
1

Lexical Analysis - Part 1

© Harry H. Porter, 2005

•!Must be efficient

•!Looks at every input char

•!Textbook, Chapter 2

Lexical AnalysisLexical Analysis

Source Code

Parser

Lexical Analyzer

tokengetToken()
String Table/

Symbol Table

Management

2

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...

3

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...

How to describe/specify tokens?
Formal:

Regular Expressions
Letter (Letter | Digit)*

Informal:
“// through end of line”

4

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...

How to describe/specify tokens?
Formal:

Regular Expressions
Letter (Letter | Digit)*

Informal:
“// through end of line”

Tokens will appear as TERMINALS in the grammar.

Stmt ! while Expr do StmtList endWhile
! ID “=” Expr “;”
! ...

5

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT,23> <SEMICOLON>

No lexical error, but problems during parsing!

6

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT,23> <SEMICOLON>

No lexical error, but problems during parsing!

Errors caught by lexer:

•!EOF within a String / missing ”

•!Invalid ASCII character in file

•!String / ID exceeds maximum length

•!Numerical overflow

 etc...

7

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT,23> <SEMICOLON>

No lexical error, but problems during parsing!

Errors caught by lexer:

•!EOF within a String / missing ”

•!Invalid ASCII character in file

•!String / ID exceeds maximum length

•!Numerical overflow

 etc...

Lexer must keep going!

Always return a valid token.

Skip characters, if necessary.

May confuse the parser

The parser will detect syntax errors and get straightened out (hopefully!)

8

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

9

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

 ... 1 2 3 4 ? ...

Start Convert to FLOAT or INT?

10

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

Token could overlap / span buffer boundaries.

" need 2 buffers

Code:
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...

 ... 1 2 3 4 ? ...

Start Convert to FLOAT or INT?

11

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

Token could overlap / span buffer boundaries.

" need 2 buffers

Code:
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...

Technique: Use “Sentinels” to reduce testing

Choose some character that occurs rarely in most inputs

 ‘\0’

 ... 1 2 3 4 ? ...

Start Convert to FLOAT or INT?

12

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Goal: Advance forward pointer to next character

...and reload buffer if necessary.

i f (x < 1 2 \0 3

sentinel N bytesN bytes

lexBegin forward

4) t h e n \0

sentinel

13

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Goal: Advance forward pointer to next character

...and reload buffer if necessary.

Code :
forward++;

if *forward == ‘\0’ then

 if forward at end of buffer #1 then

 Read next N bytes into buffer #2;

 forward = address of first char of buffer #2;

 elseIf forward at end of buffer #2 then

 Read next N bytes into buffer #1;

 forward = address of first char of buffer #1;

 else

 // do nothing; a real \0 occurs in the input

 endIf

endIf

i f (x < 1 2 \0 3

sentinel N bytesN bytes

lexBegin forward

One fast test

 ...which usually fails

4) t h e n \0

sentinel

14

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Alphabet” (#)

A set of symbols (“characters”)

 Examples: # = { a, b, c, d }

= ASCII character set

15

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Alphabet” (#)

A set of symbols (“characters”)

 Examples: # = { a, b, c, d }

= ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc Length of s = |s|

16

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Alphabet” (#)

A set of symbols (“characters”)

 Examples: # = { a, b, c, d }

= ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc Length of s = |s|

“Empty String” ($, “epsilon”)

It is a string

|$| = 0

17

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Alphabet” (#)

A set of symbols (“characters”)

 Examples: # = { a, b, c, d }

= ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc Length of s = |s|

“Empty String” ($, “epsilon”)

It is a string

|$| = 0

“Language”
A set of strings

 Examples: L1 = { a, baa, bccb }

L2 = { }

L3 = { $ }

L4 = { $, ab, abab, ababab, abababab,... }

L5 = { s | s can be interpreted as an English sentence

 making a true statement about mathematics}

Each string is finite in length,

 but the set may have an infinite

 number of elements.

