Reducing a DFA to a Minimal DFA

Input: $\quad \mathrm{DFA}_{\text {IN }}$
Assume $\mathrm{DFA}_{\text {IN }}$ never "gets stuck"
(add a dead state if necessary)

Output: $\quad \mathrm{DFA}_{\text {MIN }}$
An equivalent DFA with the minimum number of states.

Lexical Analysis - Part 4

Reducing a DFA to a Minimal DFA

Input: $\quad \mathrm{DFA}_{\text {IN }}$

Output: $\quad \mathrm{DFA}_{\text {MIN }}$
An equivalent DFA with the minimum number of states.

Reducing a DFA to a Minimal DFA

Input:

Output:
$\mathrm{DFA}_{\text {MIN }}$

An equivalent DFA with the minimum number of states.

Approach: Merge two states if the effectively do the same thing.
"Do the same thing?"
At EOF, is $D F A_{\text {IN }}$ in an accepting state or not?

Lexical Analysis - Part 4

Sufficiently Different States

Merge states, if at all possible.

Are two states "sufficiently different"
... that they cannot be merged?

Sufficiently Different States

Merge states, if at all possible.

Are two states "sufficiently different"
... that they cannot be merged?

State s is "distinguished" from state t by some string w iff: starting at s , given characters w , the DFA ends up accepting, ... but starting at t , the DFA does not accept.

Lexical Analysis - Part 4

Sufficiently Different States

Merge states, if at all possible.
Are two states "sufficiently different"
... that they cannot be merged?

State s is "distinguished" from state t by some string w iff:
starting at s, given characters w, the DFA ends up accepting,
... but starting at t , the DFA does not accept.
Example:

"ab" does not distinguish s and t. But "c" distinguishes s and t. Therefore, s and t cannot be merged.

Partitioning a Set

A partitioning of a set...
...breaks the set into non-overlapping subsets.
(The partition breaks the set into "groups")

Example:

$\mathrm{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$
$\Pi=\{(\mathrm{AB})(\mathrm{CDEF})(\mathrm{G})\}$
$\Pi_{2}=\{(\mathrm{A})(\mathrm{B} \mathrm{C})(\mathrm{D} E F \mathrm{G})\}$

Lexical Analysis - Part 4

Partitioning a Set

A partitioning of a set...
...breaks the set into non-overlapping subsets.
(The partition breaks the set into "groups")

Example:

$$
\begin{aligned}
& \mathrm{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}\} \\
& \Pi=\{(\mathrm{A} \mathrm{~B})(\mathrm{C} D \mathrm{E} F)(\mathrm{G})\} \\
& \Pi_{2}=\{(\mathrm{A})(\mathrm{B} C)(\mathrm{D} \text { E F G })\}
\end{aligned}
$$

We can "refine" a partition...

Note:
$\{(\ldots)(\ldots)(\ldots)\}$ means $\{\{\ldots\},\{\ldots\},\{\ldots\}\}$

Hopcroft's Algorithm

Consider the set of states.

Partition it...

- Final States
- All Other States

Repeatedly "refine" the partioning.
Two states will be placed in different groups
... If they can be "distinguished"

Repeat until no group contains states that can be distinguished.

Each group in the partitioning becomes one state in a newly constructed DFA $\mathrm{DFA}_{\text {MIN }}=$ The minimal DFA

Lexical Analysis - Part 4

How to Refine a Partitioning?

Consider one group... (A B D)
Look at output edges on some symbol (e.g., "x")

How to Refine a Partitioning?

Consider one group... (A B D)
Look at output edges on some symbol (e.g., "x")

On " x ", all states in P_{1} go to states belonging to the same group.

Lexical Analysis - Part 4

How to Refine a Partitioning?

Consider one group... (A B D)
Look at output edges on some symbol (e.g., "x")

On " x ", all states in P_{1} go to states belonging to the same group.

Now consider another symbol (e.g., " y ")

How to Refine a Partitioning?

Consider one group... (AB D)
Look at output edges on some symbol (e.g., "x")

On " x ", all states in P_{1} go to states belonging to the same group.

