Simulating a DFA

function Match () returns boolean
var s: State
ch: char
$\mathrm{s}=\mathrm{s}_{0}$ i.e., "int"
ch = nextChar ()
while ch \neq EOF do
$s=\operatorname{Move}(s, c h)$
ch $=$ NextChar ()
endWhile
if $s \in$ FinalStates then
return true
else
return false
endIf
endFunction
The "Move" function
Perhaps an array $\quad \mathbf{s}=$ Move [s,ch]
Perhaps a linked list representation, to save space
Is Move always defined?
Use "dead" state to deal with undefined edges.
© Harry H. Porter, 2005

Lexical Analysis - Part 2

Example

$\operatorname{Move}_{\text {NFA }}(\{3,7\}, a)=\{4,5,8\}$

ε-Closure

Define ε-Closure (s):

The set of states reachable from s on ε-transitions.

$$
\varepsilon \text {-closure }(4)=\{4,5,6,8\}
$$

ε-Closure

Define ε-Closure (s):

The set of states reachable from s on ε-transitions.
ε-closure $(4)=\{4,5,6,8\}$

Define ε-Closure(S):
$\{t \mid t \in \varepsilon$-closure (s) for all $s \in S\}$
ε-closure $(\{4,7\})=\{4,5,6,7,8,9\}$
© Harry H. Porter, 2005

Lexical Analysis - Part 2
Computation of ε-Closure
Given: $\quad \mathrm{T}$ (= a set of states)
Goal: \quad Compute ε-Closure(T)

The textbook presents

Approach:
Algorithm:
var
stack: stack of states
result: set of states
push all states in T onto stack
result $=T$
while stack not empty do
s = pop(stack)
for each state u
such that an edge $\mathbf{S} \longrightarrow \mathbf{U}$ exists do
if u is not in result then add u to result push u onto stack endIf
endFor
endWhile

Example
 Input String: abab

Let S be the state(s) we are in...

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Lexical Analysis - Part 2
-

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Lexical Analysis - Part 2

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state(s)...

Lexical Analysis - Part 2
\rightarrow Ans

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state(s)...
$S=\varepsilon-$ Closure $^{\left(\operatorname{Move}_{\text {NFA }}\right.}(\{0,2\}, a)$

Lexical Analysis - Part 2

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
c h=a
$$

Move to next state(s)...
$S=\varepsilon-$ Closure $^{\left(\operatorname{Move}_{\text {NFA }}\right.}(\{0,2\}, a)$
$=\varepsilon$-Closure ($\{1\}$)

Lexical Analysis - Part 2

Example
 Input String: abab

Let S be the state(s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

$$
=\varepsilon-\text { Closure }(\{1\})
$$

Example
Input String: abab

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state(s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {NFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }^{(\{1\})} \\
& =\{1\}
\end{aligned}
$$

Example
 Input String: abib

Let S be the states) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
c h=a
$$

Move to next states)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{b}
$$

Lexical Analysis - Part 2

Example

Input String: abib

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...
ch = a

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon \text {-Closure }\left(\operatorname{Move}_{\text {MFA }}(\{0,2\}, a)\right. \\
& =\varepsilon \text {-Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next state (s)...

$$
\mathbf{S}=\varepsilon-\operatorname{Closure}\left(\operatorname{Move}_{\mathrm{NFA}}(\{1\}, \mathrm{b})\right.
$$

Example
 Input String: abib

Let S be the states) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }^{(\{1\})} \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\operatorname{ch}=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {MFA }}(\{1\}, \mathrm{b})\right. \\
& =\varepsilon-\operatorname{Closure}(\{1,2\})
\end{aligned}
$$

Lexical Analysis - Part 2

Example

Input String: abib

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon \text {-Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }^{(\{1\})} \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
\mathrm{S} & =\varepsilon \text {-Closure }\left(\text { Move }_{\mathrm{NFA}}(\{1\}, \mathrm{b})\right. \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Example
 Input String: abab

Let S be the states) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

Look at next character... ch $=\mathrm{a}$

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next states)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
\mathrm{S} & =\varepsilon \text {-Closure }\left(\text { Move }_{\text {MFA }}(\{1\}, \mathrm{b})\right. \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Lexical Analysis - Part 2

Example

Input String: abib

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon \text {-Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next states)...

$$
\begin{aligned}
\mathbf{S} & =\varepsilon \text {-Closure }\left(\operatorname{Move}_{\text {MFA }}(\{0,2\}, a)\right. \\
& =\varepsilon \text {-Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
\mathrm{S} & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{1\}, \mathrm{b})\right.} \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Example
 Input String: abab

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next states)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...
ch = a

Move to next states)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {FA }}(\{1,2\}, a)\right.
$$

$=\varepsilon$-Closure ($\{1\}$)

Look at next character...

$$
\mathbf{c h}=\mathrm{b}
$$

Move to next states)...

$$
\begin{aligned}
\mathrm{S} & =\varepsilon \text {-Closure }\left(\text { Move }_{\text {MFA }}(\{1\}, \mathrm{b})\right. \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Lexical Analysis - Part 2

Example

Input String: abib

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{a}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}\right.}(\{0,2\}, a) \\
& =\varepsilon-\text { Closure }^{(\{1\})} \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
\mathrm{S} & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{1\}, \mathrm{b})\right.} \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Example
 Input String: abab

Let S be the states) we are in...

