
CS-322 Compiler Design

Page 1

Project 8: Intermediate Code Generation (Part 1)

Due Date: Tuesday, February 7, 2006, Noon

Duration: One week

Overview
The goal of this project is to begin the translation of the PCAT source program into three-address
instructions, which comprise the intermediate representation.

You will make use of an existing front-end which parses the source text and checks it for semantic
errors. The input to the back-end is a well-formed Abstract Syntax Tree (AST). The back-end will
work in two steps.

In the first step, the compiler will produce a list of instructions (called the “Intermediate
Representation” or “IR instructions”). This intermediate code is halfway between the source-level
code and the target machine (SPARC) code. In the second step, the back-end will translate the IR
code into SPARC assembly code.

In this project, you will begin writing the code to produce the IR instructions from the abstract
syntax tree. In later projects, you will complete the translation into intermediate code. After that,
you will implement the second part of the back-end, which will translate the IR code to assembly
code.

Each IR instruction is a “three-address instruction.” Each IR instruction has an op-code (called
op) and up to three operands (called result, arg1, arg2).

In this project, you’ll generate IR instructions for:

• assignment statements
• procedure call statements
• arithmetic expressions
• variable initialization

In later projects, you’ll generate code for expressions involving boolean values, flow of control
statements, and other more complex constructs.

The File You Are To Create:
Generator.java

CS-322 Compiler Design

Page 2

Other Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p8

Main.java
The main routine which calls the parser, the type-checker, and the code generator. This file
has been modified slightly from the previous version (i.e., in Porter’s previous CS321) to
call generateIR() and printIR().

< Lexer.java >
< Parser.java >
< Checker.java >

The files you created last term. If you took CS-321 from me last term, ou may use your
files, but these files are not available on the website; only compiled .class files are available.)

Lexer.class
Parser.class
Checker.class

You may use these compiled versions if there were any problems with yours or if you did
not take CS321 from me last term. DO NOT DECOMPILE THESE FILES. If you have
questions on their functionality, ask me!

Ast.java
The classes in this file describe the Abstract Syntax Tree.

PrettyPrint.java
Code to walk the AST and “pretty-print” it. (Modified slightly from previous versions.)

PrintAst.java
Code to walk the AST and print it in full, complete detail, which is useful in checking to
make sure the AST is being constructed correctly. For all but the smallest ASTs, the output
is difficult to read.

Token.java
FatalError.java
LogicError.java
StringTable.java
SymbolTable.java

Support files from last term, which you can pretty much ignore this term.

Generator0.java
A starter file to get you going on this project.

IR.java
A new file containing support code. The class in this file defines the intermediate
representation (IR) instructions.

CS-322 Compiler Design

Page 3

makefile
This file is used by the Unix make utility to compile everything.

tst
This directory contains the testing / debugging data which will be used to evaluate your
code. It contains several PCAT programs, along with the output that your compiler should
produce.

run
This is a shell script you can use to run a single test from the tst directory. It will print any
differences between what your compiler produces and the “expected output.”

runAll
This is a shell script you can use to run all the tests in the tst directory.

go
This is a shell script you can use to run a single test. It prints the program and the output it
produced, but does not compare it to the “expected output.”

Main.jar
This is the “black box” solution code, which was used to produce the “expected output”
files in tst.

PCATDifferences.pdf
“A Review of the Abstract Syntax Tree: How a PCAT Program is Represented”

Please review this document, unless you took CS-321 from me last term.

ReviewOfAST.pdf
“PCAT Delta: Porter’s Version vs. Tolmach’s Version”

Discusses the differences between the PCAT languages used by me and Tolmach.

TolmachsAST.pdf
“The Abstract Syntax Tree: Differences Between Tolmach's and
Porter's Representations”

This documents discusses the differences between the Absract Syntax Tree (AST)
produced by my front-end and the AST produced by Andrew S. Tolmach (AST).

Getting Started
Create a new directory called “p8” for this project and copy in all the files I am providing.