Now consider another symbol (e.g., "y") D is distinguished from A and B !

Lexical Analysis - Part 4

How to Refine a Partitioning?

Consider one group... (AB D)
Look at output edges on some symbol (e.g., "x")

On " x ", all states in P_{1} go to states belonging to the same group.

Now consider another symbol (e.g., "y") D is distinguished from A and B ! So refine the partition!

$$
\Pi_{i+1}=\{(\underbrace{\left.\begin{array}{ll}
A & B
\end{array}\right)}_{\mathbf{P}_{3}} \underbrace{(D)}_{\mathbf{P}_{4}}(\underbrace{\left(\begin{array}{ll}
\mathrm{C} & \mathrm{E}
\end{array}\right)}_{\mathbf{P}_{\mathbf{2}}}\}
$$

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{A} B C D)(E)$

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(A B C D)(E)$ Consider (A B C D)

Consider (E)

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(A B C D)(E)$ Consider (A B C D)

Consider "a"
Break apart?
Consider " b "
Consider (E)

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(A B C D)(E)$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$
Consider (A B C D)
Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D)
Consider (E)

Not possible to break apart.

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{ABC})(\mathrm{D})(\mathrm{E})$

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart?
Consider "b"

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider " b "
Break apart?

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider "b"
Break apart? (A C) (B)

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider " b "
Break apart? (A C) (B)
New Partitioning: $\Pi_{3}=(A C)(B)(D)(E)$
Consider "a"
Break apart?
Consider "b"
Break apart?

Example

Initial Partitioning: $\Pi_{1}=($ A B C D) (E) Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider "b"
Break apart? (A C) (B)
New Partitioning: $\Pi_{3}=(\mathrm{AC})(\mathrm{B})(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider "b"
Break apart?
© Harry H. Porter, 2005

Lexical Analysis - Part 4

Example

Initial Partitioning: $\Pi_{1}=(\mathrm{ABCD})(\mathrm{E})$ Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider " b "
Break apart? (A C) (B)
New Partitioning: $\Pi_{3}=(A C)(B)(D)(E)$
Consider "a"
Break apart? No
Consider "b"
Break apart? No

Example

Initial Partitioning: $\Pi_{1}=($ A B C D) (E) Consider (A B C D)

Consider "a"
Break apart? No
Consider "b"
Break apart? (A B C) (D) Consider (E)

Not possible to break apart.
New Partitioning: $\Pi_{2}=(\mathrm{A} B C)(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider "b"
Break apart? (A C) (B)
New Partitioning: $\Pi_{3}=(\mathrm{AC})(\mathrm{B})(\mathrm{D})(\mathrm{E})$
Consider "a"
Break apart? No
Consider "b"
Break apart? No

© Harry H. Porter, 2005

Lexical Analysis - Part 4

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
$\Pi=$ initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (Π)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
Π = initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Construct $\mathrm{DFA}_{\text {MIN }}$

- Each group in Π becomes a state

Lexical Analysis - Part 4

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
$\Pi=$ initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop
Construct DFA $_{\text {MIN }}$

- Each group in Π becomes a state

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
$\Pi=$ initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Construct $\mathrm{DFA}_{\text {MIN }}$

- Each group in Π becomes a state
- Choose one state in each group (throw all other states away)
- Preserve the edges out

of the chosen state

Lexical Analysis - Part 4

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
$\Pi=$ initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop
Construct DFA $_{\text {MIN }}$

- Each group in Π becomes a state
- Choose one state in each group (throw all other states away)
- Preserve the edges out

of the chosen state

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
Π = initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Construct $\mathrm{DFA}_{\text {MIN }}$

- Each group in Π becomes a state
- Choose one state in each group (throw all other states away)
- Preserve the edges out of the chosen state

© Harry H. Porter, 2005

Lexical Analysis - Part 4

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
$\Pi=$ initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (Π)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Construct DFA $_{\text {MIN }}$

- Each group in Π becomes a state
- Choose one state in each group (throw all other states away)
- Preserve the edges out
of the chosen state
- Deal with start state and final states

Hopcroft's Algorithm

Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
Π = initial partitioning
loop
$\Pi_{\text {NEW }}=$ Refine (П)
if $\left(\Pi_{\text {NEW }}=\Pi\right)$ then break
$\Pi=\Pi_{\text {NEW }}$
endLoop

Construct $\mathrm{DFA}_{\text {MIN }}$

- Each group in Π becomes a state
- Choose one state in each group (throw all other states away)
- Preserve the edges out
of the chosen state
- Deal with start state and final states
- If desired...

