
Date Printed: October 18, 2005 1

The PCAT Programming Language
Reference Manual

Andrew Tolmach and Jingke Li
Dept. of Computer Science
Portland State University

September 27, 1995

Revisions: Harry Porter

September 22, 2005

1 Introduction
The PCAT language is a small imperative programming language with nested functions, record
values with implicit pointers, arrays, integer and real variables, and a few simple structured control
constructs.

This manual gives an informal definition of the language. Fragments of syntax are specified in
BNF throughout this document as needed; the complete context-free grammar of PCAT is given in
Section 12.

2 Lexical Issues
PCAT’s character set is the standard ASCII set. PCAT is case sensitive; upper and lower-case
letters are not considered equivalent.

Whitespace (blank, tab, or newline characters) may be used to separate tokens and to improve
readability, but whitespace is otherwise ignored. To eliminate ambiguity however, whitespace is
required (1) between two adjacent keywords or identifiers, (2) between a keyword and a number
following it, and (3) between an identifier and a number following it. No whitespace characters are
required between a number and a keyword following it, since this causes no ambiguity. Delimiters
and operators don’t need whitespace to separate them from their neighboring tokens on either side.
Whitespace characters may not appear within any token except a string.

Comments are enclosed in the pair (* and *); they cannot be nested. Any character is legal in a
comment, including new-line characters. Of course, the first occurrence of the sequence of
characters *) will terminate the comment. Comments may appear anywhere a token may appear;
they are self-delimiting; i.e. they do not need to be separated from their surroundings by
whitespace.

2.1 Tokens
The following are reserved keywords. They must be written in lower case. (For clarity, keywords
are shown in boldface throughout this document.)

Date Printed: October 18, 2005 2

and do for not read type
array else if of record var
begin elseif is or return while
by end loop procedure then write
div exit mod program to

Constants are either integer, real, or string. Integers contain only digits; they must be in the range 0
to 231-1. Reals contain a decimal point; a digit is required before the decimal point, but not
afterwards. Strings begin and end with a double quote (") and contain any sequence of printable
ASCII characters, except double quotes. Strings may not contain unprintable characters such as
tabs or newlines. String literals are limited to 255 characters in length, not including the delimiting
double quotes.

Using a regular expression notation in which “|” represents set union, “{}” represents Kleene
closure, NOT represents set complement, and literal symbols are enclosed in single quotes ('), the
above definitions may be made more precise:

letter = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' |
 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' |
 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' |
 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' |
 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' |
 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' |
 '9'

INTEGER = digit {digit}
REAL = digit {digit} '.' {digit}
STRING = '"' {NOT('"')} '"'

Note that neither an integer nor a real can be negative, since there is no provision for a minus sign.

Identifiers are strings of letters and digits starting with a letter, excluding the reserved keywords.
Identifiers can be specified as follows, where RESERVED represents the set of reserved keywords
listed above:

ID = (letter {letter | digit}) - RESERVED

Identifiers are limited to 255 characters in length.

The following are the remaining operators and delimiters:

operator = ':=' | '+' | '-' | '*' | '/' | '<' | '<=' |
'>' | '>=' | '=' | '<>'

delimiter = ':' | ';' | ',' | '.' | '(' | ')' | '[' | ']' |
'{' | '}'

3 Programs
A program is the unit of compilation for PCAT. Programs have the following syntax:

Program → program is Body ';'
Body → {Declaration} begin {Statement} end

Date Printed: October 18, 2005 3

(In the context-free grammar notation used in this document, braces {} are used to mean “zero or
more occurrences” and brackets [] are used for optional items. The entire grammar is repeated for
easy reference in Section 12.)

A program is executed by executing its statement sequence and then terminating.

Each file processed by the compiler will consist of exactly one complete program; there is no
facility for linking multiple programs or for separate compilation of parts of a program.

4 Declarations
All identifiers occurring in a program must be introduced by a declaration, except for a small set of
predefined identifiers: real, integer, boolean, true, false (see Section 5.2), and nil (see
Section 5.4).

Declarations serve to specify whether the identifier represents a type, a variable, or a procedure (all
of which live in a single name space) or a record field name (which live in separate name spaces; see
Section 5.4).