18

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Prefix” ...of string s

 s = hello Prefixes: he

hello

$

19

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Prefix” ...of string s

 s = hello Prefixes: he

hello

$

“Suffix” ...of string s

 s = hello Suffixes: llo

$

hello

20

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Prefix” ...of string s

 s = hello Prefixes: he

hello

$

“Suffix” ...of string s

 s = hello Suffixes: llo

$

hello

“Substring” ...of string s

 Remove a prefix and a suffix

 s = hello Substrings: ell

hello

$

21

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Prefix” ...of string s

 s = hello Prefixes: he

hello

$

“Suffix” ...of string s

 s = hello Suffixes: llo

$

hello

“Substring” ...of string s

 Remove a prefix and a suffix

 s = hello Substrings: ell

hello

$

“Proper” prefix / suffix / substring ... of s

 % s and % $

22

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Prefix” ...of string s

 s = hello Prefixes: he

hello

$

“Suffix” ...of string s

 s = hello Suffixes: llo

$

hello

“Substring” ...of string s

 Remove a prefix and a suffix

 s = hello Substrings: ell

hello

$

“Proper” prefix / suffix / substring ... of s

 % s and % $

“Subsequence” ...of string s,

 s = compilers Subsequences: opilr

cors

compilers

$

23

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

Other notations: x || y

x + y

x ++ y

x · y

24

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x = x$ = x

Multiplication & Concatenation
Exponentiation & ?

Other notations: x || y

x + y

x ++ y

x · y

25

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x = x$ = x

Multiplication & Concatenation
Exponentiation & ?

Define s0 = $
sN = sN-1s

Example x = ab
x0 = $
x1 = x = ab
x2 = xx = abab
x3 = xxx = ababab
...etc...

Other notations: x || y

x + y

x ++ y

x · y

26

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x = x$ = x

Multiplication & Concatenation
Exponentiation & ?

Define s0 = $
sN = sN-1s

Example x = ab
x0 = $
x1 = x = ab
x2 = xx = abab
x3 = xxx = ababab
...etc...
x* = x! = abababababab...

Other notations: x || y

x + y

x ++ y

x · y

Infinite sequence of symbols!
 Technically, this is not a “string”

27

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Language”
A set of strings

L = { ... }
M = { ... }

Generally, these are infinite sets.

28

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Language”
A set of strings

L = { ... }
M = { ... }

“Union” of two languages
L ' M = { s | s is in L or is in M }

Example:
L = { a, ab }
M = { c, dd }
L ' M = { a, ab, c, dd }

Generally, these are infinite sets.

29

Lexical Analysis - Part 1

© Harry H. Porter, 2005

“Language”
A set of strings

L = { ... }
M = { ... }

“Union” of two languages
L ' M = { s | s is in L or is in M }

Example:
L = { a, ab }
M = { c, dd }
L ' M = { a, ab, c, dd }

“Concatenation” of two languages
L M = { st | s (L and t (M }

Example:
L = { a, ab }
M = { c, dd }
L M = { ac, add, abc, abdd }

Generally, these are infinite sets.

30

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Repeated Concatenation
Let: L = { a, bc }

Example: L0 = { $ }

L1 = L = { a, bc }

L2 = LL = { aa, abc, bca, bcbc }

L3 = LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN = LN-1L = LLN-1

31

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Kleene Closure
Let: L = { a, bc }

Example: L0 = { $ }

L1 = L = { a, bc }

L2 = LL = { aa, abc, bca, bcbc }

L3 = LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN = LN-1L = LLN-1

The “Kleene Closure” of a language:

!

L* = ' Li = L0 ' L1 ' L2 ' L3 ' ...
 i = 0

Example:

L* = { $, a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

 !

ai = a0 ' a1 ' a2 ' ...
i = 0

L3L2L1L0

32

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Positive Closure
Let: L = { a, bc }

Example: L0 = { $ }

L1 = L = { a, bc }

L2 = LL = { aa, abc, bca, bcbc }

L3 = LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN = LN-1L = LLN-1

The “Positive Closure” of a language:

!

