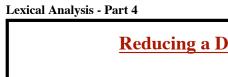
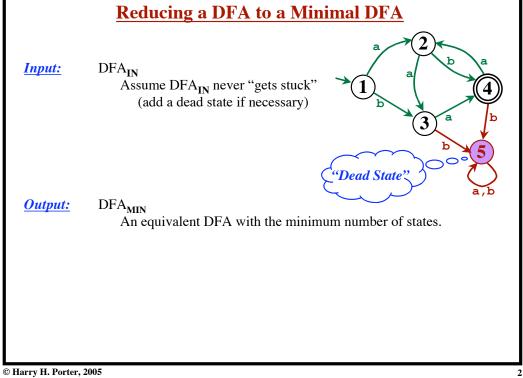
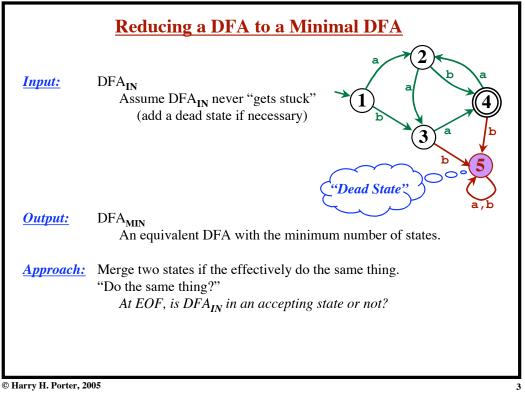
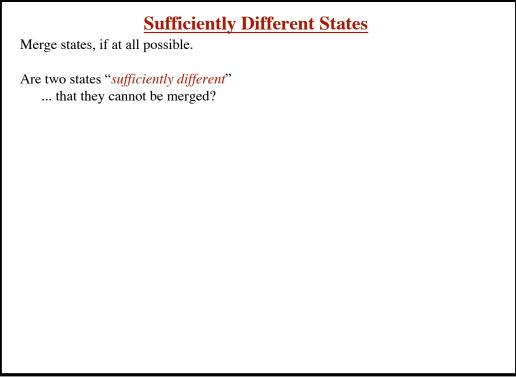
	Reducing a DFA to a Minimal DFA
<u>Input:</u>	DFA _{IN} Assume DFA _{IN} never "gets stuck" (add a dead state if necessary)
<u>Output:</u>	DFA _{MIN} An equivalent DFA with the minimum number of states.
D Harry H. Porter, J	2005





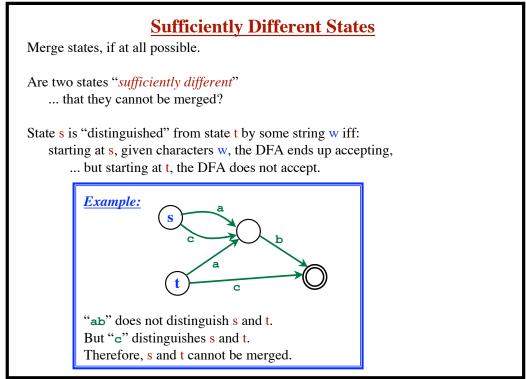


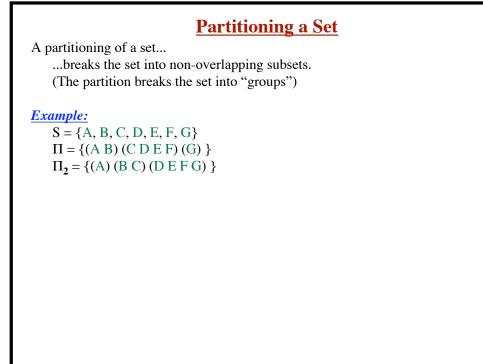


Sufficiently Different States Merge states, if at all possible.
Are two states " <i>sufficiently different</i> " that they cannot be merged?
State s is "distinguished" from state t by some string w iff: starting at s, given characters w, the DFA ends up accepting, but starting at t, the DFA does not accept.

