Optimization

Louden: Finish Textbook (Chapters 1-8)

Basic Code Generation

Produces functional but poor code.
Goal: Improve the code as much as possible.
Dramatically improves code performance (e.g., 2 X to 10X)
"Optimization" -- more likely "Improvement"
Machine-Independent v. Machine-Dependent Optimizations
Variety of techniques
Add as many optimization algorithms as possible
Some are VERY complex!
Do testing w/ sample programs to evaluate which optimization strategies work best.

Different needs for different languages (FORTRAN)
© Harry H. Porter, 2006

CS-322 Optimization, Part 1

Requirement: Correctness

Every optimization must be "safe"
Must not change the program output ... for any input.
Must not allow new errors or exceptions.
Goals of optimization:

- Runtime Execution Speed!!!
- Other (e.g., Code Size, Power Consumption)

Every optimization should improve the program
but may slow some programs!
Is optimization worth the effort?
Some algorithms may be difficult to implement.
Many programs run only once
Compiler used heavily during debugging.
Program is only run once or twice before being modified.
\Rightarrow Compiler performance matters more.
But some programs are computation-intensive
More computation per time unit means more accurate results

The secret to getting programs to run faster?

CS-322 Optimization, Part 1
The secret to getting programs to run faster? Use a better algorithm!

The secret to getting programs to run faster?
Use a better algorithm!
Most optimizations done by a compiler are
"constant-factor" speed-ups
(e.g., 25\% faster)

Optimizations by the programmer:

- Change the algorithm

$$
\mathbf{N}^{2} \rightarrow \mathbf{N} \log \mathbf{N}
$$

- Profile the program and tweak the algorithm
- Misc. transformations
© Harry H. Porter, 2006

CS-322 Optimization, Part 1

> Machine Independent Optimizations
> • Live Variable Analysis
> • Common sub-expressions
> • Eliminate unnecessary copying
> • Loop transformations
> ..etc...
> Optimization transforms IR Code

Machine Dependent Optimizations

- Effective Register Usage
- Select Best Target Instructions
- Select a schedule that executes quickly
... given the CPU idiosynchracies
(e.g., memory latencies, functional units, etc.)

Optimization transforms Target Code
© Harry H. Porter, 2006

Does the programmer trust the compiler to emit efficient code?

No:

Programmer will mangle the program

to achieve greater efficiency.

Yes:

Programmer will concentrate on writing

- Clean, simple code
- Correct code
- Code that is easy to maintain
© Harry H. Porter, 2006

CS-322 Optimization, Part 1

Is Optimization Necessary...

...assuming the programmer writes good, efficient code?

Source Code:

$$
\mathrm{A}[\mathrm{i}]:=\mathrm{B}[\mathrm{i}]+\mathrm{C}[\mathrm{i}] ;
$$

Translation:

$$
\begin{aligned}
& \mathrm{t} 1:=\mathrm{i} * 4 \\
& \mathrm{t} 2:=\mathrm{B}[\mathrm{t} 1] \\
& \mathrm{t} 3:=\mathrm{i} * 4 \\
& \mathrm{t} 4:=\mathrm{C}[\mathrm{t} 3] \\
& \mathrm{t} 5:=\mathrm{t} 2+\mathrm{t} 4 \\
& \mathrm{t} 6 \mathrm{i}:=\mathrm{i} * 4 \\
& \mathrm{~A}[\mathrm{t} 6]:=\mathrm{t} 5
\end{aligned}
$$

The compiler will insert many hidden operations (often concerning pointers and address calculations)

"Local Transformations"

Within a single basic block

"Global Transformations"

Concern several basic blocks
(but typically within a single routine / control flow graph)
Local Common Sub-Expression Elimination

© Harry H. Porter, 2006

CS-322 Optimization, Part 1

```
procedure quicksort (m,n: int) is
    var i,j,v,x: int := 0;
    if ( }n\leqm)\mathrm{ then return; end;
    i := m - 1;
    j := n;
    v := A[n];
    while true do
        repeat
            i := i + 1;
        until A[i] \geq v;
        repeat
            j := j - 1;
        until A[j] s v;
        if i }\geqj\mathrm{ then exit; end;
        x}:= A[i]
        A[i] := A[j];
        A[j] := x;
    end;
    x := A[i];
    A[i] := A[n];
    A[n] := x;
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```