Declaration → var VarDecl {VarDecl}
→ type TypeDecl {TypeDecl}
→ procedure ProcedureDecl {ProcedureDecl}

Declarations may be global to the program or local to a particular procedure. The scope of a
declaration extends roughly from the point of declaration to the end of the enclosing procedure (for
local declarations) or to the end of the program (for global declarations). A local declaration of an
identifier hides any outer declarations and makes them inaccessible in the inner scope. Within a
single scope, all variables, types, and procedures must have unique names. Thus, within a single
procedure, the same identifier cannot be used to name both a variable and a type.

To handle recursive declarations, this scoping rule is modified slightly for types (see Section 5) and
procedures (see Section 8).

5 Types
PCAT is a strongly-typed language; every expression has a unique type, and types must match at
assignments, calls, etc. (except that an integer can be used where a real is expected; see Section 5.1.)

Types may be basic types or may be produced from existing types using the type constructors
array or record. PCAT uses the name equivalence model for types: two types are equal if and
only if they have the same name.

5.1 Basic Types
There are three built-in, basic types: integer, real, and boolean; these can not be redefined
by type declarations. Integer constants all have type integer, real constants all have type real,
and the built-in values true and false have type boolean.

Integer and real collectively form the numeric types. An integer value may be used
whenever a real is expected; the compiler will automatically insert a conversion if necessary. The
boolean type has no relation to the numeric types, and a boolean value cannot be converted to
or from a numeric value.

Date Printed: October 18, 2005 4

5.2 Constructed Types and Type Declarations
Each array type or record type must be defined and given a name in a Type Declaration. For
example:

type MyArr is array of MyRec;
 MyRec is record
 id: integer;
 next: MyRec;
 end;

Here are the grammar rules relating to type declarations:

Declaration → type TypeDecl {TypeDecl}
TypeDecl → TypeName is CompoundType ';'
TypeName → ID
CompoundType → array of TypeName

→ record FieldDecl {FieldDecl} end
FieldDecl → ID ':' TypeName ';'

Only array types and record types may be defined in type declarations. Types (whether basic or
compound) may not be renamed or given aliases.

5.2.1 Array Types
An array is a structure consisting of zero or more elements of the same element type. The elements
of an array can be accessed by dereferencing using an index, which ranges from 0 to the length of
the array minus 1. The length of an array is not fixed by its type, but is determined when the array
is created at runtime. (The creation and allocation of new arrays at runtime is discussed in Section
10.7.) It is a checked runtime error to dereference outside the bounds of an array.

5.2.2 Record Types
A record type is a structure consisting of a fixed number of fields of generally different types. The
record type declaration specifies the name and type of each field. Field names are used to initialize
and access the record’s components; the fields for each record type form a separate namespace, so
different record types may reuse the same field names.

The special built-in value nil belongs to every record and array type. It is a checked runtime error
to dereference a field from a nil record reference. The creation (i.e., allocation) of new records at
runtime is discussed in Section 10.6.

5.2.3 Array and Record Values
Arrays and records are always manipulated by value, so a value of array or record type is really a
pointer to a heap object containing the array or record, though this pointer cannot be directly
manipulated by the programmer. Thus, a record that appears to contain other records as values of its
fields actually contains pointers to these records. In particular, a record may contain (a pointer to)
itself in one of its fields, i.e., the record type may be recursive.

To permit mutually recursive types, the set of all type declarations in a single body (i.e., within a
single procedure or within the declaration section of the program body) is taken to be a recursive
set; the scope of all the declarations in the set begins at the first declaration.

Date Printed: October 18, 2005 5

Records and arrays have infinite lifetimes; the heap object containing a record or array exists from
the moment it is allocated when its defining expression is evaluated (see Sections 10.6 and 10.7)
until the end of the program. In principle, a garbage collector could be used to remove heap objects
when no more pointers to them exist, but this would be invisible to the PCAT programmer.

6 Constants
There are three built-in constant values: true and false of type boolean, and nil, which
belongs to every record type and array type. There is no provision for user-defined constants.