5

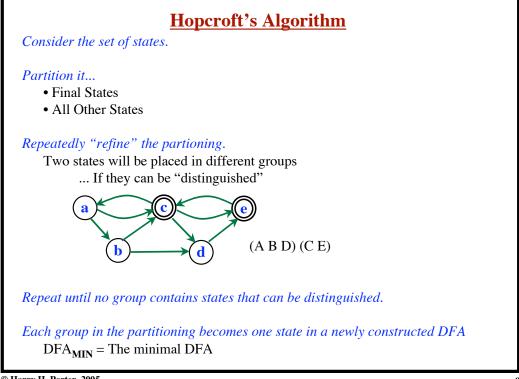
© Harry H. Porter, 2005



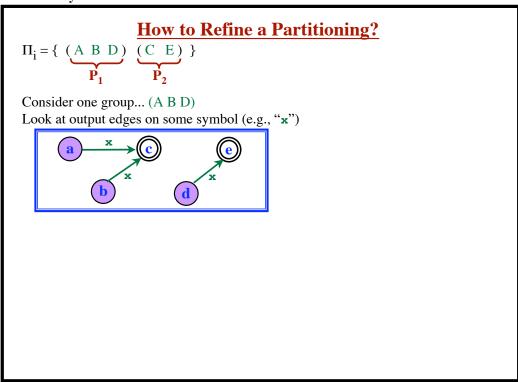


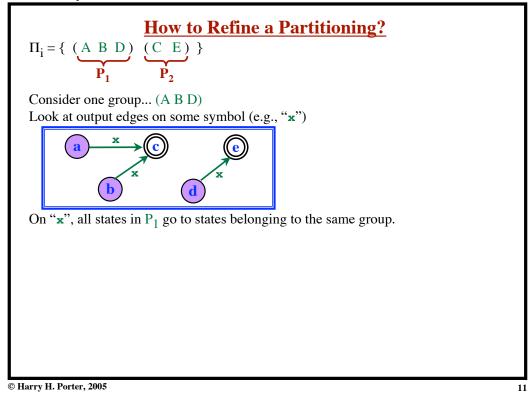
© Harry H. Porter, 2005

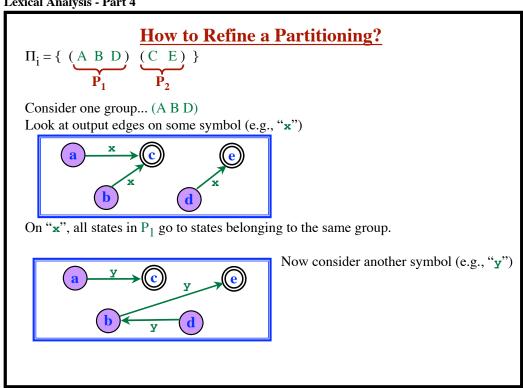
Partitioning a SetA partitioning of a set......breaks the set into non-overlapping subsets.(The partition breaks the set into "groups")**Example:** $S = \{A, B, C, D, E, F, G\}$ $\Pi = \{(A B) (C D E F) (G) \}$ $\Pi_2 = \{(A) (B C) (D E F G) \}$ We can "refine" a partition... $\Pi_i = \{(A B C) (D E) (F G) \}$ $\Pi_{i+1} = \{(A C) (B) (D) (E) (F G) \}$ Note: $\{(...) (...) (...) \}$ means $\{\{...\}, \{...\}, \{...\} \}$

