Lexical Analysis

- Must be efficient
- Looks at every input char

- Textbook, Chapter 2

Lexical Analysis - Part 1

Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...
Lexeme
The characters actually matched.
Example:

$$
\cdots \text { if } x=-12.30 \text { then } \cdots
$$

Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...
Lexeme
The characters actually matched.
Example:

$$
\cdots \text { if } x=-12.30 \text { then } \ldots
$$

How to describe/specify tokens?
Formal:
Regular Expressions
Letter (Letter | Digit)*
Informal:
"// through end of line"

Lexical Analysis - Part 1

Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...
Lexeme
The characters actually matched.
Example:

$$
\cdots \text { if } x=-12.30 \text { then } \ldots
$$

How to describe/specify tokens?
Formal:
Regular Expressions
Letter (Letter | Digit)*
Informal:
"// through end of line"

Tokens will appear as TERMINALS in the grammar.
Stmt \rightarrow while Expr do StmtList endWhile

$$
\rightarrow \overline{\mathrm{ID} "="} \operatorname{Expr} " ; "
$$

$$
\rightarrow \ldots
$$

Lexical Errors

Most errors tend to be "typos"
Not noticed by the programmer
return 1.23;
retunn 1,23;
... Still results in sequence of legal tokens
<ID,"retunn"> <INT,1> <COMMA> <INT,23> <SEMICOLON>
No lexical error, but problems during parsing!

Lexical Analysis - Part 1

Lexical Errors

Most errors tend to be "typos"
Not noticed by the programmer
return 1.23;
retunn 1,23;
... Still results in sequence of legal tokens
<ID,"retunn"> <INT,1> <COMMA> <INT,23> <SEMICOLON>
No lexical error, but problems during parsing!

Errors caught by lexer:

- EOF within a String / missing "
- Invalid ASCII character in file
- String / ID exceeds maximum length
- Numerical overflow etc...

Lexical Errors

Most errors tend to be "typos"
Not noticed by the programmer
return 1.23;
retunn 1,23;
... Still results in sequence of legal tokens
<ID,"retunn"> <INT,1> <COMMA> <INT,23> <SEMICOLON>
No lexical error, but problems during parsing!

Errors caught by lexer:

- EOF within a String / missing "
- Invalid ASCII character in file
- String / ID exceeds maximum length
- Numerical overflow etc...

Lexer must keep going!
Always return a valid token.
Skip characters, if necessary.
May confuse the parser
The parser will detect syntax errors and get straightened out (hopefully!)

Lexical Analysis - Part 1

Managing Input Buffers

Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call

$$
\text { e.g., } N=4096
$$

Manage input buffers in Lexer
More efficient

Managing Input Buffers

Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call

$$
\text { e.g., } N=4096
$$

Manage input buffers in Lexer
More efficient
Often, we need to look ahead

Start Convert to FLOAT or INT?

Lexical Analysis - Part 1

Managing Input Buffers

Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call

$$
\text { e.g., } N=4096
$$

Manage input buffers in Lexer
More efficient
Often, we need to look ahead

Token could overlap / span buffer boundaries.
\Rightarrow need 2 buffers
Code:
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...

Managing Input Buffers

Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call

$$
\text { e.g., } N=4096
$$

Manage input buffers in Lexer
More efficient
Often, we need to look ahead

Convert to FLOAT or INT?
Token could overlap / span buffer boundaries.
\Rightarrow need 2 buffers
Code:

```
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...
```

Technique: Use "Sentinels" to reduce testing
Choose some character that occurs rarely in most inputs
' 10 '

Lexical Analysis - Part 1

Goal: Advance forward pointer to next character ...and reload buffer if necessary.

Goal: Advance forward pointer to next character
...and reload buffer if necessary.

```
One fast test
    forward++;
    if *forward == '\0' then
        if forward at end of buffer #1 then
            Read next N bytes into buffer #2;
            forward = address of first char of buffer #2;
        elseIf forward at end of buffer #2 then
                Read next N bytes into buffer #1;
                forward = address of first char of buffer #1;
            else
                // do nothing; a real \0 occurs in the input
        endIf
    endIf
```

Lexical Analysis - Part 1
"Alphabet" (Σ)
A set of symbols ("characters")

$$
\begin{array}{ll}
\text { Examples: } & \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \Sigma=\text { ASCII character set }
\end{array}
$$

```
"Alphabet" (\Sigma)
    A set of symbols ("characters")
        Examples: }\textrm{\Sigma}={\textrm{a},\textrm{b},\textrm{c},\textrm{d}
                            \Sigma= ASCII character set
"String" (or "Sentence")
    Sequence of symbols
    Finite in length
        Example: abbadc Length of s = |s|
```