L+ = ' Li = L1 ' L2 ' L3 ' ...
 i = 1

Example:

L+ = { a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

L3L2L1

 !

ai = a0 ' a1 ' a2 ' ...
i = 0

33

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Positive Closure
Let: L = { a, bc }

Example: L0 = { $ }

L1 = L = { a, bc }

L2 = LL = { aa, abc, bca, bcbc }

L3 = LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN = LN-1L = LLN-1

The “Positive Closure” of a language:

!

L+ = ' Li = L1 ' L2 ' L3 ' ...
 i = 1

Example:

L+ = { a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

L3L2L1

 !

ai = a0 ' a1 ' a2 ' ...
i = 0

Note that $ is not included

UNLESS it is in L to start with

34

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

35

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

“The set of strings with one or more digits”

L ' D =

36

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

“The set of strings with one or more digits”

L ' D =

“The set of alphanumeric characters”

 { a, b, c, ..., z, 0, 1, 2, ..., 9 }

(L ' D)* =

37

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

“The set of strings with one or more digits”

L ' D =

“The set of alphanumeric characters”

 { a, b, c, ..., z, 0, 1, 2, ..., 9 }

(L ' D)* =

“Sequences of zero or more letters and digits”

L (L ' D)* =

38

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

“The set of strings with one or more digits”

L ' D =

“The set of alphanumeric characters”

 { a, b, c, ..., z, 0, 1, 2, ..., 9 }

(L ' D)* =

“Sequences of zero or more letters and digits”

L ((L ' D)*) =

39

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Examples

Let: L = { a, b, c, ..., z }

D = { 0, 1, 2, ..., 9 }

D + =

“The set of strings with one or more digits”

L ' D =

“The set of alphanumeric characters”

 { a, b, c, ..., z, 0, 1, 2, ..., 9 }

(L ' D)* =

“Sequences of zero or more letters and digits”

L ((L ' D)*) =

“Set of strings that start with a letter, followed by zero

or more letters and and digits.”

40

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Regular Expressions
Assume the alphabet is given... e.g., # = { a, b, c, ... z }

Example: a (b | c) d* e

A regular expression describes a language.

Notation:

r = regular expression

L(r) = the corresponding language

Example:

 r = a (b | c) d* e

 L(r) = { abe,

abde,

abdde,

abddde,

...,

ace,

acde,

acdde,

acddde,

...}

Meta Symbols:
 ()

 |

 *

 $

41

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

42

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* =

43

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

44

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c =

45

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

46

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c = a (b c) = a b c

 (a | b) | c = a | (b | c) = a | b | c

47

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c = a (b c) = a b c

 (a | b) | c = a | (b | c) = a | b | c

Example:

b d | e f * | g a =

48

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c = a (b c) = a b c

 (a | b) | c = a | (b | c) = a | b | c

Example:

b d | e f * | g a = b d | e (f *) | g a

49

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c = a (b c) = a b c

 (a | b) | c = a | (b | c) = a | b | c

Example:

b d | e f * | g a = (b d) | (e (f *)) | (g a)

50

Lexical Analysis - Part 1

© Harry H. Porter, 2005

How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c = a (b c) = a b c

 (a | b) | c = a | (b | c) = a | b | c

Example:

b d | e f * | g a = ((b d) | (e (f *))) | (g a)

Fully parenthesized

51

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

•! $ is a regular expression.

• If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

52

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

• If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

53

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

54

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a) = { a }

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

55

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a) = { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S) = L(R) ' L(S)

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

56

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a) = { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S) = L(R) ' L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS) = L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.

57

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a) = { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S) = L(R) ' L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS) = L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

L(R*) = (L(R))*

•! If R is a regular expression, then (R) is a regular expression.

58

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($) = { $ }

• If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a) = { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S) = L(R) ' L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS) = L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

L(R*) = (L(R))*

•! If R is a regular expression, then (R) is a regular expression.

L((R)) = L(R)

59

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Regular Languages
Definition: “Regular Language” (or “Regular Set”)

 ... A language that can be described by a regular expression.

•!Any finite language (i.e., finite set of strings) is a regular language.

•!Regular languages are (usually) infinite.

•!Regular languages are, in some sense, simple languages.