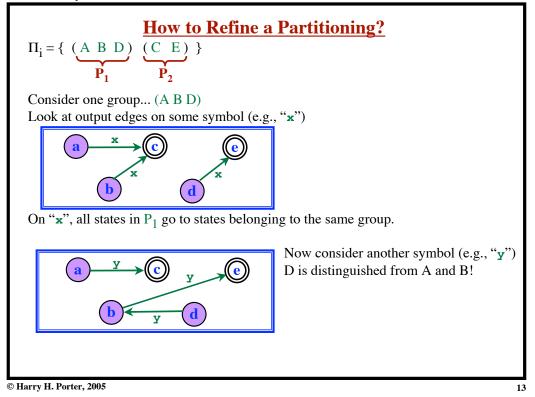


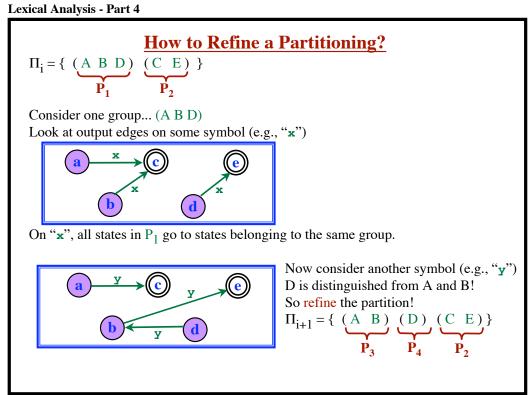
© Harry H. Porter, 2005

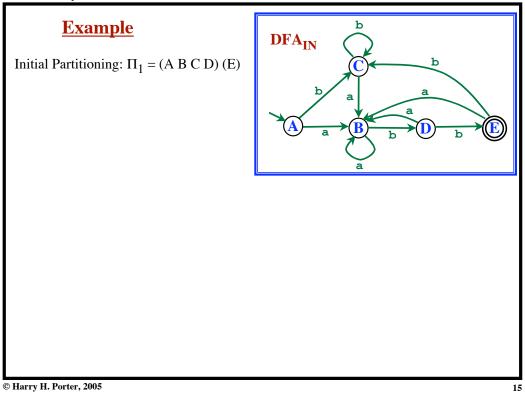


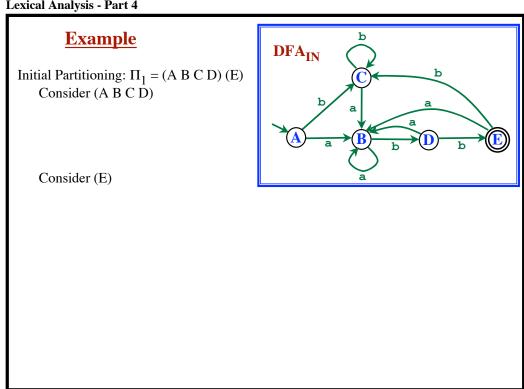








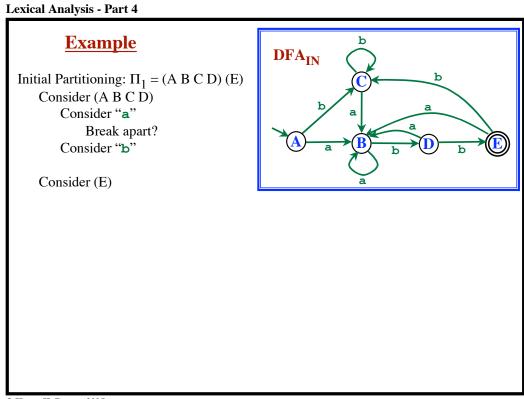


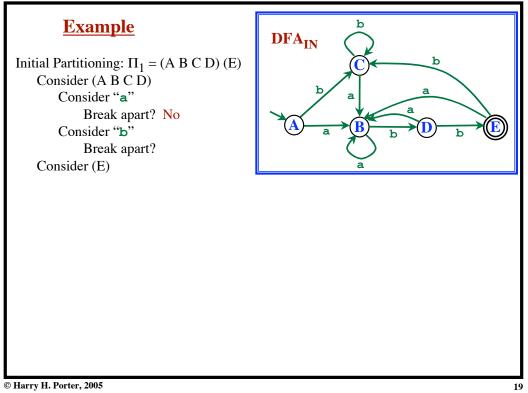


Lexical Analysis - Part 4

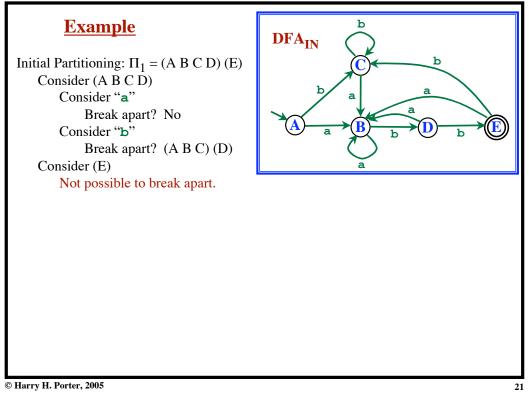


© Harry H. Porter, 2005

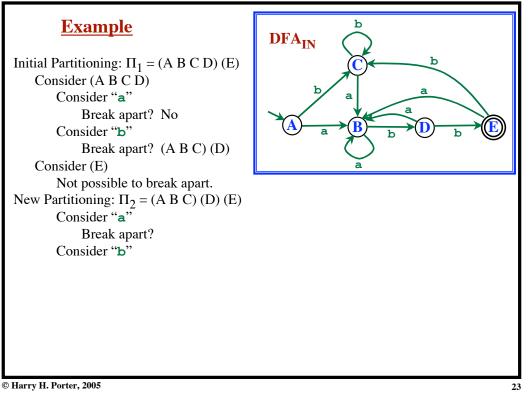




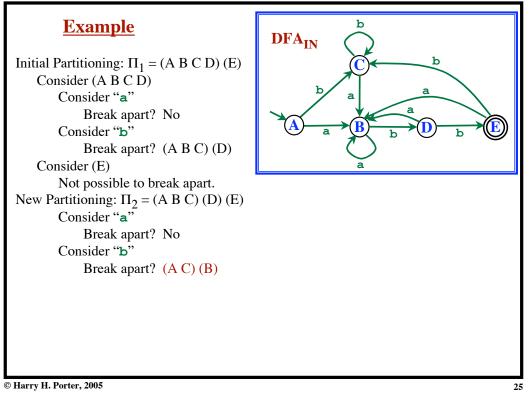
Lexical Analysis - Part 4 **Example** Initial Partitioning: $\Pi_1 = (A \ B \ C \ D) (E)$ Consider (A B C D) Consider "b" Break apart? No Consider "b" Break apart? (A B C) (D) Consider (E)



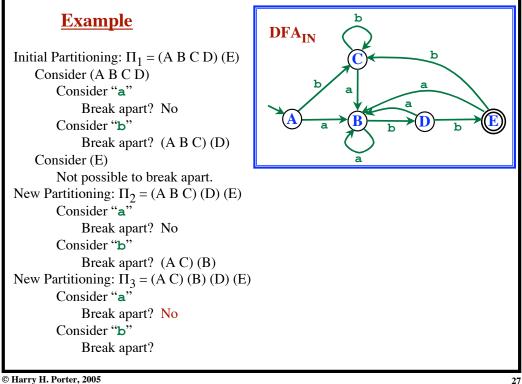
Lexical Analysis - Part 4 **Example** b DFA_{IN} Initial Partitioning: $\Pi_1 = (A B C D) (E)$ b Consider (A B C D) Consider "a" Break apart? No Consider "b" b b Break apart? (A B C) (D) Consider (E) Not possible to break apart. New Partitioning: $\Pi_2 = (A B C) (D) (E)$

