Person objects, and so on.

Each list will be represented with a single instance of class “List” which will contain pointers to the first
and last elements in a linked list of instances of class “ListItem”. Each time an element is added to the
list, we will create a new ListItem object and link it into the list. We want to be able to place any kind of
thing in the list, so this program stores and manipulates pointers to the elements, not the elements
themselves. Each ListItem will point to a single element and also to the next ListItem in the list.

Whenever we use the List type, we must provide a “type argument” for the parameter T. For example,
we can define a list of Persons, where Person is a class defined elsewhere:

 var perList: List [Person]

We can also use other kinds of lists:

 var intList: List [int]
 boolList: List [bool]
 otherList: List [AnotherClass]
 listOfLists: List [List [anyType]]

Every item on “perList” list will be a Person, or a subclass of Person. Every item on “intList” will be an
int, and so on.

We can create new instances of a parameterized class using either new or alloc, just as with any non-
parameterized class.

 KPL Overview

September 19, 2007 Page G-61

 perList= new List[Person] {first = null, last = null}

We can manipulate the instances of parameterized classes in the same ways as non-parameterized
classes. For example, we can send messages to the List object to add and remove elements from the list.
Assume “perPtr”points to a Person object; we can add it to the list with this code:

 var perPtr: ptr to Person = ...
 ...
 perList.Append (perPtr)

Likewise, we can add elements to the “intList”.

 var i: int = 12345
 ...
 intList.Append (&i)

Here is the code for the Append method:

 behavior List
 ...
 method Append (p: ptr to T)
 var item: ptr to ListItem [T]
 item = alloc ListItem [T] { next = null, elementPtr = p }
 if self.IsEmpty ()
 first = item
 last = item
 else
 last.next = item
 last = item
 endIf
 endMethod
 ...
 endBehavior

Within the implementation part of a parameterized class (i.e., within the behavior construct), we can use
type parameters. In the above example, we see “T” being used as a type in the implementation of the
List methods.

The List class also has a method called “ApplyToEach”. This method is passed a function. It runs
through the list and invokes that function once on each element in the list. Assume that we have a
function that prints a Person object.

 function printPerson (p: ptr to Person)
 print ("A Person with name = ")
 print (p.name)
 print ("\n")
 endFunction

 KPL Overview

September 19, 2007 Page G-62

In the next statement, this function is invoked for each Person in the list, thereby printing all their
names.

 perList.ApplyToEach (printPerson)

Here is the code for method “ApplyToEach”:

 method ApplyToEach (f: ptr to function (ptr to T))
 var p: ptr to ListItem [T]
 for (p = first; p; p = p.next)
 f (p.elementPtr)
 endFor
 endMethod

The compiler will type-check all expressions involving parameterized types. If the programmer makes a
type error, it will be caught at compile time. For example, an attempt to add a Person to a list of integers
will be caught:

 intList.Append (perPtr) -- Compile-time error!

Likewise, an attempt to apply “printPerson” to the elements of “intList” is in error:

 intList.ApplyToEach (printPerson) -- Compile-time error!

The general form of a class specification was given earlier as:

 class ID [...Type Parameters...]
 ...
 endClass

The TypeParameters are optional. If present, they are enclosed in brackets. In more detail, here is how a
class definition begins:

 class ID ['[' ID: type, ID: type, ... ID: type ']']
 ...
 endClass

Within the brackets is a list of one or more type parameters. Each type parameter has an associated
“constraint type” which follows the colon. Here are examples:

 class List [T:anyType] ... endClass
 class TaxableList [Txbl:Taxable] ... endClass
 class Mapping [Key:Hashable, Value:anyType] ... endClass

Whenever a parameterized class is instantiated, the type argument must be a subtype of the constraint
type. In this example, “Taxable” and “Hashable” must be interfaces or classes defined elsewhere. The

 KPL Overview

September 19, 2007 Page G-63

keyword anyType signifies a predefined type that is the supertype of all other types. When used as a
constraint type, it allows any type to be used when the parameterized class is instantiated.

Let us assume that “Taxable” is an interface. Whenever “TaxableList” is instantiated, the type argument
must be a class or interface that implements the “Taxable” interface. Assume that “Company” is a class
that implements the Taxable interface and that “Vehicle” is a class that does not implement the Taxable
interface. Then a TaxableList of “Company”s is okay, but a TaxableList of “Vehicle”s would be in
error.

 var listA: TaxableList [Company]
 listB: TaxableList [Vehicle] -- Compile-time error!

Now assume that the Taxable interface includes a “ComputeTaxes” message. All classes that implement
the Taxable interface will have to provide a method for ComputeTaxes, although different classes may
implement ComputeTaxes differently. Within the implementation of TaxableList, the message
ComputeTaxes may be sent to any variable with type “Txbl”, since whatever kind of object it is, it must
implement the Taxable interface. Therefore, it must understand the message.