Lexical Analysis - Part 1


```
"Alphabet" ( \(\Sigma\) )
    A set of symbols ("characters")
        Examples: \(\quad \Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}\)
                                \(\Sigma=\) ASCII character set
"String" (or "Sentence")
    Sequence of symbols
    Finite in length
        Example: abbadc Length of \(\mathrm{s}=|\mathrm{s}|\)
    "Empty String" ( \(\varepsilon\), "epsilon")
        It is a string
        \(|\varepsilon|=0\)
    "Language"
        A set of strings
        Examples: \(\mathrm{L}_{\mathbf{1}}=\{\mathrm{a}, \mathrm{baa}, \mathrm{bccb}\}\)
            \(\mathrm{L}_{2}=\{ \}\)
            \(\mathrm{L}_{3}=\{\varepsilon\}\)
            \(\mathrm{L}_{4}=\{\varepsilon, \mathrm{ab}, \mathrm{abab}, \mathrm{ababab}, \mathrm{abababab}, . . \mathrm{\}}\)
            \(\mathrm{L}_{5}=\{\mathrm{s} \mid \mathrm{s}\) can be interpreted as an English sentence
                making a true statement about mathematics \(\}\)

Lexical Analysis - Part 1
\[
\begin{array}{ll}
\text { "Prefix" } " \text {...of string s } \\
\text { s = hello } & \text { Prefixes: he } \\
\text { hello }
\end{array}
\]
\(\varepsilon\)

Lexical Analysis - Part 1


Lexical Analysis - Part 1
"Concatenation"
Strings: x, y

\(x=a b b\)
\(y=c d c\)
Concatenation: xy
Example:
\(\mathrm{xy}=\mathrm{abbcdc}\)
\(\mathrm{yx}=\mathrm{cdcabb}\)

Lexical Analysis - Part 1



Lexical Analysis - Part 1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{What is the "identity" for concatenation?
\[
\varepsilon \mathrm{X}=\mathrm{X} \varepsilon=\mathrm{x}
\]} \\
\hline \[
\begin{aligned}
& \text { Multiplication } \Leftrightarrow \text { Concatenation } \\
& \text { Exponentiation } \Leftrightarrow \text { ? }
\end{aligned}
\] & \\
\hline \[
\begin{array}{ll}
\text { Define } & \mathrm{s}^{\mathbf{0}}=\varepsilon \\
& \mathrm{s}^{\mathbf{N}}=\mathrm{s}^{\mathbf{N}-\mathbf{1}_{S}}
\end{array}
\] & \\
\hline Example
\[
\begin{aligned}
& x=a b \\
& x^{0}=\varepsilon \\
& x^{1}=x=a b \\
& x^{2}=x x=a b a b \\
& x^{3}=x x x=a b a b a b \\
& \ldots \text { etc... } \\
& \mathrm{x}^{*}=x^{\infty}=\text { abababababab }
\end{aligned}
\] & \begin{tabular}{l}
Infinite sequence of symbols! \\
Technically, this is not a "string"
\end{tabular} \\
\hline
\end{tabular}


Lexical Analysis - Part 1

"Language"
A set of strings
\(\mathrm{L}=\{\ldots\}\)

"Union" of two languages
\(L \cup M=\{s \mid s\) is in \(L\) or is in \(M\}\)
Example:
\[
\begin{aligned}
& \mathrm{L}=\{a, a b\} \\
& \mathrm{M}=\{\mathrm{c}, \mathrm{dd}\} \\
& \mathrm{L} \cup \mathrm{M}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{dd}\}
\end{aligned}
\]
"Concatenation" of two languages
\(L M=\{s t \mid s \in L\) and \(t \in M\}\)
Example:
\[
\begin{aligned}
& \mathrm{L}=\{\mathrm{a}, \mathrm{ab}\} \\
& \mathrm{M}=\{\mathrm{c}, \mathrm{dd}\} \\
& \mathrm{L} M=\{\mathrm{ac}, \mathrm{add}, \mathrm{abc}, \mathrm{abdd}\}
\end{aligned}
\]

\section*{Lexical Analysis - Part 1}

\section*{Repeated Concatenation}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)

Example: \(\mathrm{L}^{\mathbf{0}}=\{\varepsilon\}\)
\(L^{\mathbf{1}}=\mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)
\(L^{2}=L L=\{a a, a b c, b c a, b c b c\}\)
\(L^{3}=\operatorname{LLL}=\{\) aaa, \(a \mathrm{abc}, \mathrm{abca}, \mathrm{abcbc}, \mathrm{bcaa}, \mathrm{bcabc}, \mathrm{bcbca}, \mathrm{bcbcbc}\}\)
...etc...
\(L^{\mathbf{N}}=L^{\mathrm{N}-1} \mathrm{~L}=L^{\mathrm{N}-1}\)

\section*{Kleene Closure}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)

Example: \(\mathrm{L}^{\mathbf{0}}=\{\varepsilon\}\)
\(L^{\mathbf{1}}=\mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)
\(L^{2}=L L=\{a a, a b c, b c a, b c b c\}\)
\(\mathrm{L}^{\mathbf{3}}=\mathrm{LLL}=\{\mathrm{aaa}, \mathrm{a} a b c, \mathrm{abca}, \mathrm{abcbc}, \mathrm{bcaa}, \mathrm{bcabc}, \mathrm{bcbca}, \mathrm{bcbcbc}\}\)
...etc...
\(L^{\mathbf{N}}=L^{\mathrm{N}-1} \mathrm{~L}=L^{\mathrm{N}-1}\)

Example:


\section*{Lexical Analysis - Part 1}

\section*{Positive Closure}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)

Example: \(\mathrm{L}^{\mathbf{0}}=\{\varepsilon\}\)
\(L^{\mathbf{1}}=\mathrm{L}=\{\mathrm{a}, \mathrm{bc}\}\)
\(L^{2}=L L=\{a a, a b c, b c a, b c b c\}\)
\(L^{3}=\operatorname{LLL}=\{a a a, a b c, a b c a, a b c b c, b c a a, b c a b c, b c b c a, b c b c b c\}\)
...etc...
\(\mathrm{L}^{\mathbf{N}}=\mathrm{L}^{\mathrm{N}-1} \mathrm{~L}=\mathrm{LL}^{\mathrm{N}-1}\)