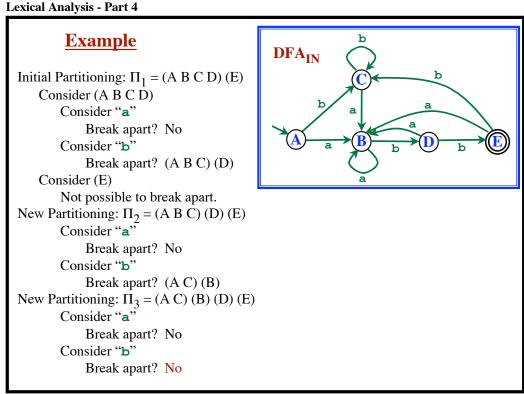


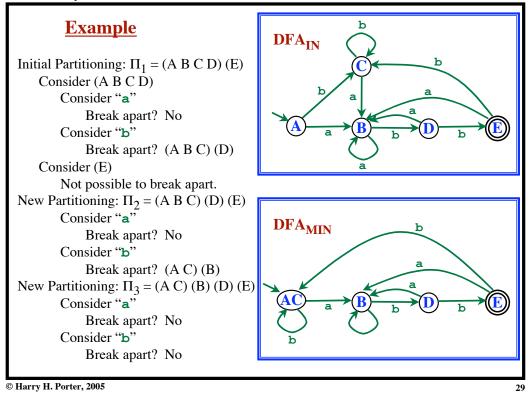
Lexical Analysis - Part 4 **Example** b DFA_{IN} Initial Partitioning: $\Pi_1 = (A B C D) (E)$ b Consider (A B C D) Consider "a" Break apart? No Consider "b" b Break apart? (A B C) (D) Consider (E) Not possible to break apart. New Partitioning: $\Pi_2 = (A B C) (D) (E)$ Consider "a" Break apart? No Consider "b" Break apart?



Lexical Analysis - Part 4 **Example** b DFA_{IN} b Initial Partitioning: $\Pi_1 = (A B C D) (E)$ Consider (A B C D) Consider "a" Break apart? No Consider "b" b Break apart? (A B C) (D) Consider (E) Not possible to break apart. New Partitioning: $\Pi_2 = (A B C) (D) (E)$ Consider "a" Break apart? No Consider "b" Break apart? (A C) (B)New Partitioning: $\Pi_3 = (A C) (B) (D) (E)$ Consider "a" Break apart? Consider "b" Break apart?





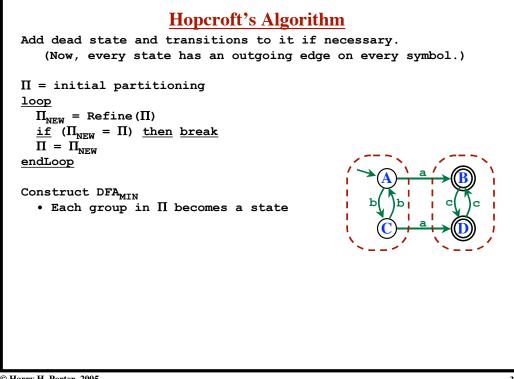


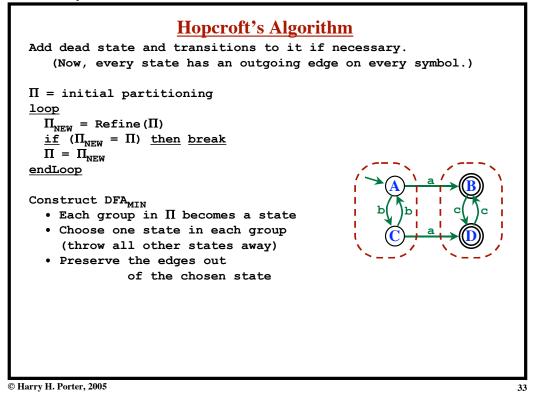
```
Lexical Analysis - Part 4
```

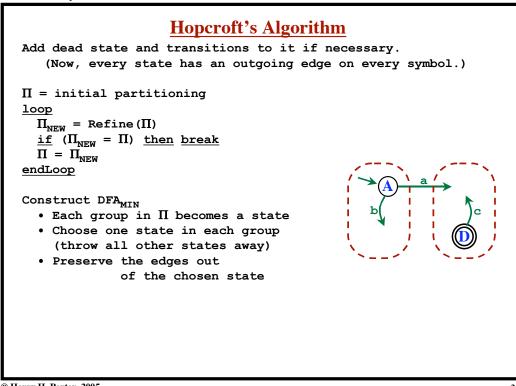
```
Hopcroft's Algorithm
Add dead state and transitions to it if necessary.
(Now, every state has an outgoing edge on every symbol.)
I = initial partitioning
<u>loop</u>
I_NEW = Refine(II)
if (I_NEW = II) then break
I = I_NEW
endLoop
```