Regular Langauges) Context-Free Languages

Examples:

 a | b | cab {a, b, cab}

 b* {$, b, bb, bbb, ...}

 a | b* {a, $, b, bb, bbb, ...}

 (a | b)* {$, a, b, aa, ab, ba, bb, aaa, ...}

 “Set of all strings of a’s and b’s, including $.”

60

Lexical Analysis - Part 1

© Harry H. Porter, 2005

 Notation:

Equality Equivalence
= =

==
*
+
&

Equality v. Equivalence

Are these regular expressions equal?

R = a a* (b | c)

S = a* a (c | b)

... No!

Yet, they describe the same language.

L(R) = L(S)

“Equivalence” of regular expressions

If L(R) = L(S) then we say R * S

“R is equivalent to S”

“Syntactic” equality versus “deeper” equality...

Algebra:

Does... x(3+b) = 3x+bx ?

From now on, we’ll just say R = S to mean R * S

61

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Algebraic Laws of Regular Expressions
Let R, S, T be regular expressions...

| is commutative

R | S = S | R

| is associative

R | (S | T) = (R | S) | T = R | S | T

Concatenation is associative

R (S T) = (R S) T = R S T

Concatenation distributes over |

R (S | T) = RS | RT

(R | S) T = RT | ST

$ is the identity for concatenation

$ R = R $ = R

* is idempotent

(R*)* = R*

Relation between * and $

R* = (R | $)*

Preferred

Preferred

62

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Regular Definitions

Letter = a | b | c | ... | z

Digit = 0 | 1 | 2 | ... | 9

ID = Letter (Letter | Digit)*

63

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Regular Definitions

Letter = a | b | c | ... | z

Digit = 0 | 1 | 2 | ... | 9

ID = Letter (Letter | Digit)*

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.

 Letter (Letter | Digit)*

= {“Letter”, “LetterLetter”, “LetterDigit”, ... }

64

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Regular Definitions

Letter = a | b | c | ... | z

Digit = 0 | 1 | 2 | ... | 9

ID = Letter (Letter | Digit)*

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.

 Letter (Letter | Digit)*

= {“Letter”, “LetterLetter”, “LetterDigit”, ... }

Each definition may only use names previously defined.

" No recursion

Regular Sets = no recursion

CFG = recursion

65

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Addition Notation / Shorthand

One-or-more: +

X+ = X(X*)

Digit+ = Digit Digit* = Digits

66

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Addition Notation / Shorthand

One-or-more: +

X+ = X(X*)

Digit+ = Digit Digit* = Digits

Optional (zero-or-one): ?

X? = (X | $)

Num = Digit+ (. Digit+)?

67

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Addition Notation / Shorthand

One-or-more: +

X+ = X(X*)

Digit+ = Digit Digit* = Digits

Optional (zero-or-one): ?

X? = (X | $)

Num = Digit+ (. Digit+)?

Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.

Digit = [0-9]

Letter = [a-zA-Z] = [A-Za-z]

68

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Addition Notation / Shorthand

One-or-more: +

X+ = X(X*)

Digit+ = Digit Digit* = Digits

Optional (zero-or-one): ?

X? = (X | $)

Num = Digit+ (. Digit+)?

Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.

Digit = [0-9]

Letter = [a-zA-Z] = [A-Za-z]

Variations:

 Zero-or-more: ab*c = a{b}c = a{b}*c

 One-or-more: ab+c = a{b}+c

 Optional: ab?c = a[b]c

What does
ab...bc

mean?

69

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Many sets of strings are not regular.

...no regular expression for them!

70

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!

71

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!

Strings with repeated substrings

{ XcX | X is a string of a’s and b’s }

 a b b b a b c a b b b a b

CFG is not even powerful enough.

72

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!

Strings with repeated substrings

{ XcX | X is a string of a’s and b’s }

 a b b b a b c a b b b a b

CFG is not even powerful enough.

The Problem?

In order to recognize a string,

these languages require memory!

73

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Problem: How to describe tokens?

Solution: Regular Expressions

Problem: How to recognize tokens?