The "Positive Closure" of a language: \(\left\{\sum_{i=0}^{\infty} a^{i}=a^{0} \cup a^{1} \cup a^{2} \cup \ldots\right.\)
\(L^{+}=\bigcup_{i=1}^{\infty} L^{i}=\quad L^{1} \cup L^{2} \cup L^{3} \cup \ldots\)

Example:
\[
L^{+}=\{\underbrace{a, b c,}_{L^{1}} \underbrace{a a, a b c, b c a, b c b c}_{L^{2}}, \underbrace{a a a, a a b c, a b c a, a b c b c, \ldots}_{L^{3}}\}
\]


Lexical Analysis - Part 1

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)
"The set of strings with one or more digits"
\(\mathrm{L} \cup \mathrm{D}=\)

Lexical Analysis - Part 1

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)
"The set of strings with one or more digits"
\(L \cup D=\)
"The set of alphanumeric characters" \(\{a, b, c, \ldots, z, 0,1,2, \ldots, 9\}\)
\((L \cup D)^{*}=\)

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)
"The set of strings with one or more digits"
\(\mathrm{L} \cup \mathrm{D}=\)
"The set of alphanumeric characters"
\(\{a, b, c, \ldots, z, 0,1,2, \ldots, 9\}\)
\((\mathrm{L} \cup \mathrm{D})^{*}=\)
"Sequences of zero or more letters and digits"
\(\mathrm{L}(\mathrm{L} \cup \mathrm{D})^{*}=\)

\section*{Lexical Analysis - Part 1}

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)
"The set of strings with one or more digits"
\(\mathrm{L} \cup \mathrm{D}=\)
"The set of alphanumeric characters"
\(\{a, b, c, \ldots, z, 0,1,2, \ldots, 9\}\)
\((\mathrm{L} \cup \mathrm{D})^{*}=\)
"Sequences of zero or more letters and digits"
\(\mathrm{L}\left((\mathrm{L} \cup \mathrm{D})^{*}\right)=\)

\section*{Examples}

Let: \(\quad \mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}\)
\[
\mathrm{D}=\{0,1,2, \ldots, 9\}
\]
\(\mathrm{D}^{+}=\)
"The set of strings with one or more digits"
\(\mathrm{L} \cup \mathrm{D}=\)
"The set of alphanumeric characters"
\(\{a, b, c, \ldots, z, 0,1,2, \ldots, 9\}\)
\((\mathrm{L} \cup \mathrm{D})^{*}=\)
"Sequences of zero or more letters and digits"
\(\mathrm{L}\left((\mathrm{L} \cup \mathrm{D})^{*}\right)=\)
"Set of strings that start with a letter, followed by zero or more letters and and digits."

Lexical Analysis - Part 1

\section*{Regular Expressions}

Assume the alphabet is given... e.g., \(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \mathrm{z}\}\)
\[
\text { Example: } \quad \mathbf{a}(\mathrm{b} \mid \mathrm{c}) \mathrm{d}^{*} \mathbf{e}
\]

A regular expression describes a language.

\section*{Notation:}
\(\mathrm{r}=\) regular expression
\(\mathrm{L}(\mathrm{r})=\) the corresponding language
Example:
\[
r=a(b \mid c) d^{*} e
\]

\section*{Meta Symbols:}
\[
L(r)=\{a b e,
\]
abde,
abdde,
abddde,
...,
ace,
acde, acdde, acddde, ...\}

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

Lexical Analysis - Part 1

\section*{How to "Parse" Regular Expressions}
\({ }^{*}\) has highest precedence.
Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

Examples:
\(\mathrm{a} \mathrm{b}^{*}=\)

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

Examples:
\(a b^{*}=a\left(b^{*}\right)\)
If you want (a b) * you must use parentheses.

Lexical Analysis - Part 1

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.
Examples:
\(a b^{*}=a\left(b^{*}\right)\)
If you want \((\mathrm{a} \quad \mathrm{b})\) * you must use parentheses.
a | b c =

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

Examples:
\(a b^{*}=a\left(b^{*}\right)\)
If you want (a b) * you must use parentheses.
\(\mathrm{a}|\mathrm{b} c=\mathrm{a}|(\mathrm{b} \mathrm{c})\)
If you want (a | b) c you must use parentheses.

\section*{Lexical Analysis - Part 1}

\section*{How to "Parse" Regular Expressions}
\({ }^{*}\) has highest precedence.
Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.
\(\frac{\text { Examples: }}{*}\)
\(a b^{*}=a\left(b^{*}\right)\)
If you want \((\mathrm{a} b)^{*}\) you must use parentheses.
a | b c = a | (b c)
If you want (a | b) c you must use parentheses.

Concatenation and \(\mid\) are associative.
( a b) \(\mathrm{c}=\mathrm{a}(\mathrm{b} \mathrm{c}\) ) \(=\mathrm{a} b \mathrm{c}\)
( \(\mathrm{a} \mid \mathrm{b})|\mathrm{c}=\mathrm{a}|(\mathrm{b} \mid \mathrm{c})=\mathrm{a}|\mathrm{b}| \mathrm{c}\)

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

\section*{Examples:}
\(a b^{*}=a\left(b^{*}\right)\)
If you want (a b) * you must use parentheses.
a | b c = a | (b c)
If you want (a | b) c you must use parentheses.

Concatenation and I are associative.
```