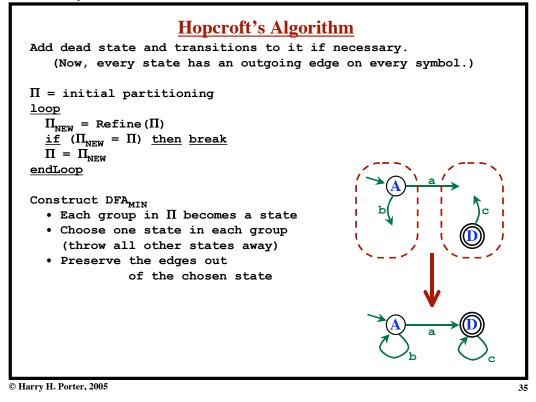
```
Hopcroft's Algorithm
Add dead state and transitions to it if necessary.
    (Now, every state has an outgoing edge on every symbol.)
\Pi = initial partitioning
loop
  \Pi_{\rm NEW} \, = \, {\rm Refine} \, (\Pi)
  \underline{\text{if}} (\Pi_{\text{NEW}} = \Pi) then break
  \Pi = \Pi_{\text{NEW}}
endLoop
Construct DFA_MIN
  • Each group in \Pi becomes a state
```

```
Lexical Analysis - Part 4
```

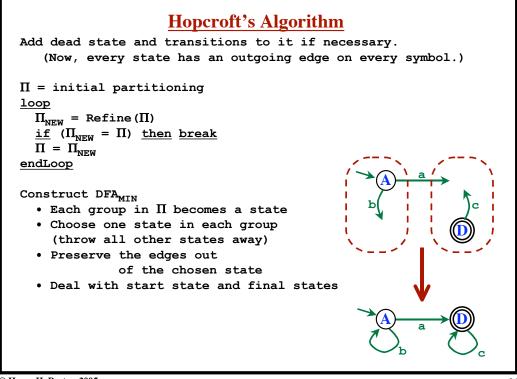




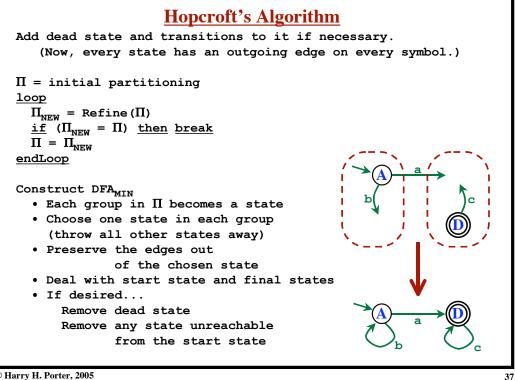




Lexical	Analysis	- Part 4
LUMUA	Anarysis	- 1 al t -



© Harry H. Porter, 2005

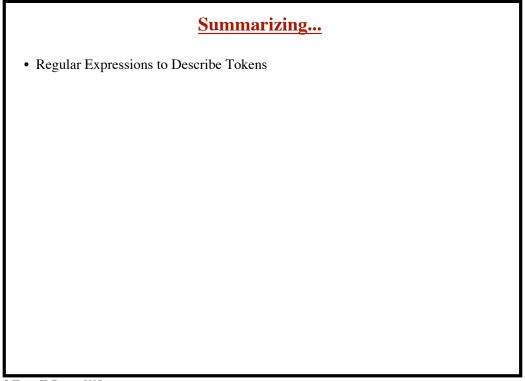


© Harry H. Porter, 2005

Lexical Analysis - Part 4
Π_{NEW} = Refine(Π)
$\Pi_{\text{NEW}} = \{\}$
${\it for}$ each group G in Π ${\it do}$
<u>Example:</u> $\Pi = (A B C E) (D F)$
Break G into sub-groups
$(\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{E}) \rightarrow (\mathbf{A} \mathbf{C}) (\mathbf{B} \mathbf{E})$
as follows:
Put S and T into different subgroups if
For any symbol $a \in \Sigma$, S and T go to states
in two different groups in Π
A × D Must split A and B into different groups
Add the sub-groups to $\Pi_{\rm NEW}$
endFor M
$\underline{\text{return}} \Pi_{\text{NEW}} = \{ \}$
$\Pi_{NEW} = \{ (A C) (B E) \}$
$\Pi_{NEW} = \{ (A C) (B E) (D F) \}$
\cup

