
1

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Reducing a DFA to a Minimal DFA

Input: DFAIN

Assume DFAIN never “gets stuck”

(add a dead state if necessary)

Output: DFAMIN

An equivalent DFA with the minimum number of states.

2

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Reducing a DFA to a Minimal DFA

Input: DFAIN

Assume DFAIN never “gets stuck”

(add a dead state if necessary)

Output: DFAMIN

An equivalent DFA with the minimum number of states.

1

2

a

a
b

b

3

a
a

5

b

b

a,b

“Dead State”

4

3

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Reducing a DFA to a Minimal DFA

Input: DFAIN

Assume DFAIN never “gets stuck”

(add a dead state if necessary)

Output: DFAMIN

An equivalent DFA with the minimum number of states.

Approach: Merge two states if the effectively do the same thing.

“Do the same thing?”

At EOF, is DFAIN in an accepting state or not?

1

2

a

a
b

b

3

a
a

5

b

b

a,b

“Dead State”

4

4

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Sufficiently Different States
Merge states, if at all possible.

Are two states “sufficiently different”

... that they cannot be merged?

5

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Sufficiently Different States
Merge states, if at all possible.

Are two states “sufficiently different”

... that they cannot be merged?

State s is “distinguished” from state t by some string w iff:

starting at s, given characters w, the DFA ends up accepting,

 ... but starting at t, the DFA does not accept.

6

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Sufficiently Different States
Merge states, if at all possible.

Are two states “sufficiently different”

... that they cannot be merged?

State s is “distinguished” from state t by some string w iff:

starting at s, given characters w, the DFA ends up accepting,

 ... but starting at t, the DFA does not accept.

Example:

“ab” does not distinguish s and t.

But “c” distinguishes s and t.

Therefore, s and t cannot be merged.

s

t

a

c

a

c

b

7

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Partitioning a Set
A partitioning of a set...

...breaks the set into non-overlapping subsets.

(The partition breaks the set into “groups”)

Example:

S = {A, B, C, D, E, F, G}

! = {(A B) (C D E F) (G) }

!2 = {(A) (B C) (D E F G) }

8

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Partitioning a Set
A partitioning of a set...

...breaks the set into non-overlapping subsets.

(The partition breaks the set into “groups”)

Example:

S = {A, B, C, D, E, F, G}

! = {(A B) (C D E F) (G) }

!2 = {(A) (B C) (D E F G) }

We can “refine” a partition...

!i = { (A B C) (D E) (F G) }

!i+1 = { (A C) (B) (D) (E) (F G) }

Note:

 { (...) (...) (...) } means {{...}, {...}, {...} }

9

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Consider the set of states.

Partition it...

•!Final States

•!All Other States

Repeatedly “refine” the partioning.

Two states will be placed in different groups

... If they can be “distinguished”

(A B D) (C E)

Repeat until no group contains states that can be distinguished.

Each group in the partitioning becomes one state in a newly constructed DFA

DFAMIN = The minimal DFA

a

b d

ec

10

Lexical Analysis - Part 4

© Harry H. Porter, 2005

How to Refine a Partitioning?
!i = { (A B D) (C E) }

Consider one group... (A B D)

Look at output edges on some symbol (e.g., “x”)

P1 P2

a

b d

ec
x

x x

11

Lexical Analysis - Part 4

© Harry H. Porter, 2005

How to Refine a Partitioning?
!i = { (A B D) (C E) }

Consider one group... (A B D)

Look at output edges on some symbol (e.g., “x”)

On “x”, all states in P1 go to states belonging to the same group.

P1 P2

a

b d

ec
x

x x

12

Lexical Analysis - Part 4

© Harry H. Porter, 2005

How to Refine a Partitioning?
!i = { (A B D) (C E) }

Consider one group... (A B D)

Look at output edges on some symbol (e.g., “x”)

On “x”, all states in P1 go to states belonging to the same group.

Now consider another symbol (e.g., “y”)

P1 P2

a

b d

ec
x

x x

a

b d

ec
y

y

y

13

Lexical Analysis - Part 4

© Harry H. Porter, 2005

How to Refine a Partitioning?
!i = { (A B D) (C E) }

Consider one group... (A B D)

Look at output edges on some symbol (e.g., “x”)

On “x”, all states in P1 go to states belonging to the same group.