(a b) c $=a(b c)=a b c$
(a | b) | c $=a|(b \mid c)=a| b \mid c$

```

Example:
\(\mathrm{b} d\left|e f^{*}\right| \mathrm{g} a=\)

\section*{Lexical Analysis - Part 1}

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.
Examples:
\(a b^{*}=a\left(b^{*}\right)\)
If you want (a b) * you must use parentheses.
a | b c = a | (b c)
If you want (a | b) c you must use parentheses.
Concatenation and \(I\) are associative.
```

(a b) $\mathrm{c}=\mathrm{a}(\mathrm{b} \mathrm{c}$) $=\mathrm{a} \mathrm{b}$ c
($\mathrm{a} \mid \mathrm{b})|\mathrm{c}=\mathrm{a}|(\mathrm{b} \mid \mathrm{c})=\mathrm{a}|\mathrm{b}| \mathrm{c}$

```

\section*{Example:}
\(b d\left|e f^{*}\right| g a=b d\left|e\left(f{ }^{*}\right)\right| g a\)

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
I has lowest precedence.
Use parentheses to override these rules.

\section*{Examples:}
\(a b^{*}=a\left(b^{*}\right)\)
If you want (a b) * you must use parentheses.
\(\mathrm{a}|\mathrm{b} c=\mathrm{a}|(\mathrm{b} \mathrm{c})\)
If you want (a | b) c you must use parentheses.
Concatenation and \(\mid\) are associative.
\((\mathrm{a} b) \mathrm{c}=\mathrm{a}(\mathrm{b} c)=\mathrm{a} b \mathrm{c}\)
\((\mathrm{a} \mid \mathrm{b})|\mathrm{c}=\mathrm{a}|(\mathrm{b} \mid \mathrm{c})=\mathrm{a}|\mathrm{b}| \mathrm{c}\)

Example:
\(b d\left|e f^{*}\right| g a=(b d)\left|\left(e\left(f^{*}\right)\right)\right|(g a)\)

\section*{Lexical Analysis - Part 1}

\section*{How to "Parse" Regular Expressions}
* has highest precedence.

Concatenation as middle precedence.
। has lowest precedence.
Use parentheses to override these rules.
Examples:
\(a b^{*}=a\left(b^{*}\right)\)
If you want \((a b)\) * you must use parentheses.
a | b c = a | (b c)
If you want (a | b) c you must use parentheses.
Concatenation and \(\mid\) are associative.
\[
\begin{aligned}
& (\mathrm{a} \\
& \mathrm{b}) \mathrm{c}=\mathrm{a}(\mathrm{~b} c)=\mathrm{a} b \mathrm{c} \\
& (\mathrm{a} \mid \mathrm{b})|\mathrm{c}=\mathrm{a}|(\mathrm{b} \mid \mathrm{c})=\mathrm{a}|\mathrm{~b}| \mathrm{c}
\end{aligned}
\]

\section*{Example:}
\(b d\left|e f{ }^{*}\right| g a=\left((b d) \mid\left(e\left(f{ }^{*}\right)\right)\right) \mid(g a)\)

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
- \(\varepsilon\) is a regular expression.
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Lexical Analysis - Part 1}

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
L(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Lexical Analysis - Part 1}

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
L(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
\[
L(a)=\{a\}
\]
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
L(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
\[
L(a)=\{a\}
\]
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
\[
L(R \mid S)=L(R) \cup L(S)
\]
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Lexical Analysis - Part 1}

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
L(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
\[
L(a)=\{a\}
\]
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
\[
L(R \mid S)=L(R) \cup L(S)
\]
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
\[
L(R S)=L(R) L(S)
\]
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
\mathrm{L}(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
\[
L(a)=\{a\}
\]
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
\[
L(R \mid S)=L(R) \cup L(S)
\]
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
\[
L(R S)=L(R) L(S)
\]
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
\[
L\left(R^{*}\right)=(L(R))^{*}
\]
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.

\section*{Lexical Analysis - Part 1}

\section*{Definition: Regular Expressions}
(Over alphabet \(\Sigma\) )
And, given a regular expression \(R\), what is \(L(R)\) ?
- \(\varepsilon\) is a regular expression.
\[
L(\varepsilon)=\{\varepsilon\}
\]