© Harry H. Porter, 2005

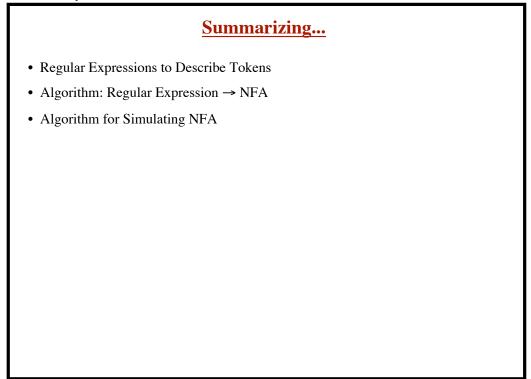
Lexical Analysis - Part 4



- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA

© Harry H. Porter, 2005

Lexical Analysis - Part 4



© Harry H. Porter, 2005

- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA

© Harry H. Porter, 2005

Lexical Analysis - Part 4

Summarizing... Regular Expressions to Describe Tokens Algorithm: Regular Expression → NFA Algorithm for Simulating NFA Algorithm: NFA → DFA Algorithm: DFA → Minimal DFA

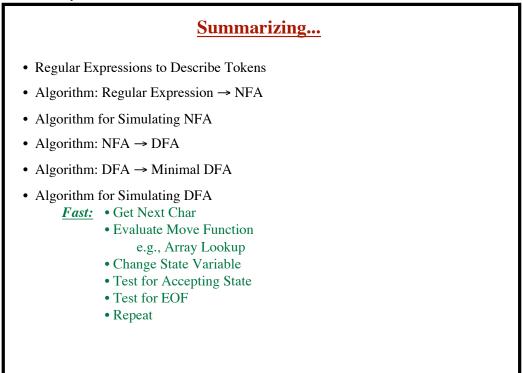
© Harry H. Porter, 2005

44

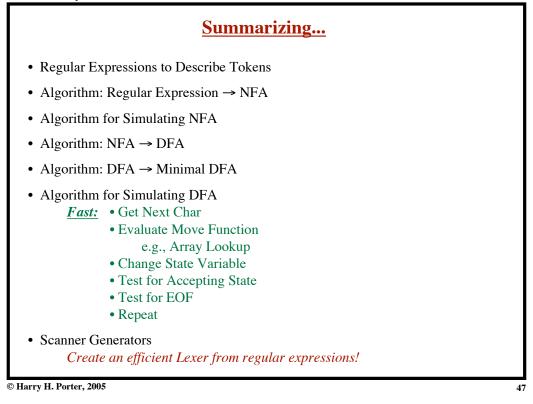
- Regular Expressions to Describe Tokens
- Algorithm: Regular Expression \rightarrow NFA
- Algorithm for Simulating NFA
- Algorithm: NFA \rightarrow DFA
- Algorithm: DFA \rightarrow Minimal DFA
- Algorithm for Simulating DFA

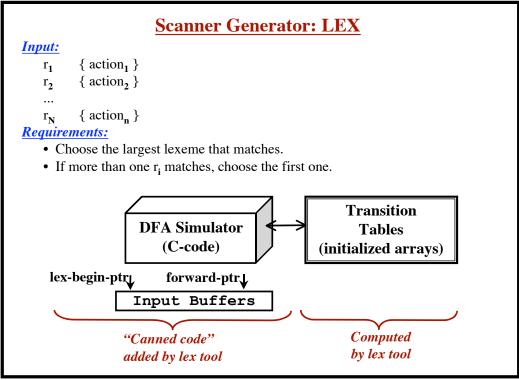
© Harry H. Porter, 2005

Lexical Analysis - Part 4



© Harry H. Porter, 2005



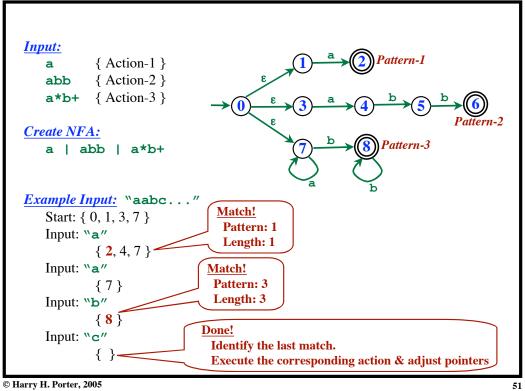


```
Lexical Analysis - Part 4
```

Input: { Action-1 } а { Action-2 } abb a*b+ { Action-3 }

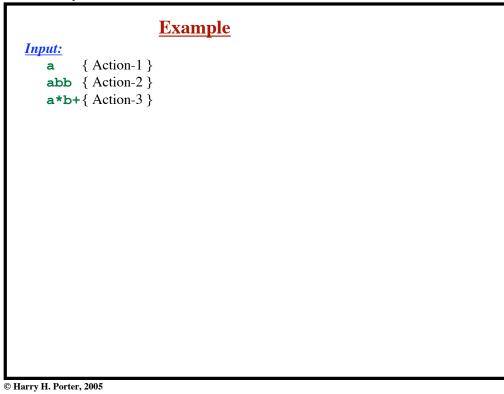
© Harry H. Porter, 2005

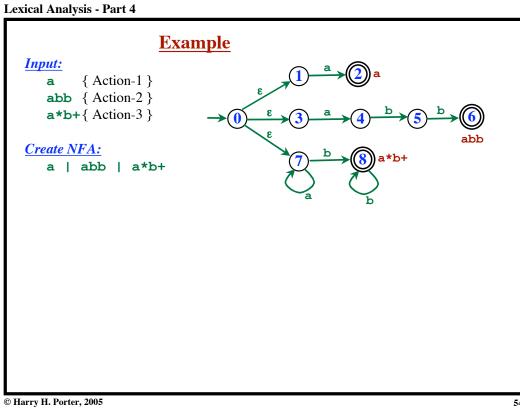
Lexical Analysis - Part 4 Input: Pattern-1 { Action-1 } а { Action-2 } abb { Action-3 } a*b+ ε 0 tern-2 Create NFA: Pattern-3 a | abb | a*b+

