
1

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Intermediate Code Generation
Given: Results of parsing...

•!Abstract Syntax Tree

•!Embed generation directly in parser

Option 1:

Generate Final Code Directly

• SPARC Assembler, or

•!Machine Code

Option 2:

Generate Intermediate Code (“IR code”)

... Then generate final code

“Final Code Generation Phase”

Why?

 goto L3
 ...
L3: goto L7

 t1 := x + y
 t2 := t1

2

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Intermediate Code Generation
Given: Results of parsing...

•!Abstract Syntax Tree

•!Embed generation directly in parser

Option 1:

Generate Final Code Directly

• SPARC Assembler, or

•!Machine Code

Option 2:

Generate Intermediate Code (“IR code”)

... Then generate final code

“Final Code Generation Phase”

Why?

•!Retargetting the compiler

Got a new CPU architecture? Replace Final Code Generator

•!Break code generation task into two smaller tasks

•!Optimization

“Machine Independent” Optimizations

 goto L3
 ...
L3: goto L7

 t1 := x + y
 t2 := t1

3

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Approach #1

Syntax-Directed Translations

E0 ! E1 + E2 E0.place := NewTemp ()

E0.code := E1.code || E2.code ||

IR (E0.place, ‘:=’, E1.place, ‘+’, E2.place)

Approach #2

We have parsed the program and built an in-memory representation

(Abstract Syntax Tree)

We will create methods to walk this AST and emit code

CFG Rule

Attributes (Synthesized, Inherited)

“IR” - A routine to create IR instructions

4

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Intermediate Representation (Variations)
Source Code

a = b * -c + b * -c;

Three-Address Code:

Each instruction has (up to) 3 operands.
t1 := -c neg c " t1
t2 := b * t1 mult b,t1 " t2
t3 := -c neg c " t3
t4 := b * t3 mult b,t3 " t4
t5 := t2 + t4 add t2,t4 " t5
a := t5 move t5 " a

Tree Representations:

a

:=

*

+

Unary-b

c

*

Unary-b

c

Similar to the AST we already have.
(Temporaries are ignored, here)

Closer to SPARC code

5

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Graphical Representations
Tree: DAG:

a

:=

*

+

Unary-b

c

*

Unary-b

c

a

:=

+

*

Unary-b

c

6

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Graphical Representations
Tree: DAG:

Structures and Pointers

An array of fixed-sized records
Q: How to build DAG’s (i.e., trees with

shared, common parts)?

A: When you are about to allocate a

new node; look to see if you already

have one with the same info.

a

:=

*

+

Unary-b

c

*

Unary-b

c

a

:=

+

*

Unary-b

c

Minus

0 id b -

1 id c -

2 unary- 1 -

3 mult 0 2

4 id b -

5 id c -

6 unary- 5 -

7 mult 4 6

8 add 3 7

9 id a -

10 assign 9 8

7

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Three-Address Instructions
Idea:

One operation

Three “addresses” (fields, args), at most

Two operands

One result

(Some instructions have only 0, 1, or 2 addresses)

Much closer to machine language

Examples:
t1 := -c neg c " t1
t2 := b * t1 mult b,t1 " t2
t3 := -c neg c " t3
t4 := b * t3 mult b,t3 " t4
t5 := t2 + t4 add t2,t4 " t5
a := t5 move t5 " a

•!Looks like source code, but...

•!NOTE: Lots of temp variables

Tend to create many

Will try to eliminate during optimization

Notation used in Textbook

8

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Source:
a = (b * -c) + (b * -c);

Translation #1:
t1 := -c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a := t5

Translation #2:
t1 := -c
t2 := b * t1
t5 := t2 + t2
a := t5

The shared sub-expression
is computed only once

9

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Types of Three-Address Instructions

Binary Operations
x := y + z
x := y * z
...etc...