Now consider another symbol (e.g., “y”)

D is distinguished from A and B!

P1 P2

a

b d

ec
x

x x

a

b d

ec
y

y

y

14

Lexical Analysis - Part 4

© Harry H. Porter, 2005

How to Refine a Partitioning?
!i = { (A B D) (C E) }

Consider one group... (A B D)

Look at output edges on some symbol (e.g., “x”)

On “x”, all states in P1 go to states belonging to the same group.

Now consider another symbol (e.g., “y”)

D is distinguished from A and B!

So refine the partition!

!i+1 = { (A B) (D) (C E) }

P1 P2

a

b d

ec
x

x x

a

b d

ec
y

y

y

P3
P4 P2

15

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E) C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

16

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

17

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Consider “b”

Consider (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

18

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart?

Consider “b”

Consider (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

19

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart?

Consider (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

20

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

21

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

22

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

23

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart?

Consider “b”

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

24

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart?

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

25

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A C) (B)

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

26

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A C) (B)

New Partitioning: !3 = (A C) (B) (D) (E)

Consider “a”

Break apart?

 Consider “b”

Break apart?

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

27

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A C) (B)

New Partitioning: !3 = (A C) (B) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart?

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

28

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A C) (B)

New Partitioning: !3 = (A C) (B) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? No

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

29

Lexical Analysis - Part 4

© Harry H. Porter, 2005

 Example

Initial Partitioning: !1 = (A B C D) (E)

Consider (A B C D)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A B C) (D)

Consider (E)

Not possible to break apart.

New Partitioning: !2 = (A B C) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? (A C) (B)

New Partitioning: !3 = (A C) (B) (D) (E)

Consider “a”

Break apart? No

Consider “b”

Break apart? No

C

BA a

b

Db

a

E

a

b

b

a

a

b

DFAIN

DFAMIN

BAC a Db Eb

a

a

b

b

30

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

31

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

32

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

DaC

BaA

bb cc

33

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

 • Choose one state in each group

 (throw all other states away)

 • Preserve the edges out

 of the chosen state

DaC

BaA

bb cc

34

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

 • Choose one state in each group

 (throw all other states away)

 • Preserve the edges out

 of the chosen state

D

aA

b c

35

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

 • Choose one state in each group

 (throw all other states away)

 • Preserve the edges out

 of the chosen state

DaA

b c

D

aA

b c

36

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

 • Choose one state in each group

 (throw all other states away)

 • Preserve the edges out

 of the chosen state

 • Deal with start state and final states

DaA

b c

D

aA

b c

37

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Hopcroft’s Algorithm
Add dead state and transitions to it if necessary.

(Now, every state has an outgoing edge on every symbol.)

! = initial partitioning

loop

 !NEW = Refine(!)

 if (!NEW = !) then break

 ! = !NEW
endLoop

Construct DFAMIN
 • Each group in ! becomes a state

 • Choose one state in each group

 (throw all other states away)

 • Preserve the edges out

 of the chosen state

 • Deal with start state and final states

 • If desired...

 Remove dead state

 Remove any state unreachable

 from the start state

DaA

b c

D

aA

b c

38

Lexical Analysis - Part 4

© Harry H. Porter, 2005

!NEW = Refine(!)
!NEW = {}

for each group G in ! do

Example: ! = (A B C E) (D F)
 Break G into sub-groups

(A B C E) " (A C) (B E)

 as follows:

 Put S and T into different subgroups if...

 For any symbol a#$, S and T go to states

 in two different groups in !

 Add the sub-groups to !NEW
endFor

return !NEW

A D

B C

x

x

Must split A and B

into different groups

!NEW = { }

!NEW = { (A C) (B E) }

!NEW = { (A C) (B E) (D F) }

39

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

40

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

41

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

42

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

43

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

•! Algorithm: NFA " DFA

44

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

•! Algorithm: NFA " DFA

•! Algorithm: DFA " Minimal DFA

45

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

•! Algorithm: NFA " DFA

•! Algorithm: DFA " Minimal DFA

•! Algorithm for Simulating DFA

46

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

•! Algorithm: NFA " DFA

•! Algorithm: DFA " Minimal DFA

•! Algorithm for Simulating DFA

 Fast: •!Get Next Char

•!Evaluate Move Function

e.g., Array Lookup

•!Change State Variable

•!Test for Accepting State

•!Test for EOF

•!Repeat

47

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Summarizing...