The KPL compiler implements parameterized classes using shared code. In other words, there will be
only one copy of the code for methods like Append and ApplyToEach. This code will be shared and
used by all lists, whether they are lists of Persons, list of integers, or whatever.

Parameterized interfaces can also be defined, in much the same way as parameterized classes. For
example:

 interface Collection [T:anyType]
 messages
 Append (p: ptr to T)
 Size () returns int
 IsEmpty () returns bool
 endInterface

Given the above definition of Collection, we could alter the definition of List to make it implement
Collection:

 class List [T:anyType]
 implements Collection [T]
 superclass Object
 fields
 ...
 methods
 ...
 endClass

The Collection interface requires a method called “Size”, which was not in our original definition of
List. The compiler will produce an error, unless we add a Size method to class List.

 KPL Overview

September 19, 2007 Page G-64

Parameterized classes and interfaces are most useful in the implementation of general-purpose data
structures such as sets, lists, look-up tables, and so on. Without parameterized classes, these sorts of
classes, which must handle arbitrary types of data, must work around the compiler’s type-checking
system. While this can be done in KPL (with features like ptr to void and asPtrTo), any program bugs
may cause the program to crash catastrophically. However, if parameterized classes are used, the
compiler can type-check much more of the program and thereby increase the reliability of the program.

The Debug Statement

KPL contains a statement which consists of the single keyword debug. Here is an example piece of
code, containing a debug statement:

 if perPtr
 i = 123456
 debug
 x = f1 (3)
 endIf

The debug statement has two uses.

First, when executed, the debug statement will immediately halt program execution. The statement is
compiled into the “debug” machine instruction, which will cause the BLITZ virtual machine to cease
emulation and enter command mode. For example, if the above code is executed, the user will see the
following:

 **** A 'debug' instruction was encountered *****
 Done! The next instruction to execute will be:
 0015bc: 87d0001a or r0,0x001a,r13 ! decimal: 26, ascii: ".."
 >

The user may then enter the “stack” command to see where execution was suspended and can then
execute the “go” command to resume execution.

 > st
 Function/Method Frame Addr Execution at...
 ==================== ========== =====================
 main 00FFFEF8 test0.c, line 25
 Bottom of activation frame stack!
 > g
 Beginning execution...

The second use of the debug statement is when the programmer wishes to examine the target assembly
code produced by the compiler. Since the target code can be lengthy and difficult to navigate, the debug
statement can be used to flag a location of interest in the target file.

 KPL Overview

September 19, 2007 Page G-65

Below is a section of the target file produced by the KPL compiler for the above source code. This is a
small portion of a large file, but it is easy to locate the code of interest. When examining this, note that
all material following an exclamation (!) is commenting added by the compiler.

 ! IF STATEMENT...
 mov 23,r13 ! source line 23
 ! if _Global_perPtr == 0 then goto _Label_21 (int)
 set _Global_perPtr,r1
 load [r1],r1
 mov 0,r2
 cmp r1,r2
 be _Label_21
 ! THEN...
 ! ASSIGNMENT STATEMENT...
 mov 24,r13 ! source line 24
 ! i = 123456 (4 bytes)
 set 123456,r1
 store r1,[r14+-52]
 ! -------------------- DEBUG --------------------
 mov 25,r13 ! source line 25
 debug
 ! ASSIGNMENT STATEMENT...
 mov 26,r13 ! source line 26
 ! Prepare Argument: offset=8 value=3 sizeInBytes=4
 mov 3,r1
 store r1,[r15+0]
 ! Call the function
 call _function_11_f1
 ! Retrieve Result: targetName=x sizeInBytes=4
 load [r15],r1
 store r1,[r14+-56]
 ! END IF...
 _Label_21:

The instruction following the “debug” instruction is a “mov” instruction which is a synthetic instruction.
The instruction

 mov 26,r13

is expanded by the assembler into

 or r0,26,r13

which is what was displayed as the “next instruction” when execution halted after the “debug”.

 KPL Overview

September 19, 2007 Page G-66

Conclusion

No programming language is perfect and no programming language can address all potential
applications with equal facility. The KPL language has been designed for students to use to write a
simple operating system within a college course of one or two terms. The features which have been
included in the language have been selected with this in mind.

The KPL philosophy emphasizes reliability of the resulting programs at the expense of all other
considerations. When reliability is emphasized, one effect is that overall coding time should be reduced.

One way this philosophy is manifested is in the greater degree of runtime checking. For example, all
pointer and array operations are checked at runtime and errors are caught and reported immediately.
Another manifestation is that the language was designed with the explicit aim of encouraging program
readability, even if this seems to make the language more difficult to write.

Simplicity in programming languages is always a good thing, leading to better compilers, easier
programming, greater efficiency, and increased program reliability. The overall goal of the BLITZ
project is to create a simplified, but real, operating system for students to study. It is the hope that the
KPL programming language is simple enough to be both useable and fun to code in, while being
complete enough for the real work of implementing operating system kernel code.