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next states)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {MFA }}(\{1,2\}, a)\right.
$$

$$
=\varepsilon-\text { Closure }(\{1\})
$$

$$
=\{1\}
$$

Look at next character... ch $=\mathrm{b}$

Look at next character...

$$
\operatorname{ch}=\mathrm{b}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }_{\left(\text {Move }_{\text {NFA }}(\{1\}, b)\right.} \\
& =\varepsilon-\text { Closure }^{(\{1,2\})} \\
& =\{1,2\}
\end{aligned}
$$

Lexical Analysis - Part 2

Example

Input String: abab

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }(\{1\}) \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next states)...

$$
\begin{aligned}
\mathbf{S} & =\varepsilon \text {-Closure }\left(\text { Move }_{\text {MFA }}(\{1\}, \mathrm{b})\right. \\
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Look at next character...

$$
\mathrm{ch}=\mathrm{a}
$$

Move to next states)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {NFA }}(\{1,2\}, a)\right.
$$

$$
=\varepsilon \text {-Closure }(\{1\})
$$

$$
=\{1\}
$$

Look at next character...

$$
\mathrm{ch}=\mathrm{b}
$$

Move to next state (s)...
$S=\varepsilon$-Closure $\left(\operatorname{Move}_{\text {FA }}(\{1\}, b)=\{1,2\}\right.$

Example
 Input String: abab

Let S be the states) we are in...

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next states)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {MFA }}(\{1,2\}, a)\right.
$$

$$
=\varepsilon \text {-Closure }(\{1\})
$$

$$
=\{1\}
$$

Look at next character... ch $=\mathrm{b}$
Move to next state (s)... $S=\varepsilon$-Closure $\left(\operatorname{Move}_{\text {FA }}(\{1\}, b)=\{1,2\}\right.$
Look at next character... ch $=\mathrm{EOF}$

Lexical Analysis - Part 2

Example

Input String: abab

Let S be the state (s) we are in...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }(\{0\}) \\
& =\{0,2\}
\end{aligned}
$$

Look at next character...

$$
\mathbf{c h}=\mathrm{a}
$$

Move to next state (s)...

$$
\begin{aligned}
S & =\varepsilon-\text { Closure }^{\left(\text {Move }_{\text {MFA }}(\{0,2\}, a)\right.} \\
& =\varepsilon-\text { Closure }^{(\{1\})} \\
& =\{1\}
\end{aligned}
$$

Look at next character...

$$
\text { ch }=\mathrm{b}
$$

Move to next state (s)...

$$
S=\varepsilon \text {-Closure }\left(\operatorname{Move}_{\mathrm{NFA}}(\{1\}, \mathrm{b})\right.
$$

$$
\begin{aligned}
& =\varepsilon \text {-Closure }(\{1,2\}) \\
& =\{1,2\}
\end{aligned}
$$

Look at next character...

$$
\mathrm{ch}=\mathrm{a}
$$

Move to next state (s)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {NFA }}(\{1,2\}, a)\right.
$$

$$
=\varepsilon-\text { Closure }(\{1\})
$$

$$
=\{1\}
$$

Look at next character...

$$
\mathrm{ch}=\mathrm{b}
$$

Move to next state (s)...

$$
S=\varepsilon-\text { Closure }\left(\operatorname{Move}_{\text {FA }}(\{1\}, b)=\{1,2\}\right.
$$

Look at next character... ch $=\mathrm{EOF}$
Does S contain a Final State?

Example
 Input String: abib

Let S be the states) we are in...

Look at next character... ch $=\mathrm{a}$
Move to next states)... $S=\varepsilon$-Closure $\left(\operatorname{Move}_{\text {NF }}(\{1,2\}, a)\right.$
$=\varepsilon$-Closure ($\{1\}$)
$=\{\mathbf{1}\}$
Look at next character... ch $=\mathrm{b}$
Move to next state (s)... $S=\varepsilon$-Closure $\left(\operatorname{Move}_{\text {FA }}(\{1\}, b)=\{1,2\}\right.$
Look at next character... ch = EOF
Does S contain a Final State? This string is accepted!!!