Want different instructions for

•!Integer

•!Floating-point

Unary Operations
x := -y
x := IntToReal(y)

Assignment / Move
x := y

Notational Variations

x := y + z (int)
x := y + z (float)

x := y +i z
x := y +f z

x := iadd(y,z)
x := fadd(y,z)

iadd y,z " x
fadd y,z " x

Notational Variations

x := -y (int)

x := -i y

x := ineg(y)

ineg y " x

10

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Jump / Goto / Unconditional Branch
goto Lab_58

Label
Lab_43:

A place holder

Strictly for labeling the target of a branch

Acts like a nop

Labels are simple strings

(Assembler/Linker will assign addresses)

Conditional Jumps / Branches
if x < y then goto Lab_57

Conditions: <, <=, >, >=, =, !=

Data Types: integer, floating

if x < y then... (int) gotoiLT
if x <= y then... (int) gotoiLE
 ...
if x < y then... (float) gotofLT
if x <= y then... (float) gotofLE
 ...

Lab_43:
 x := y + 3
 z := x * 2
 if z > w then goto Lab_43

Function “NewLabel()”
 returns....

“Lab_1”
“Lab_2”
“Lab_3”
 ...

11

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Procedure / Function Calls
param x
param y
call foo
result x

Array Accessing
x := y[i]
x[i] := y

Address / Pointer Manipulation
x := &y Load address

x := *y Load indirect

*x := y Store indirect

You can design the exact instruction set in any way that facilitates compilation.

But you must be careful to be clear and precise about the IR instructions’ meanings.

More IR instructions " Easier to compile to.
...but more work during final code generation

Fewer IR instructions " < Reverse >

ld ...,%o0
ld ...,%o1
call foo
nop
st %o0,...

12

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Representing 3-Address Statements
•!Quadruples (“Quads”)

• Triples

•!Indirect Triples

Quadruples

Store each field directly

... In an array: ... In a linked list:

0 + t1 x y

1 * t2 t1 z

2 := a t2 -

3

+ t0 x y

* t1 t0 z

:= a t1 -

Easier to re-orderLess Space

t0 := x + y
t1 := t0 * z
a := t1

13

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Triples
Don’t store the result directly.

Implicitly associate a temporary result with each triple.

t0 := x + y
t1 := t0 * z
a := t1

Avoids creating the temporaries.

Saves storage.

Difficult to re-order instructions.

The following instruction is difficult

x[i] := y

It takes 2 triples.

0 + x y

1 * 0 z

2 := a 1

3

a

:=

z

*

+

yx

14

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Indirect Triples
Get around the re-ordering problem

... by introducing another data structure.

Quadruples

Less indirection, simpler

Easier to manipulate, reorder

Triples

Indirect Triples

About same amount of space as quadruples

May save space when lots of shared sub-expressions

More complex

100: + x y

101: * 100 z

102: := a 101

103: := b w

0: 100

1: 101

2: 102

3: 103

15

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Indirect Triples
Get around the re-ordering problem

... by introducing another data structure.

Quadruples

Less indirection, simpler

Easier to manipulate, reorder

Triples

Indirect Triples

About same amount of space as quadruples

May save space when lots of shared sub-expressions

More complex

100: + x y

101: * 100 z

102: := a 101

103: := b w

0: 100

1: 101

2: 103

3: 102

16

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Translating Expressions
Idea: Use Syntax-directed translations

For each expression, we’ll synthesize two attributes:

 E.code

This is the code we will generate for expression E.

(It is a sequence of all the IR instructions in the translation.)

When executed (at runtime), these instructions will compute the

value of the expression and place the value into some variable.

 E.place

The name of the variable (often a temporary variable)

into which this code will move the final result value when executed.

For each statement, we will synthesize one attribute:

 S.code

The IR code for this source statement.

Call “NewTemp” to create a new temporary variable
t = NewTemp();

Call “IR” to create a new 3-address instruction

IR (t, “:=”, x, “+”, y) " “t := x + y”

17

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Goal
Take a source statement and produce a sequence of IR quads:

Example:

x := y + z;

IR Quads:
t1 := y + z
x := t1

Example:

x := (y + z) * (u + v);

IR Quads:
t1 := y + z
t2 := u + v
t3 := t1 * t2
x := t3

18

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Synthesized Code and Place Attributes
Consider

 E0 ! E1 + E2

Work bottom-up.