Approaches:

• Hand-coded routines

Examples: E-Language, PCAT-Lexer

• Finite State Automata

• Scanner Generators (Java: JLex, C: Lex)

Scanner Generators

Input: Sequence of regular definitions

Output: A lexer (e.g., a program in Java or “C”)

Approach:

•!Read in regular expressions

•!Convert into a Finite State Automaton (FSA)

•!Optimize the FSA

•!Represent the FSA with tables / arrays

•!Generate a table-driven lexer (Combine “canned” code with tables.)

74

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Finite State Automata (FSAs)
(“Finite State Machines”,“Finite Automata”, “FA”)

• One start state

• Many final states

• Each state is labeled with a state name

• Directed edges, labeled with symbols

• Deterministic (DFA)

No $-edges

Each outgoing edge has different symbol

• Non-deterministic (NFA)

0 1 2
a

a

b

b

$

75

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Finite State Automata (FSAs)

Formalism: < S, #, ,, S0, SF >

S = Set of states
S = {s0, s1, ..., sN}

= Input Alphabet
= ASCII Characters

, = Transition Function
S - # ! States (deterministic)
S - # ! Sets of States (non-deterministic)

s0 = Start State
“Initial state”
s0 (S

SF = Set of final states
“accepting states”
SF . S

0 1 2
a

a

b

b

$

76

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Finite State Automata (FSAs)

Formalism: < S, #, ,, S0, SF >

S = Set of states
S = {s0, s1, ..., sN}

= Input Alphabet
= ASCII Characters

, = Transition Function
S - # ! States (deterministic)
S - # ! Sets of States (non-deterministic)

s0 = Start State
“Initial state”
s0 (S

SF = Set of final states
“accepting states”
SF . S

0 1 2
a

a

b

b

$
Example:

S = {0, 1, 2}
= {a, b}
s0 = 0
SF = { 2 }
, =

$ba

{}{1,2}{1}1

{}{}{}2

{2}{}{1}0

States

Input Symbols

77

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Finite State Automata (FSAs)

A string is “accepted”...
(a string is “recognized”...)

by a FSA if there is a path
 from Start to any accepting state
 where edge labels match the string.

Example:
This FSA accepts:

$

aaab
abbb

0 1 2
a

a

b

b

$
Example:

S = {0, 1, 2}
= {a, b}
s0 = 0
SF = { 2 }
, =

$ba

{}{1,2}{1}1

{}{}{}2

{2}{}{1}0

States

Input Symbols

78

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

 , =

1

2

4

a

a
b

b

3

a
a

---43

ba

432

---24

321

States

Input Symbols

79

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

 , =

1

2

4

a

a
b

b

3

a
a

524

543

ba

432

555

321

States

Input Symbols

5

b

b

a,b“Error State”

80

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

 , =

1

2

4

a

a
b

b

3

a
a

---43

ba

432

---24

321

States

Input Symbols

81

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Non-Deterministic Finite Automata (NFAs)
Allow $-moves

The transition function returns a set of states

,: S - # ! Powerset(S)

,: S - # ! P (S)
function Move (s:State, a:Symbol) returns set of State

 , =

1

2

4

a

a
b

b

3

$ a

a

a
{}{}{4,2}3

$ba

{1}{4}{3}2

{}{}{2}4

{}{3}{2}1

States

Input Symbols

82

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

83

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

84

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

85

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.

86

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.

•!DFAs, NFAs, and Regular Expressions all have the same “power”.

They describe “Regular Sets” (“Regular Languages”)

87

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.

•!DFAs, NFAs, and Regular Expressions all have the same “power”.

They describe “Regular Sets” (“Regular Languages”)

•!The DFA may have a lot more states than the NFA.

(May have exponentially as many states, but...)

88

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

0 1 2
a

a

b

b

$

89

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

90

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b

91

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b

a
?

b
?

a

b

?

?

92

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b

a

b

?

?

ab
?

93

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a

a

b

b
?

a

b

94

Lexical Analysis - Part 1

© Harry H. Porter, 2005

What is the regular expression?

 $ | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a

a

b

3

b

a,b
“Error State”

a

b

