
CS-321 Compiler Design

 Page 1

Homework 4 – LL Parsing
Due Date: Thursday, November 3, 2005, 2:00

Your Name:____________________________

Problem 1 (5 points) Programs can contain errors at four different levels (and the compiler can
catch errors at only three of these). What are these different four kinds of errors?

Problem 2 (5 points) Consider the following grammar.

S → D C  f C
C → C b  a b
D → g D  g e

Which symbols are terminals? __________________
Which symbols are nonterminals? __________________
Problem 3 (5 points) What is the relationship between the set of regular languages and the set
of context-free languages?

__
__
Problem 4 (2 points)
Does a top-down parser find a left-derivation or a right-derivation? ________
Does a bottom-up parser find a left-derivation or a right-derivation? ________
Problem 5 (5 points) A predictive parser is a top-down parser that never does what?

CS-321 Compiler Design

 Page 2

Problem 6 (15 points, 5 each) Consider the following grammar.
S → (L)  a
L → S , L  S

Draw parse trees for the following three sentences:
Problem 6-a: (a , a)
Problem 6-b: (a , (a , a))
Problem 6-c: ((a, a , a) , (a))

Please STAPLE a separate sheet of paper to your homework. Be sure to label your answer by
writing the problem number clearly!

Problem 7 (15 points, 5 each) Show a leftmost derivation for each.
(a , a)

(a , (a , a))

((a, a , a) , (a))

Problem 8 (15 points, 5 each) Show a rightmost derivation for each.
(a , a)

(a , (a , a))

((a, a , a) , (a))

CS-321 Compiler Design

 Page 3

Problem 9 (5 points) Consider the following grammar.
S → a S b S
 → b S a S
 → ε

Show that this grammar is ambiguous by constructing two different parse trees for the sentence
a b a b

Please STAPLE a separate sheet of paper to your homework. Be sure to label your answer by
writing the problem number clearly!

Problem 10 (5 points) Show that this grammar is ambiguous by constructing two different
leftmost derivations for

a b a b

Problem 11 (5 points) Show that this grammar is ambiguous by constructing two different
rightmost derivations for

a b a b

Problem 12 (5 points) Eliminate left-recursion in this grammar:

S → S b  c

Problem 13 (10 points) Eliminate left-recursion in this grammar:

S → S a  S b  S c  d  e  f

CS-321 Compiler Design

 Page 4

Problem 14 (10 points) Eliminate left-recursion in this grammar:
S → A  b B
A → A c  A d  B  b A
B → f A  f b  g

Problem 15 (5 points) Construct a transition diagram (in the style shown in the lecture notes)
for this grammar:

S → (L)  a
L → S , L  S

Please STAPLE a separate sheet of paper to your homework. Be sure to label your answer by
writing the problem number clearly!

Problem 16 (5 points) In the non-recursive predictive parsing algorithm, what two data
structures do we use besides the input stream of tokens?

Problem 17 (8 points) In the non-recursive predictive parsing algorithm, what can go onto the
stack?

What indexes the columns of the table?

What indexes the rows of the table?

What are the kinds of entries that can go into the table?

Problem 18 (5 points) In the algorithm to construct the table for the non-recursive predictive
parser, if the grammar in not LL(1), what will this algorithm try to do?

Problem 19 (2 points) Can a non-recursive predictive parser handle all LL(1) grammars?

CS-321 Compiler Design

 Page 5

Problem 20 (5 points) How would you describe the set of languages that can be recognized by

a predictive parser (either recursive or not)? ___________
Problem 21 (10 points) Find FIRST(S) and FOLLOW(S) for this grammar:

S → d S a S
 → c S b S
 → ε

Problem 22 (10 points) Find the FIRST and FOLLOW sets for this grammar:

S → a S b B  g A
A → C B  c A h
B → d  f C  C
C → ε

FIRST (S) = __________________________________
FIRST (A) = __________________________________
FIRST (B) = __________________________________
FIRST (C) = __________________________________
FOLLOW (S) = __________________________________
FOLLOW (A) = __________________________________
FOLLOW (B) = __________________________________
FOLLOW (C) = __________________________________

CS-321 Compiler Design

 Page 6

Problem 23 (10 points, 2 each) Using the PCAT grammar for expressions (including the PCAT
rules for associativity and precedence), add parentheses to make the order of evaluation clear.
The first one is done for you as an example.

a + b + c + d
ANSWER: ((a + b) + c) + d

x * y / z * w

x * y – a * z – b

a + x < y + b < z * c

a + b * c < d

a > b – c * d

Problem 24 (24 points, 3 each) Using the PCAT grammar for expressions (including the PCAT
rules for associativity and precedence), draw abstract syntax trees for each of the following
expressions. Please STAPLE a separate sheet of paper to your homework. Be sure to label
your answer by writing the problem number clearly! The first one is done for you as an
example.

(24-Example) ((a + b) + c) + d

+

+

+

a b

c

d

CS-321 Compiler Design

 Page 7

(24-a) a + (b + (c + d))

(24-b) a – b / c

(24-c) a / b – c

(24-d) a < b < c < d

(24-e) – a + – b

(24-f) not a or not b and not c

(24-g) – (a + b) * c – (d < e) * f

(24-h) x + y * – z * (w – v)

Problem 25 (15 points, 3 each) Using the PCAT rules for associativity and precedence, remove
all redundant and unnecessary parentheses from the following expressions. The first one is done
for you as an example.

((a + b) + c)+ d
ANSWER: a + b + c + d

(x+ (b * c))

((–(a-b))*c) + d

(x * y) * (z * w)

(x < y) < (z * a)

–(–(–(–(a))) – –(b – –(c – d)))