Remove dead state
Remove any state unreachable
from the start state

© Harry H. Porter, 2005

Lexical Analysis - Part 4

$$
\Pi_{\text {NEW }}=\text { Refine (П) }
$$

$\Pi_{\text {NEW }}=\{ \}$
for each group G in Π do
Example: $\Pi=(\mathbf{A B C E})(\mathbf{D ~ F})$
Break G into sub-groups
$(\mathbf{A B C E}) \rightarrow(\mathbf{A C})(\mathrm{B} \mathrm{E})$
as follows:

Put S and T into different subgroups if...
For any symbol $a \in \Sigma, S$ and T go to states
in two different groups in Π

Must split A and B into different group

Add the sub-groups to $\Pi_{\text {NEW }}$ endFor return $\Pi_{\text {NEW }}$

$$
9 \begin{aligned}
& \Pi_{\text {NEW }}=\{ \} \\
& \Pi_{\text {NEW }}=\{(\text { A C })(\text { B E })\} \\
& \Pi_{\text {NEW }}=\{(\text { A C })(\text { B E })(\mathbf{D} \mathbf{F})\}
\end{aligned}
$$

Summarizing...

Lexical Analysis - Part 4

Summarizing...

- Regular Expressions to Describe Tokens

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA

Lexical Analysis - Part 4

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA

Lexical Analysis - Part 4

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA
- Algorithm: DFA \rightarrow Minimal DFA

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA
- Algorithm: DFA \rightarrow Minimal DFA
- Algorithm for Simulating DFA

Lexical Analysis - Part 4

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA
- Algorithm: DFA \rightarrow Minimal DFA
- Algorithm for Simulating DFA

> Fast: • Get Next Char
> - Evaluate Move Function
> e.g., Array Lookup
> - Change State Variable
> - Test for Accepting State
> - Test for EOF
> - Repeat

Summarizing...

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA
- Algorithm: DFA \rightarrow Minimal DFA
- Algorithm for Simulating DFA

> Fast: - Get Next Char - Evaluate Move Function e.g., Array Lookup - Change State Variable - Test for Accepting State - Test for EOF - Repeat

- Scanner Generators

Create an efficient Lexer from regular expressions!

Lexical Analysis - Part 4

Scanner Generator: LEX

Input:
$\mathrm{r}_{1} \quad\left\{\right.$ action $\left._{1}\right\}$
$r_{2} \quad\left\{\right.$ action $\left._{2}\right\}$
$\mathrm{r}_{\mathrm{N}} \quad\left\{\right.$ action $\left._{\mathrm{n}}\right\}$
Requirements:

- Choose the largest lexeme that matches.
- If more than one r_{i} matches, choose the first one.

Input:

$$
\begin{array}{ll}
\mathrm{a} & \{\text { Action-1 }\} \\
\mathrm{abb} & \{\text { Action-2 }\} \\
\mathrm{a} * \mathrm{~b}+ & \{\text { Action-3 }\}
\end{array}
$$

Lexical Analysis - Part 4

Input:

a	$\{$ Action-1 \}
abb	$\{$ Action-2 \}
a *b+	$\{$ Action-3 \}

Create NFA:
a | abb | a*b+

Input:
a
\{ Action-1 \}
abb $\{$ Action- 2 \}
a*b+ \{ Action-3 \}
Create NFA:
a | abb | a*b+

Example Input: "aabc. . ."
Start: $\{0,1,3,7\}$ Input: "a"
$\{2,4,7\}$
Input: "a"
Match!
\{ 7 \}
Pattern: 3
Input: "b"
Length: 3
Input: "c"
\{ \}
Done!
Identify the last match.
Execute the corresponding action $\&$ adjust pointers
© Harry H. Porter, 2005

Lexical Analysis - Part 4

Approach

- Find the NFA for

$$
r_{1}\left|r_{2}\right| \ldots \mid r_{N}
$$

- Convert to a DFA.
- Each state of the DFA corresponds to a set of NFA states.
- A state is final if any NFA state in it was a final state.
- If several, choose the lowest numbered pattern to be the one accepted.
- During simulation, keep following edges until you get stuck.
- As the scanning proceeds...