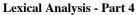


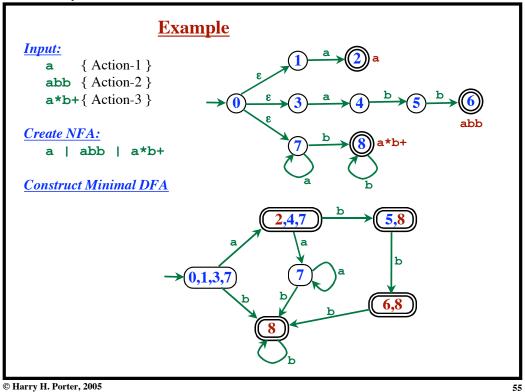
Approach		
• Find the NFA for		
$r_1 \mid r_2 \mid \ldots \mid r_N$		
• Convert to a DFA.		
• Each state of the DFA corresponds to a set of NFA states.		
• A state is final if any NFA state in it was a final state.		
• If several, choose the lowest numbered pattern to be the one accepted.		
• During simulation, keep following edges until you get stuck.		
• As the scanning proceeds Every time you enter a final state Remember: The current value of buffer pointers Which pattern was recognized		
• Upon termination Use that information to Adjust the buffer pointers Execute the desired action		

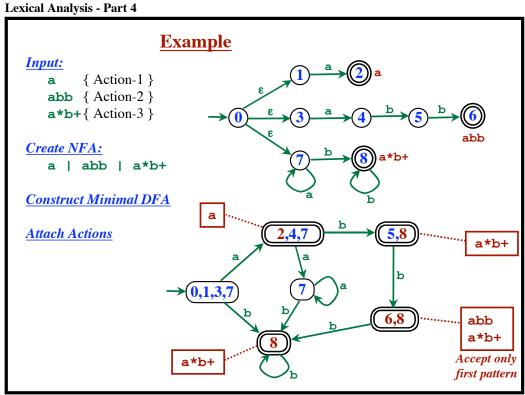
```
Lexical Analysis - Part 4
```

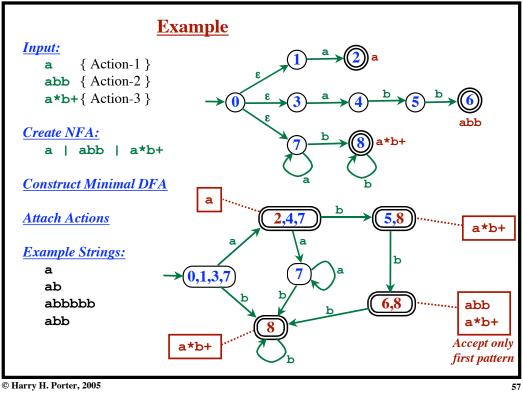


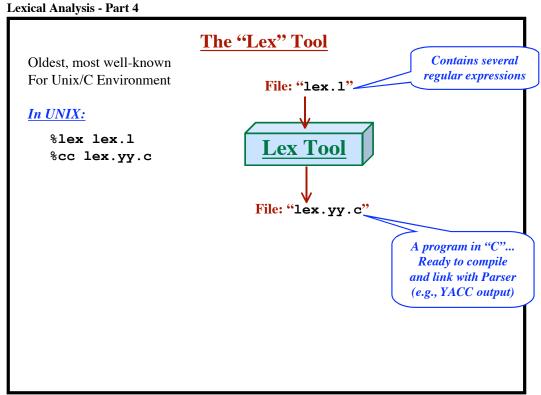




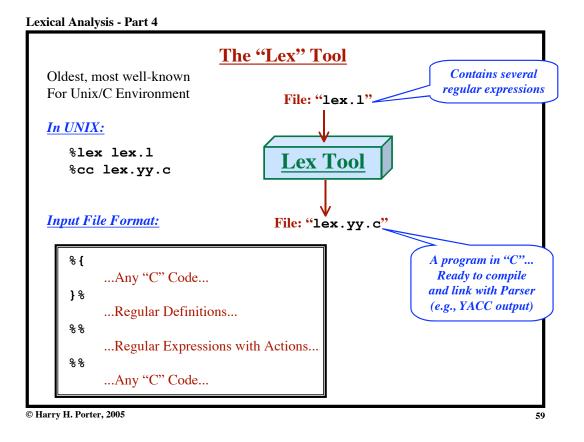






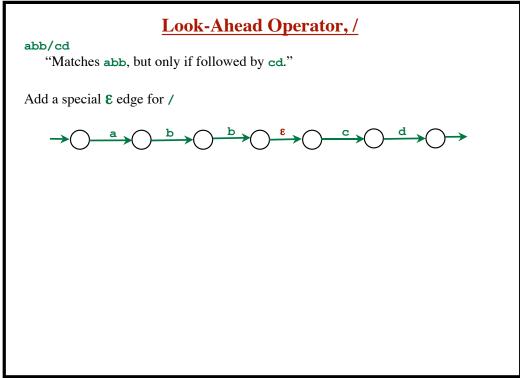


58

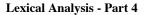