Assume we already have

 E1.place = “y”

 E1.code = “ ”

 E2.place = “z”

 E2.code = “ ”

Then, use the rules to compute

 E0.place

 E0.code

ID
 sval=“x”

S
 code=

E2 code=
 place=

E0
 code= place=

E1
 code=
 place=

+

ID
 sval=“y”

ID
 sval=“z”

Example:

x := y + z;

19

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

E0 ! E1 + E2 E0.place := NewTemp ()

E0.code := E1.code || E2.code ||

 IR (E0.place, ‘:=’, E1.place, ‘+’, E2.place)

Assume we already have

 E1.place = “y”

 E1.code = “ ”

 E2.place = “z”

 E2.code = “ ”

Then, use the rules to compute

 E0.place = “t1”

 E0.code = “t1 := y + z”

20

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

E0 ! E1 + E2 E0.place := NewTemp ()

E0.code := E1.code || E2.code ||

 IR (E0.place, ‘:=’, E1.place, ‘+’, E2.place)

E0 ! E1 * E2 E0.place := NewTemp ()

E0.code := E1.code || E2.code ||

 IR (E0.place, ‘:=’, E1.place, ‘*’, E2.place)

E0 ! ID E0.place := ID.svalue

E0.code := “ ”

E0 ! - E1 E0.place := NewTemp ()

E0.code := E1.code || IR (E0.place, ‘:=’, ‘-’, E1.place)

E0 ! (E1) E0.place := E1.place

E0.code := E1.code

S ! ID := E ; S.code := E.code || IR (ID.svalue, ‘:=’, E.place)

21

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Generating

Code for

“IF” Statement

if E then S1 else S2 endIf

<code for E>

if E.place = 0 goto Label_Else

<code for S1>

goto Label_End
Label_Else:

<code for S2>
Label_End:

22

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Generating

Code for

“IF” Statement

S0 ! if E then S1 else S2 endIf

label_else = NewLabel ()

label_end = NewLabel ()

S0.code := E.code ||

IR (‘if’, E.place, ‘=0 goto ’, label_else) ||

S1.code ||

IR (‘goto’, label_end) ||

IR (label_else, ‘:’) ||

S2.code ||

IR (label_end, ‘:’)

if E then S1 else S2 endIf

<code for E>

if E.place = 0 goto Label_Else

<code for S1>

goto Label_End
Label_Else:

<code for S2>
Label_End:

23

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Compile-Time vs. Run-Time

“Static” versus “Dynamic”

Source Text (“Syntactic”, “Lexical”)

procedure foo (...) is begin ... end;
Only 1 static (compile-time) copy of “foo”

Run-time Activations

At any moment at runtime, “foo” may have

•!Zero activations

• One activations

• Many activations (if “foo” is recursive)

24

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Standard Terminology

“Routine”

“Procedure” - Returns no result

“Function” - Returns a result

Other Terminology

“Procedures” - may or may not return a result (PCAT)

“Void-Procedure”

“Non-void Procedure”

“Functions” - may or may not return a result (C)

“Void-Function”

“Non-void Function”

25

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Terminology
Static

A routine is called a a place in the program

e.g., “quicksort” is called on lines 16, 17, and 23

“formal parameters” Like variables

“actual arguments” Expressions (which yield a value when executed)

Runtime

When a routine is called, it is a new “activation” (or “invocation”)

The routine is “invoked”.

The “lifetime of an activation”

From the moment of invocation to the moment of return

The “Caller”

The “Callee” (the “called” routine)

Static:

“quicksort” calls “partition” on line 12.

Dynamic:

This activation of quicksort calls quicksort with arguments 4 and 7.

26

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Nested Activations
At runtime...

Assume p calls f

Then: f must return before p returns

Assumptions:

•!Single thread of control

• No errors / exceptions

• No suspended closures

•!No gotos.

Call and Return are like nested parentheses

(((() (()()) ()) (())) () ())

Add print statements to routines

procedure foo ()
 print (“foo entered”);
 ...
 print (“foo returns”);
 return;