In this project, you’ll need to walk the AST so take a close look at the file called PrettyPrint.java,
which does exactly that. I suggest that you use it as a starting framework when creating your
Generator.java file. Study PrettyPrint.java carefully and consider using it as a guide when
writing the code to walk the AST.

Also, during debugging, you may use PrettyPrint.java so it is helpful to understand what it does.

CS-322 Compiler Design

Page 4

Testing
The tst subdirectory contains a bunch of files with names like:

simple.pcat
simple.out.bak
simple.err.bak

The .bak files are the desired output files your compiler should produce. One is for the stdout
and one is for the stderr produced by your compiler.

During testing you may use the executable shell script called go. The go script makes it easy to run
your compiler on a particular test. Typing:

% go simple

or just:

% !g

is easier than typing:

% java Main < tst/simple.pcat

I am providing another shell script named run. You can use run to execute your compiler on a
particular test and compare the results to the expected output (.bak) files. Any differences will be
shown.

In the following example, you type run simple to see if your compiler produces the expected
output. It does not. The < indicates what the expected output is and the > indicates what your
compiler produced:

% run simple
simple0:
19c19
< ! ASSIGNMENT STMT...

> ! Assign STMT...
23,25c23,25
< ! ASSIGNMENT STMT...
< t4 := &j
< *t4 := k

> ! Assign STMT...
> t5 := &j
> *t5 := k

Another shell script I am providing is called runAll. It will run all the tests in the tst directory. If
everything is okay, it will simply list all the tests that were run.

During your debugging, you are free to modify any of the files I distribute. For example, you
might want to modify Main.java to call printAST or you might want to modify one of the files in
tst to focus on testing a specific thing.

CS-322 Compiler Design

Page 5

However, after you are finished and ready to submit, be sure to test your Generator.java with my
files, exactly as they are distributed. When we test your code, we will use only your
Generator.java file. It will be compiled with my files, as they were distributed.

I am also providing a working solution to this assignment in a file called Main.jar. This is the
“black box” solution. You may use this to answer questions about exactly what the program
should do in specific cases not covered by this document. (I used the black box code to produce
the output .bak files in the tst directory.)

[My Main.jar “black box” program also has the code for Project 9 in it, as well as Project 8, so it
will actually do more code generation than you are required to do for Project 8.]

The Intermediate Representation (IR) Instructions
A new file, called IR.java, is provided. It contains code to represent the IR instructions.

This file defines a class call IR; each instance of the IR class is a single intermediate representation
(IR) instruction. Each instruction has an opcode and several operands/arguments. Here are the
fields in each IR object:

 int op;
 Ast.Node result;
 Ast.Node arg1;
 Ast.Node arg2;
 String str;
 int iValue;
 IR next;

The opcode (op) is an integer telling which instruction it is. Here are the different opcodes. There
are instructions for data movement, arithmetic, etc. [You will not use all of these in this project, but
they are listed here for reference.]

Data movement:
assign
loadAddr
store
loadIndirect

Arithmetic computation:
iadd
isub
imul
idiv
imod
ineg
fadd
fsub
fmul
fdiv
fneg
itof

CS-322 Compiler Design

Page 6

Procedures / Calling:
call
param
resultTo
mainEntry
mainExit
procEntry
formal
returnExpr
returnVoid

Testing and Branching:
label
goto
gotoiEQ
gotoiNE
gotoiLT
gotoiLE
gotoiGT
gotoiGE
gotofEQ
gotofNE
gotofLT
gotofLE
gotofGT
gotofGE

Misc:
comment
alloc

Input / Output:
readInt
readFloat
writeInt
writeFloat
writeString
writeBoolean
writeNewline

Each opcode is assigned an integer and there are a number of constants defined in the IR.java file:

 static final int OPassign = 1;
 static final int OPloadAddr = 2;
 static final int OPstore = 3;
 ...
 static final int OPwriteNewline = 48;

The op field will contain one of these integer values, indicating which instruction it is.