7 Variables
Variables are declared thus:

Declaration → var VarDecl {VarDecl}
VarDecl → ID { ',' ID} [':' TypeName] ':=' Expression ';'

Every variable must have an initial value, given by Expression. The optional TypeName can be
omitted whenever the variable’s type can be deduced from the initial value, i.e., in all cases except
when the initial value is nil.

Variable initializing expressions are evaluated one at a time, in order; they are never recursive
although the initializing expression in one variable declaration may make use of another variable
declared previously in the same scope.

8 Procedures
Procedures are declared thus:

Declaration → procedure ProcedureDecl {ProcedureDecl}
ProcedureDecl → ID FormalParams [':' TypeName] is Body ';'
FormalParams → '(' FormalSection {';' FormalSection} ')'

→ '(' ')'
FormalSection → ID {',' ID} ':' TypeName
Body → {Declaration} begin {Statement} end

Procedures encompass both proper procedures, which are invoked by the execution of a procedure
“call statement” and do not return a value, and function procedures, which are invoked by the
evaluation of a “function call expression” and return a value which becomes the value of the call
expression. Proper procedure declarations are distinguished by the lack of a return type (see also
the return statement discussed in Section 11.10).

A procedure may have zero or more formal parameters, whose names and types are specified in the
procedure declaration, and whose actual values are specified when the procedure is called. The
scope of formal parameters is the body of the procedure (including its local declarations).
Parameters are always passed by value.

The set of all procedures declared in a single namespace (i.e., the main program for globally
declared procedures or the surrounding procedure for nested procedures) is treated as (potentially)
mutually recursive; that is, the scope of each procedure name begins at the point of declaration of
the first procedure in the namespace, and includes the bodies of all the procedures in the namespace
as well as the body of the enclosing procedure (or, for top-level procedures, the whole program).

Date Printed: October 18, 2005 6

9 L-Values
An L-Value is a location whose value can be either read or assigned to. Variables, procedure
parameters, record fields, and array elements are all L-Values.

LValue → ID
→ LValue '[' Expression ']'
→ LValue '.' ID

The square brackets notation ([]) denotes array element dereferencing; the expression within the
brackets must evaluate to an integer expression within the bounds of the array.

The dot notation (.) denotes record field dereferencing; the identifier after the dot must be a field
name within the record.

10 Expressions
10.1 Simple expressions

Expression → Number
→ LValue
→ '(' Expression ')'

Number → INTEGER | REAL

A number expression evaluates to the literal value specified. Note that reals are distinguished from
integers by lexical criteria (see Section 2). An L-Value expression evaluates to the current contents
of the specified location. Parentheses can be used to alter precedence in the usual way.

10.2 Arithmetic operators
Expression → UnaryOp Expression

→ Expression BinaryOp Expression
UnaryOp → '+' | '-'
BinaryOp → '+' | '-' | '*' | '/' | div | mod

Operators +, -, and * require integer or real arguments. If both arguments are integers, an integer
operation is performed and the integer result is returned; otherwise, any integer arguments are
coerced to reals, a real operation is performed, and the real result is returned. Operator / requires
integer or real arguments, coerces any integer arguments to reals, performs a real division, and
always returns a real result. Operators div (integer quotient) and mod (integer remainder) take
integer arguments and return an integer result.

10.3 Logical operators
Expression → UnaryOp Expression

→ Expression BinaryOp Expression
UnaryOp → not
BinaryOp → or | and

These operators require Boolean operands and return a Boolean result. The operators or and and
are “short-circuit” operators; they will not evaluate the right-hand operand if the result is
determined by the left-hand one.

Date Printed: October 18, 2005 7

10.4 Relational operators
Expression → Expression BinaryOp Expression
BinaryOp → '>' | '<' | '=' | '>=' | '<=' | '<>'

These operators all return a Boolean result. These operators all work on numeric arguments; if both
arguments are integer, an integer comparison is made; otherwise, any integer argument is coerced to
real and a real comparison is made. Operators = and <> also work on pairs of Boolean arguments,
or pairs of record or array arguments of the same type; for the latter, they test “pointer equality”
(that is, whether two records or two arrays are the same instance, not whether they have the same
contents).