- If \(a\) is a symbol (i.e., if \(a \in \Sigma\) ), then \(a\) is a regular expression.
\[
L(a)=\{a\}
\]
- If \(R\) and \(S\) are regular expressions, then \(R \mid S\) is a regular expression.
\[
L(R \mid S)=L(R) \cup L(S)
\]
- If \(R\) and \(S\) are regular expressions, then \(R S\) is a regular expression.
\[
\mathrm{L}(\mathrm{RS})=\mathrm{L}(\mathrm{R}) \mathrm{L}(\mathrm{~S})
\]
- If \(R\) is a regular expression, then \(R^{*}\) is a regular expression.
\[
\mathrm{L}\left(\mathrm{R}^{*}\right)=(\mathrm{L}(\mathrm{R}))^{*}
\]
- If \(R\) is a regular expression, then ( \(R\) ) is a regular expression.
\(L((R))=L(R)\)

\section*{Regular Languages}

Definition: "Regular Language" (or "Regular Set") ... A language that can be described by a regular expression.
- Any finite language (i.e., finite set of strings) is a regular language.
- Regular languages are (usually) infinite.
- Regular languages are, in some sense, simple languages.

Regular Langauges \(\subset\) Context-Free Languages

\section*{Examples:}
a | b | cab \(\{\mathrm{a}, \mathrm{b}, \mathrm{cab}\}\)
b* \(\{\varepsilon, \mathrm{b}, \mathrm{bb}, \mathrm{bbb}, \ldots\}\)
a | b* \(\{\mathrm{a}, \mathrm{\varepsilon}, \mathrm{~b}, \mathrm{bb}, \mathrm{bbb}, \ldots\}\)
(a | b)* \(\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \ldots\}\)
"Set of all strings of a's and b's, including \(\varepsilon\)."

\section*{Lexical Analysis - Part 1}

\section*{Equality v. Equivalence}

Are these regular expressions equal?
\[
\begin{aligned}
& \mathrm{R}=\mathrm{a} a *(\mathrm{~b} \mid \mathrm{c}) \\
& \mathrm{S}=\mathrm{a} \text { a } \mathrm{a}(\mathrm{c} \mid \mathrm{b})
\end{aligned}
\]
... No!

Yet, they describe the same language.
\[
L(R)=L(S)
\]
"Equivalence" of regular expressions If \(L(R)=L(S)\) then we say \(R \approx S\)
" \(R\) is equivalent to \(S\) "

\section*{Notation:}

Equality
\(=\)
Equivalence
\(=\)
\(=\)
\(\equiv\)
\(\equiv\)
"Syntactic" equality versus "deeper" equality...
Algebra:
\[
\text { Does... } x(3+b)=3 x+b x \quad ?
\]

From now on, we'll just say \(R=S\) to mean \(R \approx S\)

\section*{Algebraic Laws of Regular Expressions}

Let R, S, T be regular expressions...


Concatenation is associative
\[
R(S T)=(R S) T=R S T
\]

Concatenation distributes over I
\[
R(S \mid T)=R S I R T
\]
\[
(\mathrm{R} \| \mathrm{S}) \mathrm{T}=\mathrm{RT} \mathrm{I} \mathrm{ST}
\]

Preferred
\(\varepsilon\) is the identity for concatenation
\[
\varepsilon \mathrm{R}=\mathrm{R} \varepsilon=\mathrm{R}
\]
* is idempotent
\[
\left(\mathrm{R}^{*}\right)^{*}=\mathrm{R}^{*}
\]

Relation between * and \(\varepsilon\)
\[
\mathrm{R}^{*}=(\mathrm{R} \| \varepsilon)^{*}
\]

\section*{Lexical Analysis - Part 1}

\section*{Regular Definitions}
\begin{tabular}{lllllllllll} 
Letter & \(=\) & \(a\) & \(\mid\) & \(b\) & \(\mid\) & \(c\) & \(\mid\) & \(\ldots\) & \(\mid\) & \(z\) \\
\(\underline{\text { Digit }}\) & \(=\) & 0 & \(\mid\) & 1 & \(\mid\) & 2 & \(\mid\) & \(\ldots\) & \(\mid\) & 9 \\
\(\underline{I D}\) & \(=\) & \(\underline{\text { Letter }}\) & \((\underline{\text { Letter }}\) & \(\mid\) & \(\underline{\text { Digit }}) *\)
\end{tabular}

\section*{Regular Definitions}
\begin{tabular}{lllllllllll} 
Letter & \(=\) & \(a\) & \(\mid\) & \(b\) & \(\mid\) & \(c\) & \(\mid\) & \(\ldots\) & \(\mid\) & \(z\) \\
\(\underline{\text { Digit }}\) & \(=\) & 0 & \(\mid\) & 1 & \(\mid\) & 2 & \(\mid\) & \(\ldots\) & \(\mid\) & 9 \\
\(\underline{I D}\) & \(=\) & \(\underline{\text { Letter }}\) & \((\underline{\text { Letter }}\) & \(\mid\) & \(\underline{\text { Digit }}) *\)
\end{tabular}

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.
\[
\begin{aligned}
& \text { Letter ( Letter | Digit )* } \\
= & \{" L e t t e r ", " L e t t e r L e t t e r ", " ~ " L e t t e r D i g i t ", ~ . ~ . . ~\}
\end{aligned}
\]

\section*{Lexical Analysis - Part 1}

\section*{Regular Definitions}


Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.
```