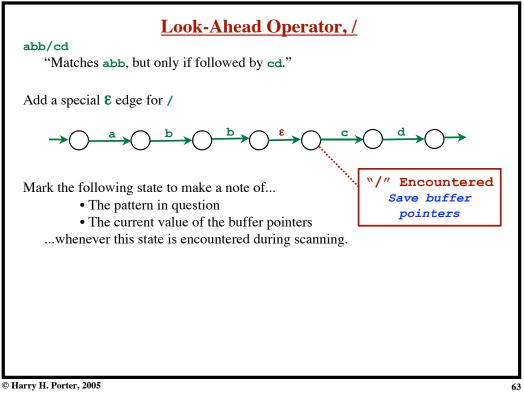
Regular Expressions in Lex			
abc	Concatenation; Most characters stand for themselves		
Meta Charaters:			
l I	Usual meanings		
*	Example: (a b) *c*		
()			
+	One or more, e.g., ab+c		
?	Optional, e.g., ab?c		
[<i>x</i> - <i>y</i>]	Character classes, e.g., [a-z] [a-zA-Z0-9]*		
[^x-y]	Anything but [x-y]		
\ <i>x</i>	The usual escape sequences, e.g., \n		
	Any character except '\n'		
^	Beginning of line		
\$	End of line		
""	To use the meta characters literally,		
	Example: PCAT comments: " (*" . *"*) "		
{}	Defined names, e.g., {letter}		
/	Look-ahead		
	Example: ab/cd		
	(Matches ab, but only when followed by cd)		

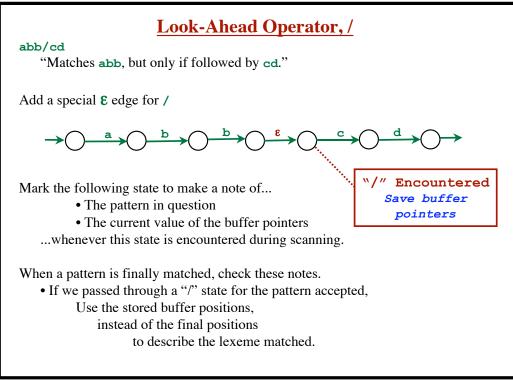


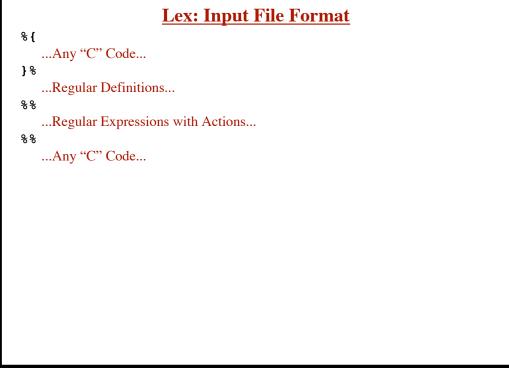


Lexical Analysis - Part 4

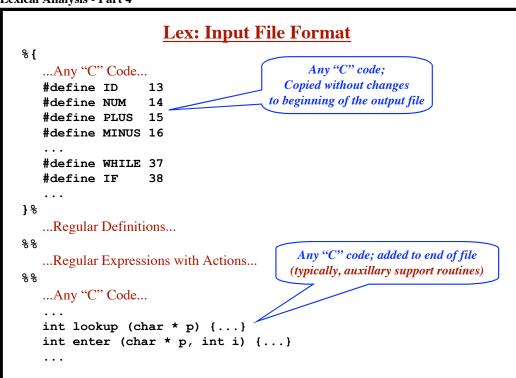




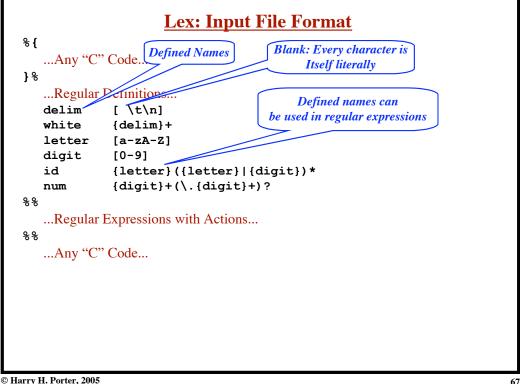




© Harry H. Porter, 2005



Lexical Analysis - Part 4



© Harry H. Porter, 2005