Every time you enter a final state...
Remember:
The current value of buffer pointers
Which pattern was recognized

- Upon termination...

Use that information to...
Adjust the buffer pointers
Execute the desired action

Example

Input:

a $\{$ Action-1 \}
abb \{ Action-2 \}
a*b+ \{ Action-3 \}

Lexical Analysis - Part 4

Example

Input:
$\mathrm{a} \quad\{$ Action-1 $\}$
$\mathrm{abb}\{$ Action-2 $\}$
$\mathrm{a} * \mathrm{~b}+\{$ Action-3 $\}$

Create NFA:
a | abb | a*b+

Example

Input:
a \{ Action-1 \}
abb \{ Action-2 \}
$a * b+\{$ Action-3 \}
Create NFA:
a | abb | a*b+

Construct Minimal DFA

Lexical Analysis - Part 4

Example

Input:
a $\{$ Action-1 \}
abb \{ Action-2 \}
$a * b+\{$ Action-3 \}
Create NFA:
a | abb | a*b+
Construct Minimal DFA

Attach Actions

Example

Input:
a $\{$ Action-1 \}
abb \{ Action-2 \} a*b+ \{ Action-3 \}

Create NFA:
a | abb | a*b+

Construct Minimal DFA

Attach Actions

Example Strings:
a
$a b$
abbbbb
abb

© Harry H. Porter, 2005

Lexical Analysis - Part 4

Oldest, most well-known For Unix/C Environment

In UNIX:
\%lex lex.l
\%cc lex.yy.c

The "Lex" Tool
Contains several regular expressions

File: "lex.yy.c"

Regular Expressions in Lex

abc	Concatenation; Most characters stand for themselves
Meta Charaters:	
I	Usual meanings
*	Example: $(\mathrm{a} \mid \mathrm{b}) * \mathrm{c}$ *
()	
+	One or more, e.g., $\mathrm{ab}+\mathrm{c}$
?	Optional, e.g., ab?c
	Character classes, e.g., [a-z] [a-zA-z0-9]*
$[\wedge x-y]$	Anything but [$x-y$]
\x	The usual escape sequences, e.g., \n
	Any character except ' $\backslash n$ '
\wedge	Beginning of line
\$	End of line
"..."	To use the meta characters literally, Example: PCAT comments: " (*".*"*)"
\{ ...\}	Defined names, e.g., \{letter\}
/	Look-ahead
	Example: ab/cd
	(Matches ab, but only when followed by cd)

Look-Ahead Operator, /

abb/cd
"Matches abb, but only if followed by cd."

Lexical Analysis - Part 4

Look-Ahead Operator, /

abb/cd
"Matches abb, but only if followed by cd."

Add a special $\boldsymbol{\varepsilon}$ edge for /

Look-Ahead Operator, /

abb/cd
"Matches abb, but only if followed by cd."
Add a special $\boldsymbol{\varepsilon}$ edge for /

...whenever this state is encountered during scanning.

Lexical Analysis - Part 4

Look-Ahead Operator, /

abb/cd
"Matches abb, but only if followed by cd."

Add a special $\boldsymbol{\varepsilon}$ edge for /

...whenever this state is encountered during scanning.

When a pattern is finally matched, check these notes.

- If we passed through a "/" state for the pattern accepted,

Use the stored buffer positions,
instead of the final positions
to describe the lexeme matched.

Lex: Input File Format

\% $\{$
...Any "C" Code...
\} $\%$
...Regular Definitions...
\% \%
...Regular Expressions with Actions...
\% \%
...Any "C" Code...

Lexical Analysis - Part 4

Lex: Input File Format

Lexical Analysis - Part 4