Lexical Analysis - Part 2

Simulating a NFA

```
function Match () returns boolean
    var S: set of states
        ch: char
    S = &-Closure({so})
    ch = nextChar()
    while ch f EOF do
        S = &-Closure (Move (NFA
        ch = NextChar()
    endWhile
    if S \cap FinalStates }\not={
        return true
    else
        return false
    endIf
endFunction
```


Thompson's Construction

Build an NFA for: $a b^{*} c \mid d{ }^{*}{ }^{*}$

Lexical Analysis - Part 2

Thompson's Construction

Build an NFA for: $a b^{*} c \mid d{ }^{*}{ }^{*}$
Break the expression into sub-expressions

Thompson's Construction

Build an NFA for: $a b^{*} c \mid d^{*} e^{*}$
Break the expression into sub-expressions

$\underbrace{\left.\underbrace{(a b * c)}_{$| Build NFA |
| :---: |
| for this |$} \right\rvert\, \underbrace{(d * e *)}_{$| Build NFA |
| :---: |
| for this |$}}_{$| Glue the two |
| :---: |
| NFAs together |$}$

Lexical Analysis - Part 2

Thompson's Construction

Build an NFA for: $a b * c \mid d * e *$
Break the expression into sub-expressions

Thompson's Construction

Build an NFA for: $a b^{*} c \mid d^{*} e^{*}$
Break the expression into sub-expressions

$\underbrace{\underbrace{(a b * c)}_{$| Build NFA |
| :---: |
| for this |$} \underbrace{\left(d^{*} e^{*}\right)}}_{$| Build NFA |
| :---: |
| for this |$}$

Glue the two NFAs together

Lexical Analysis - Part 2

Thompson's Construction

Build an NFA for: $a b^{*} c \mid d{ }^{*}{ }^{*}$
Break the expression into sub-expressions

Thompson's Construction

Given:

Regular Expression, R

Goal:

Construct an NFA to recognize $\mathrm{L}(\mathrm{R})$
Call the NFA which is constructed $\mathrm{N}(\mathrm{R})$

Approach:

Look at the syntax of the expression R.
Top-most operator with sub-expressions:

$$
\mathrm{R}=\mathrm{R}_{1} \oplus \mathrm{R}_{2}
$$

For each sub-expression $\mathrm{R}_{\mathrm{i}} \ldots$
Build an NFA called $\mathrm{N}\left(\mathrm{R}_{\mathrm{i}}\right)$
For each larger expression
(...which is built from smaller expressions)

Build an NFA
using the NFA's for is component sub-expressions.
In other words, construct $N(R)$ from $N\left(R_{1}\right)$ and $N\left(R_{2}\right)$

Lexical Analysis - Part 2

What kinds of regular expressions are there?

```
case 1: a where \(\mathrm{a} \in \Sigma\)
case \(2: \boldsymbol{r}_{1} \mid \mathbf{r}_{\mathbf{2}}\)
case 3: \(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\)
case 4: \(\mathbf{r}_{1}\) *
case 5: \(\varepsilon\)
case 6: \(\left(r_{1}\right)\)
```


Note:

For every NFA we construct...

- 1 start state
- 1 accepting state
- No edge enters the start state
- No edge leaves the accepting state

Case 1: a where $\mathrm{a} \in \Sigma$
For a regular expression consisting of only a (for any $a \in \Sigma$) Construct

Lexical Analysis - Part 2

Case 3: $\mathrm{r}_{1} \mathrm{r}_{2}$

From $N\left(r_{1}\right)$ and $N\left(r_{2}\right) \ldots$

Construct $\mathbf{N}\left(r_{1} r_{2}\right)$ as follows:

© Harry H. Porter, 2005

Lexical Analysis - Part 2

Case 3: $r_{1} r_{2} \quad$ (alternative: combine states)

From $N\left(r_{1}\right)$ and $N\left(r_{2}\right) \ldots$

Construct $\mathbf{N}\left(r_{1} r_{2}\right)$ as follows:

Lexical Analysis - Part 2
Case 4: r_{1} *
From $N\left(r_{1}\right)$...

Construct $\mathbf{N}\left(r_{1} *\right)$ as follows:

© Harry H. Porter, 2005

Lexical Analysis - Part 2

Case 5: ε

Let $\mathrm{N}(\varepsilon)$ be...

Case 6: $\left(r_{1}\right)$
Let $\left.\mathrm{N}\left(\mathrm{r}_{1}\right)\right)$ be $\mathrm{N}\left(r_{1}\right)$ itself.

Lexical Analysis - Part 2

Example: $(\mathrm{a} \mid \mathrm{b})$ *abb

N(b)

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