The IR instructions will be chained together in a linked list, linked together on their next field. The
variables firstInstruction and lastInstruction point to the first and last instructions in the list of
instructions constructed so far.

CS-322 Compiler Design

Page 7

To create an instruction, you can invoke the constructor. For example:

IR inst;
...
inst = new IR (OPassign);

The constructor will add this instruction to the end of the growing list of instructions.

Some instructions will have no operands. For example, the returnVoid instruction has no
operands. Some operands, such as assign and iadd, will have several operands. The iadd
instruction has three operands and it looks like this:

x := y + z

One operand is called the result and the other two are called arg1 and arg2.

The assign instruction has a result operand and another operand, which is stored in arg1:

x := y

Each IR instruction object has room for several operands. There is room for up to 5 operands
(result, arg1, arg2, iValue, str), although no instruction uses more than three operands.

The result, arg1, and arg2 operands will always point to nodes in the AST. In the above “assign”
IR instruction, for example, the result operand would point to the VarDecl node representing the
variable “x” and the arg1 operand would point to the VarDecl representing the variable “y.”

Some instructions have an operand that is an immediate integer; such an argument would be stored
in the iValue field. Some instructions have an operand that is a Java “String”; such an argument
would be stored in the str field.

To help you create new instructions, the IR.java file contains a number of static methods, such as:

static void assign (Ast.Node result, Ast.Node arg) {
 IR inst = new IR (OPassign);
 inst.result = result;
 inst.arg1 = arg;
}
...
static void iadd (Ast.Node result, Ast.Node arg1, Ast.Node arg2) {
 IR inst = new IR (OPiadd);
 inst.result = result;
 inst.arg1 = arg1;
 inst.arg2 = arg2;
}

Therefore, to generate an assign instruction, you can code something like this:

IR.assign (x, y);

The IR.java file also contains a static method called printIR, which will print out the entire list of
IR instructions. The main method first calls generateIR to generate the intermediate code and
then main calls printIR to print out the instruction list.

CS-322 Compiler Design

Page 8

The Starter File: Generator0.java
I am providing a file called Generator0.java to help you get started and to provide the general
framework. You will modify this file, calling it Generator.java. Be sure to replace

<Your Name Here> -- <Date>
with your name and the date. You should always put your name and the date in your programs.

There will be a single instance of the class Generator, created by the main method, which will be
called generator. The Generator class contains a method called generateIR, which the main
method will call. GenerateIR will be passed a pointer to the Abstract Syntax Tree (AST); it will
walk the AST, generating the IR code by calling methods like IR.assign and IR.iadd. You will
need to write a number of additional methods to facilitate the code generation process.

Basically, you’ll need something like a recursive walk of the AST and you’ll need to create a
method for each kind of AST node, much like we did for the Checker class in CS-321.

The starter file, Generator0.java, also contains several things that will be used in later projects:

 //
 // Constants
 //
 static final int INITIAL_VARIABLE_OFFSET = -4;
 static final int VARIABLE_OFFSET_INCR = -4;
 static final int INITIAL_FORMAL_OFFSET = +68;
 static final int FORMAL_OFFSET_INCR = +4;
 static final int REGISTER_SAVE_AREA_SIZE = +64;
 static final int DISPLAY_REG_SAVE_AREA_OFFSET = +64;

 static final int INTEGER_MODE = 1;
 static final int REAL_MODE = 2;
 static final int STRING_MODE = 3;
 static final int BOOLEAN_MODE = 4;

 //
 // Fields
 //
 int lexicalLev = 0;
 int maxLexicalLevel = 0;
 Ast.Body currentBody;
 Ast.StringConst stringList = null;
 Ast.RealConst floatList = null;
 int nextLabelNumber = 1;
 int nextTempNumber = 1;

Ignore this material, but leave it in.