10.5 Function call
Expression → ID Arguments
Arguments → '(' Expression {',' Expression} ')'

→ '(' ')'

This expression is evaluated by evaluating the argument expressions left-to-right to obtain actual
parameter values, and then executing the function procedure specified by ID with its formal
parameters bound to the actual parameter values until a return statement is executed, returning a
value.

10.6 Record construction
A record constructor expression is used to allocate a new record on the heap, initialize each of its
fields, and return a pointer to the newly created record.

Expression → ID FieldInits
FieldInits → '{' ID ':=' Expression { ';' ID ':=' Expression} '}'

If typeid is the name of a record type, then the record constructor typeid {id1:=expr1,
id2:=expr2, ...} evaluates each expression left-to-right, and then creates a new record instance of
type typeid with its named fields initialized to the resulting values. The names and types of the field
initializers must match those of the record type named typeid, though they need not be listed in the
same order.

10.7 Array construction
An array constructor expression is used to allocate a new array on the heap, initialize each of its
elements, and return a pointer to the newly created array.

Expression → ID ArrayValues
ArrayValues → '{' '{' ArrayValue { ',' ArrayValue} '}' '}'
ArrayValue → [Expression of] Expression

If typeid is the name of an array type, then the array constructor typeid {{ exprn1 of exprv1,
exprn2 of exprv2, ... }} first evaluates each pair of expressions in left-to-right order to yield a
list of pairs of integer counts ni and initial values vi, and then creates a new array instance of typeid
whose contents consist of n1 copies of v1, followed by n2 copies of v2, etc. If any of the counts is
1, it may be omitted. For example, the specification {{1, 2 of 6, 3 of 9, 5}} yields an
array of length 7 with contents 1, 6, 6, 9, 9, 9, 5.

Date Printed: October 18, 2005 8

10.8 Precedence and Associativity
Function call and parenthesization have the highest (most binding) precedence; followed by the
unary operators; followed by *, /, mod, div, and and; followed by +, -, and or; followed by the
relational operators.

The arithmetic binary operators are all left-associative.

11 Statements
11.1 Assignment

Statement → LValue ':=' Expression ';'

The expression is evaluated and stored in the location specified by the L-Value.

Assigning a record or array value actually assigns a pointer to the record or array variable on the
left-hand side.

11.2 Procedure Call
Statement → ID Arguments ';'
Arguments → '(' Expression {',' Expression} ')'

→ '(' ')'

This statement is executed by evaluating the argument expressions left-to-right to obtain actual
parameter values, and then executing the proper procedure specified by ID with its formal
parameters bound to the actual parameter values until a return statement (with no expression) is
executed.

11.3 Read
Statement → read '(' LValue {',' LValue} ')' ';'

Executing this statement reads numeric literals from standard input, evaluates them, and assigns the
resulting values into the locations specified by the given L-Values. The L-Values must have type
integer or real, and their types guide the evaluation of the corresponding literals. Input literals are
delimited by whitespace, and the last one must be followed by a carriage return.

11.4 Write
Statement → write WriteArgs ';'
WriteArgs → '(' WriteExpr {',' WriteExpr} ')'

→ '(' ')'
WriteExpr → STRING

→ Expression

Executing this statement writes the values of the specified expressions (which must be simple
integers, reals, Booleans, or string literals) to standard output, followed by a newline character.

Date Printed: October 18, 2005 9

11.5 If-Then-Else
Statement → if Expression then {Statement}

{ elseif Expression then {Statement} }
[else {Statement}] end ';'

This statement specifies the conditional execution of guarded statements. The expression preceding
a statement sequence, which must evaluate to a Boolean, is called its guard. The guards are
evaluated in sequence, until one evaluates to true, after which its associated statement sequence is
executed. If no guard is satisfied, the statement sequence following the else (if any) is executed.

11.6 While
Statement → while Expression do {Statement} end ';'

The statement sequence is repeatedly executed as long as the expression evaluates to true, or until
the execution of an exit statement within the sequence (but not inside any nested while, loop,
or for).