 Letter (Letter | Digit)*
 = {"Letter","LetterLetter","LetterDigit", . . . }

```

Each definition may only use names previously defined.
\(\Rightarrow\) No recursion
Regular Sets \(=\) no recursion
\(\mathrm{CFG}=\) recursion

\section*{Addition Notation / Shorthand}
\[
\begin{aligned}
& \text { One-or-more: }{ }^{+} \\
& \qquad \mathbf{X}^{\boldsymbol{+}}=\mathbf{X}\left(\mathbf{X}^{*}\right) \\
& \underline{\text { Digit }}^{+}=\underline{\text { Digit }} \underline{\text { Digit }}^{*}=\underline{\text { Digits }}
\end{aligned}
\]

Lexical Analysis - Part 1

\section*{Addition Notation / Shorthand}

One-or-more:
\[
\begin{aligned}
& \mathbf{x}^{+}=\mathbf{X}\left(\mathbf{X}^{*}\right) \\
& \text { Digit }^{+}=\underline{\text { Digit }} \underline{\text { Digit }}^{*}=\underline{\text { Digits }}
\end{aligned}
\]

Optional (zero-or-one): ?
X ? \(=(\mathrm{X} \mid \varepsilon)\)
\(\underline{\text { Num }}=\underline{\text { Digit }}^{+}\left(\cdot \underline{\text { Digit }}^{+}\right)\)?

\section*{Addition Notation / Shorthand}
\[
\begin{aligned}
& \text { One-or-more: }{ }^{+} \\
& \mathbf{X}^{+}=\mathbf{X}\left(\mathbf{X}^{*}\right) \\
& \text { Digit }^{+}=\underline{\text { Digit }} \text { Digit }^{*}=\underline{\text { Digits }}
\end{aligned}
\]

Optional (zero-or-one): ?
\(\mathbf{X} \boldsymbol{?}=(\mathbf{X} \mid \varepsilon)\)
Num \(=\) Digit \(^{+}\left(\right.\). Digit \(\left.^{+}\right)\)?

Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.
\(\underline{\text { Digit }}=[0-9]\)
\(\underline{\text { Letter }}=[a-z A-Z]=[A-Z a-z]\)

\section*{Lexical Analysis - Part 1}

\section*{Addition Notation / Shorthand}

One-or-more:
\[
\begin{aligned}
& \mathbf{x}^{+}=\mathbf{X}\left(\mathbf{X}^{*}\right) \\
& \underline{\text { Digit }}^{+}=\underline{\text { Digit }} \underline{\text { Digit }} *=\underline{\text { Digits }}
\end{aligned}
\]

Optional (zero-or-one): ?
\(\mathbf{X} ?=(X \mid \varepsilon)\)
\(\underline{\text { Num }}=\) Digit \(^{+}\left(\right.\). Digit \(\left.^{+}\right)\)?
Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.
Digit \(=[0-9]\)
Letter \(=[a-z A-z]=[A-Z a-z]\)
Variations:
Zero-or-more: \(\quad a b^{*} c=a\{b\} c=a\{b\}^{*} c\)
One-or-more:
Optional: \(\quad \mathrm{ab} ? \mathrm{c}=\mathrm{a}[\mathrm{b}] \mathrm{c}\)

Many sets of strings are not regular.
...no regular expression for them!

\section*{Lexical Analysis - Part 1}

Many sets of strings are not regular.
...no regular expression for them!

The set of all strings in which parentheses are balanced.
( () ( ()) )
Must use a CFG!

Many sets of strings are not regular.
...no regular expression for them!

The set of all strings in which parentheses are balanced.
( () ( () ))
Must use a CFG!

Strings with repeated substrings
\(\{\mathrm{XcX} \| \mathrm{X}\) is a string of a's and b's \}
\(a b b b a b c a b b b a b\)


CFG is not even powerful enough.

\section*{Lexical Analysis - Part 1}

Many sets of strings are not regular.
...no regular expression for them!

The set of all strings in which parentheses are balanced.
( () ( ()))
Must use a CFG!

Strings with repeated substrings
\(\{X c X \mid X\) is a string of \(a ' s\) and \(b ’ s\) \}
abbbabcabbbab


CFG is not even powerful enough.

The Problem?
In order to recognize a string, these languages require memory!