The starter file, Generator0.java, also contains a couple of methods that will come in handy during
code generation. They are:

newTemp()
newLabel()

CS-322 Compiler Design

Page 9

Methods in “IR.java”
In IR.java there are a number of static methods that can be used to generate IR instructions. Each
method has the same name as one of the opcodes. (There is one exception. The method to create a
goto instruction is called go_to, since “goto” is a Java keyword.)

You should call one of these methods whenever you wish to generate a new IR instruction. This
method will create a new IR object and add it to the growing linked list of instructions. For
example, the following method will create a new instruction to perform an “integer add”:

static void iadd (Ast.Node result, Ast.Node arg1, Ast.Node arg2)

Notice that the types of the result, arg1, and arg2 parameters are all pointers to Ast.Nodes. For
some of the instructions, such as iadd, the parameters will be pointers to nodes in the abstract
syntax tree.

For other instructions, the parameters will be integers or Strings. For example, the goto instruction
takes a single argument, which is a String.

String endLabel = ...;
...
IR.go_to (endLabel);

The IR.java file also contains the printIR() method, which is called by main() after your code
has finished generating the list of IR instructions. It produces a printout looking something like
this:

===== Intermediate Code Follows =====
! MAIN...
 mainEntry
! VAR INITIALIZATION...
 t1 := 9999
 i := t1
 •
 •
 •
! ASSIGNMENT STMT...
 t6 := &j
 *t6 := k
 •
 •
 •
! MAIN EXIT...
 mainExit
=======================================

Note that comments are included in the intermediate code sequence. (We’ll use the SPARC
convention that comments start with a “!” and go through end-of-line.) It turns out that the IR
instructions get a little difficult to read since there are often so many of them and so many
temporary variables. Adding comments to the output is relatively easy and it makes reviewing the
output simpler.

There is a IR instruction opcode (called OPcomment) which is used to put comments within the
linked list of IR instructions. You may generate comment “instructions” just like you generate

CS-322 Compiler Design

Page 10

other IR instructions. (Of course, when it comes time to translate IR instructions into SPARC code,
these comments will end up producing zero SPARC instructions.)

Here is the method to generate a comment:

static void comment (String s) {
 IR inst = new IR (OPcomment);
 inst.str = s;
}

To generate part of the above IR code, your code might execute statements such as:

IR.comment ("VAR INITIALIZATION...");
temp = genExpr (p.expr);
IR.assign (p, temp);

The routine genExpr() is a method (which you will write) which is passed a pointer to an AST
subtree representing a source code expression. It will generate whatever code is necessary to
evaluate that expression and will return the identity of a variable containing the result. I’ll discuss
genExpr() more later.

The starter file Generator0.java contains the methods newLabel() and newTemp().

Labels are simply Java Strings with the following format:

"Label_xxx"

where xxx is a number. The method newLabel() will return new String each time it is called. It
increments the number so that the label it returns will always be unique.

String newLabel () {...}

In some textbooks, the instructions are numbered and “goto” instructions use numbers to specify
the target instruction. Our instructions are not numbered; instead we will use symbolic labels.
These symbolic names will ultimately be copied into the target instructions and the SPARC
assembler will take care of associating them with specific memory addresses.

There is an IR opcode (called OPlabel) which is used to add a label to the list of IR instructions.
The label instruction is not really an instruction, since it will never “do” anything. Instead, labels
are more like placeholders, acting as targets for goto instructions. Labels are treated like other
instructions since they are created and added to the list of IR instructions.

For example, you could use the following code:

String lab = newLabel ();
IR.label (lab);
...
IR.goto (lab);

to generate the following IR code:

Label_17:
 ...
 goto Label_17

CS-322 Compiler Design

Page 11

Note that the str field of the IR object is being used to hold the label. All fields that are not used
will have their default values of zero.

Temporary Variables
During IR code generation, it is frequently necessary to create a temporary. I am providing the
method newTemp() for creating a new temporary variable.

Ast.VarDecl newTemp () {...}

Every time newTemp() is called, it will create a new temporary name, similarly to the way
newLabel() creates a new label name each time it is called. The newTemp() method will then
create a new variable with this name and return it.

