Converting an NFA to a DFA

Given:

A *non-deterministic* finite state machine (NFA)

Goal:

Convert to an equivalent *deterministic* finite state machine (DFA)

Why?

Faster recognizer!

Approach:

Consider simulating a NFA. Work with sets of states. **IDEA:** Each <u>state</u> in the DFA will correspond to a <u>set of NFA</u> states.

Worst-case:

There can be an exponential number $O(2^N)$ of sets of states. The DFA can have exponentially many more states than the NFA ... but this is rare.

© Harry H. Porter, 2005

Lexical Analysis - Part 3


```
Lexical Analysis - Part 3
```

Algorithm: Convert NFA to DFA	
<u>We'll use</u>	
Move _{NFA} (<mark>S</mark> ,a)	the transition function from NFA
<pre>&-Closure(s)</pre>	where \mathbf{s} is a single state from NFA
E-Closure (<mark>S</mark>)	where S is a set of states from NFA
We'll construct	
S _{DFA} th	e set of states in the DFA
	Initially, we'll set S _{DFA} to {}
Add X to S_{DFA} w	here x is some set of NFA states
	<u>Example:</u> "Add $(3,5,7)$ to S_{DFA} "
	We'll "mark" some of the states in the DFA.
	Marked = "We've done this one" ($$)
	Unmarked = "Still need to do this one"
Move _{DFA} (T,b)	The transition function from DFA
	To add an edge to the growing DFA
	Set Move _{DFA} (T,b) to S
	where S and T are sets of NFA states
) Harry H. Porter, 2005	

Lexical Analysis - Part 3

Lexical Analysis - Part 3

8

```
Lexical Analysis - Part 3
```


Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

Lexical Analysis - Part 3

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Lexical Analysis - Part 3

Lexical Analysis - Part 3

Lexical Analysis - Part 3