27

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Recursion
Recursive routines

foo entered
 foo entered
 foo entered
 ...
 foo returns
 foo returns
foo returns

Mutually recursive routines (“Indirectly recursive”)

foo entered
 bar entered
 goo entered
 foo entered
 ...
 foo returns
 goo returns
 bar returns
foo returns

foo

goo
bar

myFunct

quicksort

calls

calls

calls
calls

calls

“Calling Graph”

for a program

28

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

The Quicksort Program
program is
 var a: array of integer := ...;
 procedure readArray () is
 var i: integer := 0;
 begin
 for i := 1 to 9 do read (a[i]); end;
 end;
 procedure partition (y, z: integer): integer is
 var i,j,x,v: integer := 0;
 begin ... end;
 procedure quicksort (m, n: integer) is
 var i: integer := 0;
 begin
 if n>m then
 i := partition (m, n);
 quicksort (m, i-1);
 quicksort (i+1, n);
 end;
 end;
 begin
 a[0] := -9999;
 a[10] := 9999;
 readArray ();
 quicksort (1,9);
 end;

This code is in
examples/sort.pcat

29

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

The Activation Tree
Shows the entire calling history of a run of the program

qs(1,9)

main

readarray

partition(1,3)

partition(1,9)

qs(1,0)

qs(1,3) qs(5,9)

qs(2,3)

partition(5,9) qs(5,5) qs(7,9)

partition(7,9) qs(7,7) qs(9,9)

partition(2,3) qs(2,1) qs(3,3)

Actual args can be shown

Time

At any one instant...

 A path from the root to a node

 shows the current “activation stack”

30

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

The Activation Tree
Shows the entire calling history of a run of the program

qs(1,9)

main

readarray

partition(1,3)

partition(1,9)

qs(1,0)

qs(1,3) qs(5,9)

qs(2,3)

partition(5,9) qs(5,5) qs(7,9)

partition(7,9) qs(7,7) qs(9,9)

partition(2,3) qs(2,1) qs(3,3)

Actual args can be shown

Time

At any one instant...

 A path from the root to a node

 shows the current “activation stack”

31

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Activation Stack

qs(1,9)

main

qs(1,3)

qs(2,3)

partition(2,3)

readArray

mainmain

qs(1,9)

main

qs(1,3)

qs(2,3)

qs(1,9)

main

qs(1,3)

qs(2,3)

qs(2,1)

••• •••

Time

part(2,3)

qs(2,3)

qs(1,3)

qs(1,9)

main

qs(2,3)

qs(1,3)

qs(1,9)

main

qs(2,1)

qs(2,3)

qs(1,3)

qs(1,9)

main

readArray

mainmain

••• •••

TOP

frames

Also called:
Control Stack

Runtime Stack
Frame Stack

32

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Each live routine has an activation record (a “frame”) on the stack

Enter a new routine?

•!PUSH a frame onto the stack

Return from a routine?

•!POP the top frame

Want to access the local variables of the current routine?

• Find them in the frame on the TOP of the stack.

33

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

There may be several declarations for some variable name,
procedure foo (...) is
 var i: integer := ...;
 procedure bar (...) is
 var i: integer := ...;
 begin ... end;
 begin ... end;

“Scope Rules”

The scope of a declaration

The part of the program (static) where we can use the declared name.

“Local”

“Non-Local”

Symbol Table

Match variable uses to declarations

var x: ...
...
... x ...

Declarations

VarDecl

Variable

myDef

34

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Binding of Names

L-Values

R-Values

Assignments change state.

Declarations change the environment.

Some languages allow the environment

to be changed dynamically!

name storage value
“environment” “state”

Done Statically
Done Dynamically

35

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Memory
.text segment

will be read-only

code (includkng library routines)

fixed (constant) data

.asciz strings

.data segment

read/write

used to hold (global) data

“display registers”

.bss segment

read/write

all bytes initialized to zero

(we won’t use)

misc.

.text

.data

heap

stack

unused

StackTop

HeapTop

36

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Dangling References

“A pointer to storage that has been freed / deallocated”

Consequences?

•!Clobber random memory locations
Weird program behavior

•!Read / write the wrong data
Normal program behavior, but incorrect results

• Caught by the runtime system
Catastrophic crash (core dump)
Graceful failure w/ message

•!No affect; program functions correctly
Is the program still wrong?

p := new (...)
...
delete p;
...
...p...

main () {
 int *p;
 p = foo();
 ... p ...
}
int * foo () {
 int i = 123;
 return &i;
}

37

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Dangling References

Problem:

The programmer explicitly frees / deallocates data

...but the programmer frees data “too soon”.

Solution:

Don’t let programmer free data!