Each temporary will be given a name (such as “t15”, “t16”, etc.). These names may conflict
with source code variable names, but we don’t care. After all, source code names may conflict with
each other. (For example, the PCAT program may have two completely unrelated variables named
“x.” Thus, we will not be able to include source code variables names in the SPARC assembler
file without first modifying them. The only place where confusion might arise is in the output from
printIR(), but this will not affect the correctness of the compiler.

Each time the newTemp() routine is called, it will add a VarDecl node to the AST data structure
for the procedure being compiled. Thus, it will look just the same as if the source code had
included the declaration:

VAR t5: INTEGER := ...;

With temporaries, we will not bother with a “type” or initializing expression, so newTemp() will
leave the varDecl.typeName and varDecl.expr fields set to NULL. It will also set the
varDecl.lexLevel field to -1. Later, this will signal that we are dealing with a temporary variable,
not a “real” variable.

As you know, VarDecl nodes are kept in a linked list in the Body node. In order for newTemp()
to add a new variable to the end of this list, it needs to know which Body we are currently
generating code for. Toward this end, there is a field in Generator.java that will point to the
current Body node:

Ast.Body currentBody;

Your code must set and maintain this variable whenever it enters a new body. There is a Body node
for the main program and a Body node for each procedure. Temporaries can be added to the main
Body or to any of the other Bodys.

The newTemp() routine returns a pointer to the VarDecl node that was just allocated.

Every time an IR instruction references (i.e., uses, accesses, or modifies) a variable (either a
temporary variable or otherwise), that instruction must be set to point directly to the VarDecl
describing the variable in question. In a subsequent project, we will compute offsets for the
variables. Then, when we are ready to generate SPARC code, we will be able to look at the IR
instruction, follow the pointer to the VarDecl node, and get the offset to use in the target
instruction.

CS-322 Compiler Design

Page 12

How to Get Started
I recommend you use the code from PrettyPrint.java as a starting skeleton. Make a copy of it,
then go through and eliminate all “print” statements and anything relating to printing. Eliminate
everything relating to indentation. Then rename each method from ppXXX to genXXX. For
example, if you have a method named ppExpr rename it to genExpr. Now you should have a
skeleton program that walks the entire abstract syntax tree in more-or-less logical, source-code
order without doing anything.

Next, merge this code with the starter file, Generator0.java to give your initial Generator.java
file. This should compile and should walk the AST, but will not generate any IR code yet.

Don’t forget to modify the comments as well. It looks really bad to see comments that say “Print
an expression” in a routine that generates IR instructions! If the comment in PrettyPrint.java
said “Print an expression,” change it to something like “Generate code for an expression.” At the
time you fill in the methods to perform the code generation, you can expand this comment, adding
detail about parameters, results, etc.

Next, begin modifying these methods to generate the IR code, by adding calls to newTemp(),
newLabel(), and the IR methods for generating instructions (e.g., IR.assign, IR.go_to, IR.iadd,
etc).

If you start from PrettyPrint.java, you’ll end up with several methods that will not be used in this
project. For example, you might have a genArrayType method, that does nothing. Do not delete
these methods; leave them in your code. In the later projects, we’ll continue with this same file and
add more code generation to it. Those methods will be needed then. In particular, we will need to
walk the “type”-related nodes in the next project, so don’t eliminate them.

Variable Initialization
The first thing to do in each procedure (or main) body is initialize the local variables. For each
VarDecl, you’ll need to generate IR code such as:

! VAR INITIALIZATION...
 t5 := ...
 i := t5

The VarDecl will contain an initializing expression. In this project, you’ll be writing a routine
called genExpr(), which will discussed in the next section. GenExpr() will generate the code for
the expression and return the “place” where the result can be found. In general, genExpr() may
generate several instructions; these are symbolized by “t5 := …” above. After calling genExpr(),
you can generate the assignment statement, by calling IR.assign().