•! Regular Expressions to Describe Tokens

•! Algorithm: Regular Expression " NFA

•! Algorithm for Simulating NFA

•! Algorithm: NFA " DFA

•! Algorithm: DFA " Minimal DFA

•! Algorithm for Simulating DFA

 Fast: •!Get Next Char

•!Evaluate Move Function

e.g., Array Lookup

•!Change State Variable

•!Test for Accepting State

•!Test for EOF

•!Repeat

•! Scanner Generators

Create an efficient Lexer from regular expressions!

48

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Scanner Generator: LEX
Input:

r1 { action1 }

r2 { action2 }

...

rN { actionn }

Requirements:

• Choose the largest lexeme that matches.

• If more than one ri matches, choose the first one.

DFA Simulator

(C-code)

Transition

Tables

(initialized arrays)

Input Buffers

lex-begin-ptr forward-ptr

“Canned code”

added by lex tool

Computed

by lex tool

49

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Input:

a { Action-1 }

abb { Action-2 }

a*b+ { Action-3 }

50

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Input:

a { Action-1 }

abb { Action-2 }

a*b+ { Action-3 }

Create NFA:

a | abb | a*b+

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

Pattern-1

Pattern-2

Pattern-3

51

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Input:

a { Action-1 }

abb { Action-2 }

a*b+ { Action-3 }

Create NFA:

a | abb | a*b+

Example Input: “aabc...”

Start: { 0, 1, 3, 7 }

Input: “a”

{ 2, 4, 7 }

Input: “a”

{ 7 }

Input: “b”

{ 8 }

Input: “c”

{ }

Match!

 Pattern: 1

 Length: 1

Match!

 Pattern: 3

 Length: 3

Done!

 Identify the last match.

 Execute the corresponding action & adjust pointers

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

Pattern-1

Pattern-2

Pattern-3

52

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Approach
•!Find the NFA for

r1 | r2 | ... | rN

•!Convert to a DFA.

•!Each state of the DFA corresponds to a set of NFA states.

•!A state is final if any NFA state in it was a final state.

•!If several, choose the lowest numbered pattern to be the one accepted.

•!During simulation, keep following edges until you get stuck.

•!As the scanning proceeds...

Every time you enter a final state...

Remember:

The current value of buffer pointers

Which pattern was recognized

•!Upon termination...

Use that information to...

Adjust the buffer pointers

Execute the desired action

53

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Example
Input:

a { Action-1 }

abb { Action-2 }

a*b+{ Action-3 }

54

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Example
Input:

a { Action-1 }

abb { Action-2 }

a*b+{ Action-3 }

Create NFA:

a | abb | a*b+

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

a

abb

a*b+

55

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Example
Input:

a { Action-1 }

abb { Action-2 }

a*b+{ Action-3 }

Create NFA:

a | abb | a*b+

Construct Minimal DFA

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

a

abb

a*b+

0,1,3,7

2,4,7

8

6,8

5,8

7
b

b

b
b

a

a

b

a

b

56

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Example
Input:

a { Action-1 }

abb { Action-2 }

a*b+{ Action-3 }

Create NFA:

a | abb | a*b+

Construct Minimal DFA

Attach Actions

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

a

abb

a*b+

0,1,3,7

2,4,7

8

6,8

5,8

7
b

b

b
b

a

a

b

a

b

a*b+

abb

a*b+

a

a*b+ Accept only

first pattern

57

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Example
Input:

a { Action-1 }

abb { Action-2 }

a*b+{ Action-3 }

Create NFA:

a | abb | a*b+

Construct Minimal DFA

Attach Actions

Example Strings:

a

ab

abbbbb

abb

0

1

3

7

4 5

8

2

6

b

%

ba

a

b%

%

ba

a

abb

a*b+

0,1,3,7

2,4,7

8

6,8

5,8

7
b

b

b
b

a

a

b

a

b

a*b+

abb

a*b+

a

a*b+ Accept only

first pattern

58

Lexical Analysis - Part 4

© Harry H. Porter, 2005

The “Lex” Tool
Oldest, most well-known

For Unix/C Environment

In UNIX:

%lex lex.l

%cc lex.yy.c Lex Tool

File: “lex.l”

File: “lex.yy.c”

Contains several

regular expressions

A program in “C”...