Problem: How to describe tokens?
Solution: Regular Expressions
Problem: How to recognize tokens?
Approaches:
- Hand-coded routines

Examples: E-Language, PCAT-Lexer
- Finite State Automata
- Scanner Generators (Java: JLex, C: Lex)

\section*{Scanner Generators}

Input: Sequence of regular definitions
Output: A lexer (e.g., a program in Java or "C")
Approach:
- Read in regular expressions
- Convert into a Finite State Automaton (FSA)
- Optimize the FSA
- Represent the FSA with tables / arrays
- Generate a table-driven lexer (Combine "canned" code with tables.)

Lexical Analysis - Part 1

\section*{Finite State Automata (FSAs)}
("Finite State Machines","Finite Automata", "FA")
- One start state
- Many final states
- Each state is labeled with a state name
- Directed edges, labeled with symbols

- Deterministic (DFA)

No \(\varepsilon\)-edges
Each outgoing edge has different symbol
- Non-deterministic (NFA)

\section*{Finite State Automata (FSAs)}

Formalism: \(<S, \Sigma, \delta, S_{0}, S_{F}>\)
S = Set of states
\[
S=\left\{\mathrm{s}_{\mathbf{0}}, \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathbf{N}}\right\}
\]
\(\Sigma=\) Input Alphabet
\(\Sigma=\) ASCII Characters
\(\delta=\) Transition Function
\(S \times \Sigma \rightarrow\) States (deterministic)
\(S \times \Sigma \rightarrow\) Sets of States (non-deterministic)

\(\mathrm{s}_{\mathbf{0}}=\) Start State
"Initial state"
\(\mathrm{s}_{0} \in \mathrm{~S}\)
\(S_{F}=\) Set of final states
"accepting states"
\(S_{\mathrm{F}} \subseteq \mathrm{S}\)
© Harry H. Porter, 2005

Lexical Analysis - Part 1

\section*{Finite State Automata (FSAs)}

Formalism: \(<\mathrm{S}, \Sigma, \delta, \mathrm{S}_{0}, \mathrm{~S}_{\mathrm{F}}>\)
S = Set of states
\[
S=\left\{\mathrm{s}_{\mathbf{0}}, \mathrm{s}_{\mathbf{1}}, \ldots, \mathrm{s}_{\mathbf{N}}\right\}
\]
\(\Sigma=\) Input Alphabet
\(\Sigma=\) ASCII Characters
\(\delta=\) Transition Function
\(S \times \Sigma \rightarrow\) States (deterministic)
\(S \times \Sigma \rightarrow\) Sets of States (non-deterministic)
\(\mathrm{s}_{\mathbf{0}}=\) Start State
"Initial state"
\(\mathrm{s}_{\mathbf{0}} \in \mathrm{S}\)
\(S_{F}=\) Set of final states
"accepting states"
\(S_{F} \subseteq S\)

© Harry H. Porter, 2005

\section*{Finite State Automata (FSAs)}

A string is "accepted"... (a string is "recognized"...)
by a FSA if there is a path
from Start to any accepting state where edge labels match the string.

Example:
This FSA accepts:
\(\varepsilon\)
aaab
abbb

© Harry H. Porter, 2005

Lexical Analysis - Part 1

\section*{Deterministic Finite Automata (DFAs)}

No \(\varepsilon\)-moves
The transition function returns a single state
\[
\delta: S \times \Sigma \rightarrow S
\]
function Move (s:State, a:Symbol) returns State


\section*{Deterministic Finite Automata (DFAs)}

No \(\varepsilon\)-moves
The transition function returns a single state
\[
\delta: S \times \Sigma \rightarrow S
\]
function Move (s:State, a:Symbol) returns State


Lexical Analysis - Part 1

\section*{Deterministic Finite Automata (DFAs)}

No \(\varepsilon\)-moves
The transition function returns a single state
\[
\delta: S \times \Sigma \rightarrow S
\]
function Move (s:State, a:Symbol) returns State


\section*{Non-Deterministic Finite Automata (NFAs)}

Allow \(\varepsilon\)-moves
The transition function returns a set of states
```