Don’t forget that for some variables (namely temporary variables) there will be no initializing
expression. For them, generate nothing.

CS-322 Compiler Design

Page 13

The genExpr() Routine
A key routine you’ll need to write will be called genExpr(). This routine will be passed a pointer
to an AST subtree representing an expression. The genExpr() routine will generate the IR
instructions to evaluate the expression. The IR code produced by genExpr() will, when executed,
evaluate the expression and move it into a variable.

In the case that the expression is a simple variable, genExpr() will generate no code and will return
that variable.

In the case that the expression is more complex, involving operators such as addition or
multiplication, genExpr() will create a new temporary variable and generate code that, when
executed, will evaluate the expression and move the result into that temporary variable. genExpr()
will return the temporary variable it created.

In the case that the expression is a constant (either integer or real), genExpr() will create a
temporary variable, generate code to move the value into the temporary, and return the temporary.

[In the lecture notes, this returned variable is the “.place” attribute.]

When we say that genExpr() will “return a variable,” we mean that genExpr() will return a
pointer to a VarDecl node representing the variable.

Here is the header (i.e., method prototype) for genExpr():

 Ast.Node genExpr (Ast.Node t)
 throws FatalError

You should generate IR code for the following binary and unary operators.

+ - * / div mod unary- unary+ int-to-real

The operators yielding boolean results (and, or, <, <=, >, >=, =, and <>) will be handled in a later
project. None of the test files use these operators. [These operators must be evaluated using
“short-circuit” evaluation, which will require a more complex approach.]

There is an opcode for each of the arithmetic operations. For example,

IR.iadd (x, y, z)

generates the following IR instruction:

x := y + z (integer)

The following instructions are relevant here:

CS-322 Compiler Design

Page 14

IR.ineg x := - y (integer)
IR.iadd x := y + z (integer)
IR.isub x := y - z (integer)
IR.imul x := y * z (integer)
IR.idiv x := y DIV z (integer)
IR.imod x := y MOD z (integer)

IR.fneg x := - y (float)
IR.fadd x := y + z (float)
IR.fsub x := y - z (float)
IR.fmul x := y * z (float)
IR.fdiv x := y / z (float)

IR.itof x := intToReal(y)

The genExpr() method should generate code for the following kinds of node: BinaryOp,
UnaryOp, FunctionCall, IntegerConst, RealConst, ValueOf, and IntToReal.

We will deal with the following nodes in a later project: BooleanConst, NilConst,
ArrayConstructor, RecordConstructor, ArrayDeref, RecordDeref, and StringConst. Don’t
worry about these now.

Assignment Statements and LValues
There are several IR instructions of interest here. They are:

IR.assign x := y
IR.loadAddr x := &y
IR.store *x := y
IR.loadIndirect x := *y

First consider the source code:

(* PCAT source: *)
x := y;

The IR code you should generate is:

t5 := &x
*t5 := y

You might ask: Why not generate the following IR instruction sequence instead? (It would work
and clearly it has fewer IR instructions.)

x := y

The primary reason is that we want to use a general approach that can handle all cases in the same
way. The thing on the lefthand side of an assignment is an “L-Value,” but it won’t always be a
simple variable name. When it is more complex, we’ll need to generate a sequence of instructions.

From the point of view of the assignment statement, we want to generate the same code, regardless
of whatever L-Value we might find on the lefthand side of the assignment.

CS-322 Compiler Design

Page 15

As an example, consider the following PCAT assignment statement.

a [55*foo(1,2,3)] := y;

Obviously, lots of instructions will be required to compute which address to store into. (In fact,
these instructions will involve a subroutine call and their execution may involve an arbitrary or even
non-terminating amount of computation!)