```
procedure quicksort (m,n: int) is
    var \(i, j, v, x:\) int \(:=0\);
    if ( \(n \leq m\) ) then return; end;
    i \(:=\mathrm{m}-1\);
    j \(:=n\);
    \(\mathrm{v}:=\mathrm{A}[\mathrm{n}]\);
    while true do
        repeat
            i \(:=i+1\);
        until \(A[i] \geq v ;\)
        repeat
                j : \(=j-1\);
            until \(A[j] \leq v\);
```



```
            if i \(\geq j\) then exit; end;
            \(\overline{\mathrm{x}}:=\mathrm{A}[\mathrm{i}]\);
            A[i] :=A[j];
            A[j] := x;
    end;
    x : = A[i];
    A[i] :=A[n];
    A[n] := \(\mathbf{x}\);
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```

© Harry H. Porter, 2006
11

CS-322 Optimization, Part 1

```
procedure quicksort (m,n: int) is
    var i,j,v,x: int := 0;
    if ( }\textrm{n}\leq\textrm{m}\mathrm{ ) then return; end;
    i := m - 1;
    j := n;
    v := A[n];
    while true do
        repeat
            i := i + 1;
        until A[i] \geq v;
        repeat
            j := j - 1;
        until A[j] s v;
        if i }\geqj\mathrm{ then exit; end;
        x := A[i];
        A[i] := A[j]; {
    end;
    x := A[i];
    A[i] := A[n];
    A[n] := x;
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```

```
procedure quicksort (m,n: int) is
    var \(i, j, v, x:\) int \(:=0\);
    if ( \(n \leq m\) ) then return; end;
    i \(:=\mathrm{m}-1\);
    j \(:=n\);
    \(\mathrm{v}:=\mathrm{A}[\mathrm{n}]\);
    while true do
        repeat
            i \(:=i+1\);
        until \(A[i] \geq v ;\)
        repeat
                j : \(=\) j - 1 ;
        until \(A[j] \leq v\);
```



```
        if i \(\geq j\) then exit; end;
        \(\bar{x}:=\mathrm{A}[\mathrm{i}]\);
        \(\left.\begin{array}{l}A[i] \\ A[j] \\ :=A[j] ;\end{array}\right\} \operatorname{Swap} A[i]\) and \(A[j]\)
    end;
    \(\left.\begin{array}{l}\mathrm{x}:=\mathrm{A}[\mathrm{i}] ; \\ \mathrm{A}[\mathrm{i}] \quad:=\mathrm{A}[\mathrm{n}] ;\end{array}\right\}\) Put \({ }^{6} \mathbf{v}\) " in the middle
    \(\mathrm{A}[\mathrm{n}]:=\mathrm{x}\);
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```

© Harry H. Porter, 2006
13

CS-322 Optimization, Part 1

```
procedure quicksort (m,n: int) is
    var i,j,v,x: int := 0;
    if ( }\textrm{n}\leq\textrm{m}\mathrm{ ) then return; end;
    i := m - 1;
    j := n;
    v := A[n];
    while true do
        repeat
            i := i + 1;
        until A[i] \geq v;
        repeat
            j := j - 1;
        until A[j] s v;
        if i }\geq j then exit; end
        x}:=\textrm{A}[\textrm{i}]
        A[i] := A[j]; {
    end;
    x := A[i];
    A[i] := A[n]; }Put "v" in the middle
    A[n] := x;
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```



```
        ;n] ; }uut "v" in the middle
```



```
procedure quicksort (m,n: int) is
    var \(i, j, v, x:\) int \(:=0\);
    if ( \(n \leq m\) ) then return; end;
    i \(:=m-1\);
    j \(:=n\);
    \(\mathrm{v}:=\mathrm{A}[\mathrm{n}]\);
    while true do
        repeat
            i \(:=i+1\);
        until A[i] \(\geq \mathrm{v}\);
        repeat
            j : \(=j-1\);
        until \(A[j] \leq v ;\)
        if \(i \geq j\) then exit; end;
        \(\mathrm{x}:=\mathrm{A}[\mathrm{i}]\);
        A[i] :=A[j];
        A[j] := x;
    end;
    x : = A[i];
    \(\mathrm{A}[\mathrm{i}]:=\mathrm{A}[\mathrm{n}]\);
    \(\mathrm{A}[\mathrm{n}]:=\mathbf{x}\);
    quicksort (m,j);
    quicksort(i+1,n);
endProc;
```

CS-322 Optimization, Part 1

© Harry H. Porter, 2006
17

CS-322 Optimization, Part 1

Why perform this optimization?
The copy may become DEAD CODE.
We may delete the copy later!
© Harry H. Porter, 2006
19

CS-322 Optimization, Part 1

Global Common Sub-expression Elimination

An expression...
Simple computation
Computed in several places

Global Common Sub-expression Elimination

An expression...
Simple computation
Computed in several places

Copies will be introduced during sub-expression elimination

CS-322 Optimization, Part 1

Global Common Sub-expression Elimination

An expression...
Simple computation
Computed in several places

Copies will be introduced during sub-expression elimination ...but they may be DEAD CODE!

© Harry H. Porter, 2006
23

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

© Harry H. Porter, 2006
27

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

Data Flow Analysis
"Which computations can reach which points"
Only one DEFINITION of "debug" can reach this USE.
Must have the value "false", so okay to optimize the IF statement.
Global Common Sub-Expression Elimination.
Copy Propagation.
Live-Variable Anaylsis.
Constant Folding
"If we know the value of a variable at compile-time, we may go ahead and perform the computation."

Dead-Code Elimination
"Eliminate code that is unreachable."
"Eliminate code that compute DEAD variables."
© Harry H. Porter, 2006
35

CS-322 Optimization, Part 1

Optimizing Loops

The 90-10 Rule
" 90% of execution time is spent in 10% of the code."

Try to move code out of loops
Identify Loops
Nesting of loops
"inner loops"
"outer loops"
GOAL:
Move Code "Outward"
Make Loops Run Faster

Loop-Invariant Computations