Problem:

The program uses more memory than necessary.

Solution:

The runtime system identifies objects that

cannot possibly be used again by the program

“Garbage” objects

The runtime system reclaims this space

The “Garbage Collector”

38

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

The Heap
Simplest Organization

Allocate space at the end (top) of the heap

Abort when “StackTop < HeapTop”

Never free / release space

Explicit Freeing of Space

malloc / calloc / free in “C”

Object creation / deletion in “C++”

Keep a list of free chunks of memory (“free list”)

e.g., Linked list of memory areas

“Free” adds memory to this list

To allocate memory...

First check the free list

If possible, use the free list

Otherwise, grow the heap

NEVER MOVE ALLOCATED CHUNKS OF MEMORY

Program relies on pointers remaining valid. (“C”, “C++”)

39

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Automatic Garbage Collection
Java, Smalltalk, Haskell, Lisp, ...

Memory Management Subsystem (“Heap Manager”)

Program periodically asks for memory (allocates objects)

Memory manager returns (a pointer to) a new chunk of space

Space running low?

Memory manager identifies objects that are no longer in use

“garbage”
Object is reachable? Not garbage

Object is unreachable? Garbage

Reclaims space used by garbage objects

Fragmentation?

Move objects around (“compaction”)

To make large chunks of memory available

Memory manager must re-adjust pointers when objects are moved.

Memory manager must be able to identify all pointers at runtime.

Tight coupling with the language implementation

The program doesn’t know objects have been moved!!!

40

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Garbage
Memory is organized into “objects” which point to each other.

Objects are allocated at random during program execution.

Some objects are “reachable” from the program variables.

All other objects are considered to be garbage.

•
•
•

Stack

Frames

a:
b:
i:
j:

w:
x:
y:
z:

The Heap of Objects

41

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Garbage
Memory is organized into “objects” which point to each other.

Objects are allocated at random during program execution.

Some objects are “reachable” from the program variables.

All other objects are considered to be garbage.

•
•
•

Stack

Frames

a:
b:
i:
j:

w:
x:
y:
z:

The Heap of Objects

42

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Garbage
Memory is organized into “objects” which point to each other.

Objects are allocated at random during program execution.

Some objects are “reachable” from the program variables.

All other objects are considered to be garbage.

•
•
•

Stack

Frames

a:
b:
i:
j:

w:
x:
y:
z:

The Heap of Objects

43

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

The Heap

44

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

Several objects are freed.

The Heap

45

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

Want to allocate this object:

The Heap

46

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

The Heap

47

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

Want to allocate this object:

The Heap

48

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

Want to allocate this object:

“Compact” Memory!

The Heap

49

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

Want to allocate this object:

“Compact” Memory!

The Heap The Heap

50

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Want to allocate this object:

“Compact” Memory!

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

The Heap

51

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Fragmentation
Variable-sized chunks of memory are allocated.

Some chunks are freed (in more-or-less random order).

The resulting free space become “fragmented”.

Need to allocate more space?

Adequate space is available

... but it is not contiguous!

The Heap

52

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Pointer Problems
The program frees memory “too soon”.

Dangling references

Program crashes

Program accesses/overwrites other data

Incorrect / weird behavior

The program fails to free unused memory.

The program frees memory “too late”.

The program slowly eats up memory.

Finally, the program runs out of memory.

“memory exhausted” error

A Debugging Nightmare

Happens with long running programs

Difficult to replicate the bug

Where exactly is the “error”

Errors of omissions are hard to localize!

53

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Pointer Problems
Automatic Garbage Collection

Dangling references no longer possible.

Freeing memory...

The Garbage Collector is conservative.

May fail to collect some garbage.

•
•
•

Stack of

Frames

w:
x:
y:
z:

The Heap of Objects

What if this object is
never used again?

(Ought to collect it!)

54

CS-322 Code Generation-Part 1

© Harry H. Porter, 2006

Pointer Problems
Automatic Garbage Collection

Dangling references no longer possible.

Freeing memory...

The Garbage Collector is conservative.

May fail to collect some garbage.

•
•
•

Stack of

Frames

w:
x:
y:
z:

The Heap of Objects

Set this field to NULL,
so the collector will
identifiy the object

as garbage

NULL