In our approach, all of the address computation will be done in one place and then we will use either
of the following two instructions, depending on whether we have an L-Value or an R-Value:

IR.store *x := y
IR.loadIndirect x := *y

The key is to create a single method to do all the address calculations:

Ast.Node genLValue (Ast.LValue t)

The genLValue() method will generate code to compute an address, not a value. It will generate
code to store that address into some variable (always a temporary) and will return that temporary.
Thus, any method that calls genLValue() to process an L-value will get back the identity of a
variable holding an address.

In the case of the PCAT assignment statement

x := y;

we will generate the following code:

t5 := &x <-- produced by genLValue
*t5 := y <-- produced by genAssignStmt

But what about an L-value used as an R-value? The righthand side of this source code assignment
statement (x := y;) contains an L-value (y) used as an R-Value. Why didn’t we generate the
following code, which first computes the address of y and then gets the value from that address?

t5 := &x
t6 := &y <-- produced by genLValue
t7 := *t6 <-- get the R-Value from memory
*t5 := t7

Of course this code would execute correctly and might even be easier to generate, but we will
implement a small optimization in the case where we have a simple variable (like y) occurring as an
R-Value. (When we have array deref’s or record deref’s, we’ll generate the longer code sequences,
involving the loadIndirect, but these will be handled in the next project, not now.)

The optimization we’ll perform will recognize the case where the R-Value is a simple variable and
generate the shorter (two instruction) version shown previously. Since this occurs so often, the
optimization is worthwhile and will dramatically reduce our IR sequences.

CS-322 Compiler Design

Page 16

Here is how to proceed. Recall that we have ValueOf nodes, which “shroud” or “wrap” around
L-values to turn them into R-values. The method

Ast.Node genValueOf (Ast.ValueOf t)

will be responsible for generating code to get the final value into a variable. This may involve
arbitrary address calculation (i.e., a call to genLValue()) followed by the creation of a temporary,
followed a loadIndirect instruction. The method genValueOf() will then return the name of the
variable containing the result.

However, when the L-value is a simple variable, we want to avoid generating a loadIndirect
instruction in genValueOf (). You can do this in genValueOf() by first looking to see what type
of L-value we have. If it is a simple Variable, we can just return it. We generate no instructions.
On the other hand, if genValueOf() sees that it has an ArrayRecord or a RecordDeref, it will
need to generate code to compute the address, create a new temporary, generate a loadIndirect into
that temporary, and return that temporary.

In this project, we will not deal with ArrayDerefs or RecordDerefs, so source statements like the
following do not need to be handled yet:

r.f.g := a[4];

Procedure Invocation
In this project, you should generate code for all FunctionCall and CallStmt nodes.

Consider the following source code for a “call” statement:

foo (expr1, expr2, expr3, expr4, expr5, ...);

You should generate the following IR code:

t20 := ... expr1 ...
t21 := ... expr2 ...
t22 := ... expr3 ...
t23 := ... expr4 ...
t24 := ... expr5 ...
...
param 1,t20
param 2,t21
param 3,t22
param 4,t23
param 5,t24
...
call foo

To invoke a procedure, you should generate a sequence (zero or more) of param instructions,
followed by a call instruction, and followed by an optional resultTo instruction (if the procedure
returns a value).

Note that the above code sequence evaluates all arguments and moves their values into variables
before generating the first param instruction. In general, the argument expressions could involve

CS-322 Compiler Design

Page 17

additional subroutine calls. You want to make sure that all the argument evaluations are complete
before you generate the sequence of param instructions.

Next consider a statement, such as

x := ... expr ...;

For an assignment statement, you’ll generate the following IR code:

t38 := &x
t39 := ... expr ...
*t38 := t39

The IR code in the box was generated by GenExpr, which returns the name of a temporary holding
the resulting value. (In this case, GenExpr returned t39.)