Ready to compile

and link with Parser

(e.g., YACC output)

59

Lexical Analysis - Part 4

© Harry H. Porter, 2005

The “Lex” Tool
Oldest, most well-known

For Unix/C Environment

In UNIX:

%lex lex.l

%cc lex.yy.c

Input File Format:

%{

...Any “C” Code...

}%

...Regular Definitions...

%%

...Regular Expressions with Actions...

%%

...Any “C” Code...

Lex Tool

File: “lex.l”

File: “lex.yy.c”

Contains several

regular expressions

A program in “C”...

Ready to compile

and link with Parser

(e.g., YACC output)

60

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Regular Expressions in Lex
abc Concatenation; Most characters stand for themselves

Meta Charaters:

| Usual meanings

* Example: (a|b)*c*

()

+ One or more, e.g., ab+c

? Optional, e.g., ab?c

[x-y] Character classes, e.g., [a-z][a-zA-Z0-9]*

[^x-y] Anything but [x-y]

\x The usual escape sequences, e.g., \n

. Any character except ‘\n’

^ Beginning of line

$ End of line

"..." To use the meta characters literally,

Example: PCAT comments: "(*".*"*)"

{...} Defined names, e.g., {letter}

/ Look-ahead

Example: ab/cd

(Matches ab, but only when followed by cd)

61

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Look-Ahead Operator, /
abb/cd

“Matches abb, but only if followed by cd.”

62

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Look-Ahead Operator, /
abb/cd

“Matches abb, but only if followed by cd.”

Add a special % edge for /

bb %a

dc

63

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Look-Ahead Operator, /
abb/cd

“Matches abb, but only if followed by cd.”

Add a special % edge for /

Mark the following state to make a note of...

•!The pattern in question

•!The current value of the buffer pointers

...whenever this state is encountered during scanning.

bb %a

dc

“/” Encountered
Save buffer

pointers

64

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Look-Ahead Operator, /
abb/cd

“Matches abb, but only if followed by cd.”

Add a special % edge for /

Mark the following state to make a note of...

•!The pattern in question

•!The current value of the buffer pointers

...whenever this state is encountered during scanning.

When a pattern is finally matched, check these notes.

•!If we passed through a “/” state for the pattern accepted,

Use the stored buffer positions,

 instead of the final positions

to describe the lexeme matched.

bb %a

dc

“/” Encountered
Save buffer

pointers

65

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Lex: Input File Format
%{

...Any “C” Code...

}%

...Regular Definitions...

%%

...Regular Expressions with Actions...

%%

...Any “C” Code...

66

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Lex: Input File Format
%{

...Any “C” Code...
#define ID 13

#define NUM 14

#define PLUS 15

#define MINUS 16

...

#define WHILE 37

#define IF 38

...

}%

...Regular Definitions...

%%

...Regular Expressions with Actions...

%%

...Any “C” Code...

...

int lookup (char * p) {...}

int enter (char * p, int i) {...}

...

Any “C” code;

Copied without changes

to beginning of the output file

Any “C” code; added to end of file

(typically, auxillary support routines)

67

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Lex: Input File Format
%{

...Any “C” Code...

}%

...Regular Definitions...
delim [\t\n]

white {delim}+

letter [a-zA-Z]

digit [0-9]

id {letter}({letter}|{digit})*

num {digit}+(\.{digit}+)?

%%

...Regular Expressions with Actions...

%%

...Any “C” Code...

Defined Names

Defined names can

be used in regular expressions

Blank: Every character is

Itself literally

68

Lexical Analysis - Part 4

© Harry H. Porter, 2005

Lex: Input File Format
%{

...Any “C” Code...

}%

...Regular Definitions...

%%

...Regular Expressions with Actions...
"+" {return PLUS;}

"-" {return MINUS;}

...

while {return WHILE;}

if {return IF;}

...

{white} {}

...

{num} {yylval = ...; return NUM;}

{id} {yylval = ...lookup(...)...; return ID;}

%%

...Any “C” Code...

Regular expressions

yylval is where token

attribute info is stored.

Any “C” code.

Include “return” to give

the token to parser.

No return means “do nothing”.

(This “token” is recognized but

not returned to parser)

You may use these variables

to access the lexeme:
 char * yytext;

 int yyleng;