11.7 Loop
Statement → loop {Statement} end ';'

The statement sequence is repeatedly executed. The only way to terminate the iteration is by
executing an exit statement within the sequence (but not inside any nested while, loop, or
for).

11.8 For
Statement → for LValue ':=' Expression to Expression

[by Expression]
do {Statement} end ';'

Executing the statement for index := expr1 to expr2 by expr3 do stmts end; is equivalent to the
following steps: (i) Evaluate expressions expr1, expr2, and expr3 in that order to values v1, v2, v3
(which must be integers); (ii) Assign v1 to index; (iii) If the value of index is less than or equal to v2,
execute stmts; otherwise terminate the loop; (iv) Set index := index + v3 and repeat from step (iii).

If the by clause is omitted, v3 is taken to be 1.

LValue is the index variable and must have type integer. The index variable can be inspected or set
above, within, or below the loop body. The LValue expression is evaluated only once to determine
the location of the index variable, before expr1, expr2, and expr3 are evaluated. Note that any
changes to the index variable from within the loop body may affect the number of iterations.

If an exit statement is executed within the body of the loop (but not within the body of any nested
while, loop or for statement), the loop is prematurely terminated, and control passes to the
statement following the for.

Date Printed: October 18, 2005 10

11.9 Exit
Statement → exit ';'

Executing exit causes control to pass immediately to the next statement following the nearest
enclosing while, loop or for statement. If there is no such enclosing statement, the exit is
illegal.

11.10 Return
Statement → return [Expression] ';'

Executing return terminates execution of the current procedure and returns control to the calling
context. There may be multiple returns within a single procedure body. The last executable
statement in a procedure must be a return; execution may not “fall out the bottom” of a
procedure. A return within a function procedure must include an expression of the correct return
type; a return statement within a proper procedure must not include an expression. The main
program body must not include any return statements.

Date Printed: October 18, 2005 11

12 The Syntax of PCAT
Program → program is Body ';'
Body → {Declaration} begin {Statement} end
Declaration → var VarDecl {VarDecl}

→ type TypeDecl {TypeDecl}
→ procedure ProcedureDecl {ProcedureDecl}

VarDecl → ID { ',' ID} [':' TypeName] ':=' Expression ';'
TypeDecl → TypeName is CompoundType ';'
TypeName → ID
CompoundType → array of TypeName

→ record FieldDecl {FieldDecl} end
ProcedureDecl → ID FormalParams [':' TypeName] is Body ';'
FieldDecl → ID ':' TypeName ';'
FormalParams → '(' FormalSection {';' FormalSection} ')'

→ '(' ')'
FormalSection → ID {',' ID} ':' TypeName
Statement → LValue ':=' Expression ';'

→ ID Arguments ';'
→ read '(' LValue {',' LValue} ')' ';'
→ write WriteArgs ';'
→ if Expression then {Statement}

{elseif Expression then {Statement}}
[else {Statement}] end ';'

→ while Expression do {Statement} end ';'
→ loop {Statement} end ';'
→ for LValue ':=' Expression to Expression [by Expression]

do {Statement} end ';'
→ exit ';'
→ return [Expression] ';'

WriteArgs → '(' WriteExpr {',' WriteExpr} ')'
→ '(' ')'

WriteExpr → STRING
→ Expression

Expression → Number
→ LValue
→ '(' Expression ')'
→ UnaryOp Expression
→ Expression BinaryOp Expression
→ ID Arguments
→ ID FieldInits
→ ID ArrayValues

LValue → ID
→ LValue '[' Expression ']'
→ LValue '.' ID

Arguments → '(' Expression {',' Expression} ')'
→ '(' ')'

FieldInits → '{' ID ':=' Expression { ';' ID ':=' Expression} '}'
ArrayValues → '{' '{' ArrayValue { ',' ArrayValue} '}' '}'
ArrayValue → [Expression of] Expression
Number → INTEGER | REAL
UnaryOp → '+' | '-' | not
BinaryOp → '+' | '-' | '*' | '/' | div | mod | or | and

→ '>' | '<' | '=' | '>=' | '<=' | '<>'

