```
Lexical Analysis - Part 2
```


Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

exical Analysi	is - Part 2			
Computation of E-Closure				
<u>Given:</u>	T (= a set of states)	The textbook presents		
Goal:	Compute ϵ -Closure(T)	a different algorithm!		
Approach:	Use a stack of states (= the states :	states that we still need to look at)		
Algorithms var stad resul vesul while s = <u>for</u> <u>i</u> : <u>endWh</u>	: ck: <u>stack</u> <u>of</u> states ult: <u>set of</u> states all states in T onto st t = T stack not empty <u>do</u> pop(stack) each state u such that an ed <u>f</u> u is not in result <u>th</u> add u to result push u onto stack <u>ndIf</u> <u>For</u> <u>ile</u>	tack dge s to u exists <u>do</u> <u>hen</u>		

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

© Harry H. Porter, 2005

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2	
<u>Example</u> Input String: abab	
Let S be the state(s) we are in S = ε-Closure ({0}) = {0,2} Look at next character	
ch = a Move to next state(s) S = ε -Closure (Move _{NFA} ({0,2}, a) = ε -Closure ({1})	
= {1} Look at next character ch = b Move to next state(s) S = ε -Closure (Move _{vern} ({1}, b)	
$= \varepsilon - \text{Closure } (\{1,2\})$ = \{1,2\}	

Lexical Analysis - Part 2

Lexical Analysis - Part 2	
<u>Example</u> Input String: abab	
Let S be the state(s) we are in S = ε-Closure ({0})	
$= \{0,2\}$	Look at next character
Look at next character	ch = a
ch = a	Move to next state(s)
Move to next state(s)	S = ε -Closure (Move _{NFA} ({1,2}, a)
S = ε -Closure (Move _{NFA} ({0,2}, a) = ε -Closure ({1})	
= {1}	
Look at next character	
ch = b	
Move to next state(s)	
S = ε -Closure (Move _{NFA} ({1}, b)	
= ε-Closure ({1,2})	
= {1,2}	

Lexical Analysis - Part 2

© Harry H. Porter, 2005

<u>Example</u>	a
Input String: abab	
Let S be the state(s) we are in	
S = ε -Closure ({0})	\smile
= {0,2}	Look at next character
Look at next character	ch = a
ch = a	Move to next state(s)
Move to next state(s)	S = ε -Closure (Move _{NFA} ({1,2}, a)
S = ε -Closure (Move _{NFA} ({0,2}, a)	= ε -Closure ({1})
= ε -Closure ({1})	= {1}
= {1}	
Look at next character	
ch = b	
Move to next state(s)	
S = ε -Closure (Move _{NEA} ({1}, b)	
= ε -Closure ({1,2})	
= {1,2}	

Lexical Analysis - Part 2

© Harry H. Porter, 2005

Lexical Analysis - Part 2	
<u>Example</u> Input String: abab	
Let S be the state(s) we are in S = ε-Closure ({0})	
= {0,2}	Look at next character
Look at next character	ch = a
ch = a	Move to next state(s)
Move to next state(s)	S = ε -Closure (Move _{NFA} ({1,2}, a)
S = ε -Closure (Move _{NE2} ({0,2}, a)	= ε -Closure ({1})
= ε -Closure ({1})	= { 1 }
= {1}	Look at next character
Look at next character	ch = b
ch = b	Move to next state(s)
Move to next state(s)	S = ϵ -Closure (Move _{NF2} ({1}, b) = {1,2}
S = ε -Closure (Move _{NFA} ({1}, b) = ε -Closure ({1,2}) = {1,2}	

Lexical Analysis - Part 2

Lexical Analysis - Part 2		
<u>Example</u> Input String: abab		
Let S be the state(s) we are in S = ε -Closure ({0})		
= {0,2}	Look at next character	
Look at next character	ch = a	
ch = a	Move to next state(s)	
Move to next state(s)	S = ε -Closure (Move _{NFA} ({1,2}, a)	
S = ε -Closure (Move _{NFA} ({0,2}, a)	= ε-Closure ({1})	
= ε -Closure ({1})	= {1}	
= {1}	Look at next character	
Look at next character	ch = b	
ch = b	Move to next state(s)	
Move to next state(s)	S = ε -Closure (Move _{NFA} ({1}, b) = {1,2}	
S = ε -Closure (Move _{NFA} ({1}, b)	Look at next character	
= ε-Closure ({1,2})	ch = EOF	
= {1,2}	Does S contain a Final State?	

© Harry H. Porter, 2005

Lexical Analysis - Part 2


```
Lexical Analysis - Part 2
```

```
Simulating a NFA
function Match () returns boolean
  <u>var</u> S: <u>set</u> <u>of</u> states
        ch: <u>char</u>
  S = \varepsilon-Closure({s_0})
  ch = nextChar()
  while ch \neq EOF do
     S = \epsilon-Closure (Move<sub>NFA</sub> (S, ch))
     ch = NextChar()
  endWhile
  <u>if</u> S \cap FinalStates \neq {} <u>then</u>
     return true
  else
     return false
  endIf
endFunction
```

© Harry H. Porter, 2005

Thompson's Construction
Build an NFA for: ab*c d*e*
© Harry H. Porter, 2005

Lexical Analysis - Part 2

© Harry H. Porter, 2005

Thompson's Construction
Given:
Regular Expression, R
<u>Goal:</u>
Construct an NFA to recognize L(R)
Call the NFA which is constructed N(R)
Approach:
Look at the syntax of the expression R.
Top-most operator with sub-expressions:
$R = R_1 \oplus R_2$
For each sub-expression R_i
Build an NFA called N(R _i)
For each larger expression
(which is built from smaller expressions)
Build an NFA
using the NFA's for is component sub-expressions.
In other words, construct $N(R)$ from $N(R_1)$ and $N(R_2)$

Lexical Analysis - Part 2

© Harry H. Porter, 2005

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2


```
Lexical Analysis - Part 2
```


Lexical Analysis - Part 2

Lexical Analysis - Part 2

Lexical Analysis - Part 2