Any expression may be a function call, as in the following assignment statement:

x := bar (expr1, expr2, expr3, expr4, expr5, ...);

For this, you should generate the following IR code:

t38 := &x
t40 := ... expr1 ...
t41 := ... expr2 ...
t42 := ... expr3 ...
t43 := ... expr4 ...
t44 := ... expr5 ...
...
param 1,t40
param 2,t41
param 3,t42
param 4,t43
param 5,t44
...
call bar
resultTo t39
*t38 := t39

To generate the above IR instructions, you can use these methods from IR.java:

IR.param (param-number, temp);
IR.call (ptr-to-PROC_DECL);
IR.resultTo (temp);

This section discusses how to generate IR instructions for a FunctionCall node. The generation
of instructions for a CallStmt node is quite similar.

The first and last instructions come from the fact that this is an assignment statement. Notice that
the address of the L-value (x) is computed first, followed by the computation of each of the
argument expressions. Each of these computations could involve lots of additional instructions.
The order in which these computations is done is critical, since each could involve calls to other
procedures with side-effects.

CS-322 Compiler Design

Page 18

After computing the values of each of the argument expressions, we are ready to generate the code
to invoke the procedure foo. First, we have a param instruction for each of the arguments. Later,
we will translate the instruction

param i,txxx

into SPARC code to move the value in the temporary into the appropriate %o register (or into the
appropriate frame slot for parameters beyond six).

The call instruction contains a pointer to the ProcDecl node for the procedure being called.

(Later, we will need to rename each of the procedures, since the procedure names in the source code
may not have unique names, while the procedures in the target file must have unique labels. We
will rename “bar” to something like “proc23_bar.” At that time, we will store the new name in the
ProcDecl node and use it when doing the final SPARC code generation.)

Finally, in the case of a FunctionCall node, we need to generate a resultTo instruction. After the
procedure returns, the result will be in %o0. The resultTo instruction tells us where to store it. If
the procedure invocation is from a CallStmt node (i.e., we are calling a void procedure at the
statement level), we will not generate the resultTo instruction.

Note that we need to make two passes over the list of Arguments associated with a CallStmt or
FunctionCall. In the first pass, we will call genExpr() for each argument expression. As we
look at each argument expression, we will not generate the param instruction. (Why? Consider
the case where there are nested calls. The param instructions should all directly precede the call
to which they apply.)

Then, we will make a second pass over the Argument list, and for each, generate the param
instruction. One problem is that we need to keep a list of all the locations of the argument
computations during the first pass. This is nothing more than a list of temporary variables, but it
could be arbitrarily long. Do we need to create a new sort of linked list to deal with this?

Rather than messing with a new linked list, I have simply added a field (called location) to the
Argument node. You may use this field to hold the temporary variable associated with the
Argument as it is returned from genExpr(). In the second pass over the list of Arguments, the
generation of the param instructions should be straightforward.

Grading
The primary consideration for any program is correctness: programs must not contain any bugs.
Your program will be run on the test files in the tst directory. Your output must match exactly.

Your code should also be well organized and clearly documented. The indenting must follow my
standards. Every method must have a comment describing what it does and the comments must
match the code.

Be sure to follow my style guidelines for commenting and indenting your Java code. There is a
link on the class web page called “Coding Style for Java Programs.” Please read this document.
Also look at the Java code I am distributing for examples of the style we are using in this class.

CS-322 Compiler Design

Page 19

During testing, the grader will compile your Generator.java file and link it with my files, including
my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class.

[IF YOU DIDN’T TAKE CS-321 LAST TERM, IGNORE THE NEXT PARAGRAPH...]

I encourage you to use your own Java code during testing, but I also strongly encourage you to test
your Generator.java with my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class,
just to make sure it works correctly with them. While there should be no difference, it still seems
like a good idea.

Standard Boilerplate...
It is considered cheating to decompile or look inside any .class or .jar file I provide. If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 8 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements.

Do not submit multiple times.

Please keep an unmodified copy of your file on the PSU Solaris system with the timestamp intact.
This is required, in case there are any “issues” that arise after the due date.

In other words: DO NOT MODIFY YOUR “Generator.java” FILE AFTER YOU SUBMIT
IT. You can create a p9 directory, copy all files over and keeping working, if you need to.

Work independently: you must write this program by yourself.