```
while i <= MAX-1 do \square_Assume MAX and MIN
    j := i * (MIN+1);
                                    are not altered in the loop
end;
If an expression is computed within a loop and
It does not depend on variables that change in the loop
```

CS-322 Optimization, Part 1

Loop-Invariant Computations

If an expression is computed within a loop and
It does not depend on variables that change in the loop then
Move it to just before the loop!

Loop-Invariant Computations

If an expression is computed within a loop and
It does not depend on variables that change in the loop then
Move it to just before the loop!

```
t1 := MAX-1;
t2 := MIN-1;
while i <= tl do
    j := i * t2;
end;
```

© Harry H. Porter, 2006
39

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1
Assume $t=i * 4$ here. Some Reasoning
Then, after " i " is incremented, the relationship will be

$$
t=(i-1) * 4
$$


```
Assume \(t=i * 4\) here. Some Reasoning
Then, after " \(i\) " is incremented, the
relationship will be
    \(\mathrm{t}=(\mathrm{i}-1) * 4\)
Rewriting:
    \(\mathrm{t}=\mathrm{i} * 4-4\)
Or:
    \(i=(t+4) / 4\)
```

CS-322 Optimization, Part 1

Assume t = i*4 here.

Then, after " i " is incremented, the relationship will be

$$
t=(i-1) * 4
$$

Rewriting:
$\mathrm{t}=\mathrm{i} * 4-4$
Or:

$$
i=(t+4) / 4
$$

Use this value of " i " to compute the new " t " as a function of the old " t ".
$\mathrm{t}:=\mathrm{i}$ * 4
$t:=[(t+4) / 4] * 4$

Assume t $=\mathrm{i} * 4$ here. \quad Some Reasoning
Then, after " i " is incremented, the
relationship will be

$$
t=(i-1) * 4
$$

Rewriting:
$t=i * 4-4$
Or:
$i=(t+4) / 4$
Use this value of "i" to compute
the new " t " as a function of the old " t ".
$\mathrm{t}:=\mathrm{i}$ * 4
$\mathrm{t}:=[(\mathrm{t}+4) / 4]$ * 4
Rewriting:
$t:=t+4$

CS-322 Optimization, Part 1

```
C-322
    Assume \(t=i * 4\) here. Some Reasoning
    Then, after " \(i\) " is incremented, the
relationship will be
    \(\mathrm{t}=(\mathrm{i}-1) * 4\)
Rewriting:
    \(t=i * 4-4\)
Or:
    \(i=(t+4) / 4\)
Use this value of " \(i\) " to compute
the new " \(t\) " as a function of the old " \(t\) ".
t : = i * 4
\(\mathrm{t}:=[(\mathrm{t}+4) / 4]\) * 4
```


Rewriting:

```
\(\mathrm{t}:=\mathrm{t}+4\)
```


Conclusion:

```
\[
\text { It is okay to replace } \quad t:=\mathrm{i} * 4
\]
\[
\text { by: } \quad t:=t+4
\]
```

Assume $\mathrm{t}=\mathrm{i}^{*} 4$ here. \quad Some Reasoning
Then, after " i " is incremented, the
relationship will be

$$
t=(i-1) * 4
$$

Rewriting:

$$
t=i * 4-4
$$

Or:
$i=(t+4) / 4$
Use this value of " i " to compute
the new " t " as a function of the old " t ".
$t:=$ i * 4
t $:=[(t+4) / 4]$ * 4
Rewriting:
$t:=t+4$

Conclusion:

$$
\text { It is okay to replace } \quad t:=i * 4
$$

by: $\quad t:=t+4$
But don't forget to establish $\mathbf{t}=\mathrm{i} * 4$ before the loop begins!
© Harry H. Porter, 2006
47

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

Definitions

"Reduction in Strength"

A costly operation is replaced by a cheaper operation.

"Constant Folding"
If all operands to an operator are constants... evaluate the operator at compile-time.

© Harry H. Porter, 2006

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

CS-322 Optimization, Part 1

The Definition of "Natural Loops"

What is a loop anyway?

- Must have a single entry point

The Header Node
(The Header dominates all nodes in the loop.)

- Must be a path back to the header.

The Definition of "Natural Loops"

What is a loop anyway?

- Must have a single entry point

The Header Node
(The Header dominates all nodes in the loop.)

- Must be a path back to the header.

A loop is defined by an edge $B \rightarrow A$ such that \boldsymbol{A} dom \boldsymbol{B}.

© Harry H. Porter, 2006
73

CS-322 Optimization, Part 1

The Definition of "Natural Loops"

What is a loop anyway?

- Must have a single entry point

The Header Node
(The Header dominates all nodes in the loop.)

- Must be a path back to the header.

A loop is defined by an edge $B \rightarrow A$ such that \boldsymbol{A} dom B.

© Harry H. Porter, 2006

The Definition of "Natural Loops"

What is a loop anyway?

- Must have a single entry point

The Header Node
(The Header dominates all nodes in the loop.)

- Must be a path back to the header.

A loop is defined by an edge $B \rightarrow A$ such that \boldsymbol{A} dom \boldsymbol{B}.

Definition: Given such an edge $\mathbf{B} \rightarrow \mathbf{A}$, A "natural loop" is the set of nodes...

- Node A, and
- All nodes that can reach B without going through \mathbf{A}.

© Harry H. Porter, 2006
75

CS-322 Optimization, Part 1

The Definition of "Natural Loops"

What is a loop anyway?

- Must have a single entry point

The Header Node
(The Header dominates all nodes in the loop.)

- Must be a path back to the header.

A loop is defined by an edge $B \rightarrow A$ such that \boldsymbol{A} dom B.

Definition: Given such an edge $\mathbf{B} \rightarrow \mathbf{A}$,
A "natural loop" is the set of nodes...

- Node A, and
- All nodes that can reach B without going through \mathbf{A}.

© Harry H. Porter, 2006

CS-322 Optimization, Part 1

An Algorithm to Find a Natural Loop

Input: A Control Flow Graph

A Back-Edge, B \rightarrow A
Output: Result $=$ Set of nodes in the natural loop

```
Stack := empty
ResultSet := {A}
Insert (B)
while NotEmpty (Stack) do
    M := Pop (Stack)
    for each predecessor of P of M do
    Insert (P)
    endfor
endwhile
```

```
procedure Insert(X)
    if X is not in ResultSet then
        Add X to ResultSet
        Push X onto Stack
    endif
```

© Harry H. Porter, 2006

CS-322 Optimization, Part 1

Inner / Outer Loops

A loop is a set of nodes.
Given two Natural Loops...
Either...

- The loops are disjoint, or
- One loop is contained in (i.e., nested) within the other, or
- Both loops have the same header.

If two loops have the same header...
They will be the same loop (same set of nodes)

Loops with Multiple Back-Edges

$$
\begin{gathered}
\text { while (...) do } \\
\text {...A.. } \\
\text {...B... } \\
\text { if ... then } \\
\text {...C... } \\
\text { else } \\
\text { endif.... } \\
\text { endwhile }
\end{gathered}
$$

Which path is traversed most frequently? Undecideable...

Must treat as equally probable.
© Harry H. Porter, 2006

CS-322 Optimization, Part 1

Loop "Preheader"

We can place loop-invariant computations in the preheader.

Reducible Control Flow Graphs

Definition:
In a reducible control flow graph, all loops have a single entry point.

Structured programming constructs
\Rightarrow The control flow graph is reducible.
\Rightarrow All loops are natural.
In a reducible flow graph...
We have only...

- Forward Edges

These form an acyclic graph.
All nodes can be reached via
forward edges from initial node.

- Back Edges

The HEAD dominates the TAIL

- No "Cross Edges"