$\delta: S \times \Sigma \rightarrow \operatorname{Powerset}(S)$
$\delta: S \times \Sigma \rightarrow P(S)$
function Move (s:State, a:Symbol) returns set of State

```


\section*{Theoretical Results}
- The set of strings recognized by an NFA can be described by a Regular Expression.

\section*{Theoretical Results}
- The set of strings recognized by an NFA
can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.

\section*{Theoretical Results}
- The set of strings recognized by an NFA can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.
- The set of strings recognized by an DFA can be described by a Regular Expression.

\section*{Theoretical Results}
- The set of strings recognized by an NFA
can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.
- The set of strings recognized by an DFA can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an DFA.

\section*{Lexical Analysis - Part 1}

\section*{Theoretical Results}
- The set of strings recognized by an NFA
can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.
- The set of strings recognized by an DFA can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an DFA.
- DFAs, NFAs, and Regular Expressions all have the same "power". They describe "Regular Sets" ("Regular Languages")

\section*{Theoretical Results}
- The set of strings recognized by an NFA
can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.
- The set of strings recognized by an DFA
can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an DFA.
- DFAs, NFAs, and Regular Expressions all have the same "power". They describe "Regular Sets" ("Regular Languages")
- The DFA may have a lot more states than the NFA. (May have exponentially as many states, but...)

\section*{Lexical Analysis - Part 1}


What is the regular expression?


What is the regular expression?
\[
\varepsilon \quad \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?

\section*{Lexical Analysis - Part 1}


What is the regular expression?
\[
\varepsilon \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?



What is the regular expression?
\[
\varepsilon \quad \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?


\section*{Lexical Analysis - Part 1}


What is the regular expression?
\[
\varepsilon \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?



What is the regular expression?
\[
\varepsilon \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?


\section*{Lexical Analysis - Part 1}


What is the regular expression?
\[
\varepsilon \mid a(a \mid b)^{*} b
\]

What is an equivalent DFA?
```

