
1

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Optimization

Louden: Finish Textbook (Chapters 1-8)

Basic Code Generation

Produces functional but poor code.

Goal: Improve the code as much as possible.

Dramatically improves code performance (e.g., 2X to 10X)

“Optimization” -- more likely “Improvement”

Machine-Independent v. Machine-Dependent Optimizations

Variety of techniques

Add as many optimization algorithms as possible

Some are VERY complex!

Do testing w/ sample programs to evaluate

which optimization strategies work best.

Different needs for different languages (FORTRAN)

2

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Requirement: Correctness
Every optimization must be “safe”

Must not change the program output ... for any input.

Must not allow new errors or exceptions.

Goals of optimization:

•!Runtime Execution Speed!!!

•!Other (e.g., Code Size, Power Consumption)

Every optimization should improve the program

but may slow some programs!

Is optimization worth the effort?

Some algorithms may be difficult to implement.

Many programs run only once

Compiler used heavily during debugging.

Program is only run once or twice before being modified.

 ! Compiler performance matters more.

But some programs are computation-intensive

More computation per time unit means more accurate results

3

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The secret to getting programs to run faster?

4

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The secret to getting programs to run faster?

Use a better algorithm!

5

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The secret to getting programs to run faster?

Use a better algorithm!

Most optimizations done by a compiler are

“constant-factor” speed-ups

(e.g., 25% faster)

Optimizations by the programmer:

•!Change the algorithm

N2 " N log N

•!Profile the program and tweak the algorithm

•!Misc. transformations

6

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Machine Independent Optimizations

•!Live Variable Analysis

•!Common sub-expressions

•!Eliminate unnecessary copying

•!Loop transformations

...etc...

Optimization transforms IR Code

Machine Dependent Optimizations

•!Effective Register Usage

•!Select Best Target Instructions

•!Select a schedule that executes quickly
... given the CPU idiosynchracies

 (e.g., memory latencies, functional units, etc.)

Optimization transforms Target Code

7

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Does the programmer trust the compiler

to emit efficient code?

No:
Programmer will mangle the program

to achieve greater efficiency.

Yes:
Programmer will concentrate on writing

•!Clean, simple code

•!Correct code

•!Code that is easy to maintain

8

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Is Optimization Necessary...

...assuming the programmer writes good, efficient code?

Source Code:

A[i] := B[i] + C[i];

Translation:
t1 := i * 4

t2 := B[t1]

t3 := i * 4

t4 := C[t3]

t5 := t2 + t4

t6 := i * 4

A[t6] := t5

The compiler will insert many hidden operations

(often concerning pointers and address calculations)

9

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Local Transformations”

Within a single basic block

“Global Transformations”

Concern several basic blocks

(but typically within a single routine / control flow graph)

t6 := 4*i

x := A[t6]

t7 := 4*i

t8 := 4*j

t9 := A[t8]

A[t7] := t9

t10 := 4*j

A[t10] := x

goto B2

B5 t6 := 4*i

x := A[t6]

t8 := 4*j

t9 := A[t8]

A[t6] := t9

A[t8] := x

goto B2

B5

Local Common Sub-Expression Elimination

10

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

m n

11

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

m

j

n

i

v=A[n]

12

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

m

j

n

i

v=A[n]

Swap A[i] and A[j]

13

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

m

j

n

i

v=A[n]

Swap A[i] and A[j]

Put “v” in the middle

i,j

14

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

m

j

n

i

v=A[n]

Swap A[i] and A[j]

Put “v” in the middle

i,j

15

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

procedure quicksort (m,n: int) is
 var i,j,v,x: int := 0;
 if (n # m) then return; end;

 i := m - 1;
 j := n;
 v := A[n];
 while true do
 repeat
 i := i + 1;
 until A[i] $ v;
 repeat
 j := j - 1;
 until A[j] # v;
 if i $ j then exit; end;
 x := A[i];
 A[i] := A[j];
 A[j] := x;
 end;
 x := A[i];
 A[i] := A[n];
 A[n] := x;

 quicksort (m,j);

 quicksort(i+1,n);
endProc;

16

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := 4 * i
x := A[t6]
t8 := 4 * j
t9 := A[t8]
A[t6] := t9
A[t8] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := 4 * i
x := A[t11]
t13 := 4 * n
t14 := A[t13]
A[t11] := t14
A[t13] := x

B1

B2

B3

B4

B5 B6

17

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Copy Propagation”

...
x := y
...
...
z := b + x
...

A “copy”

Any statement that uses
the value of “x’

18

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Copy Propagation”

Why perform this optimization?

...
x := y
...
...
z := b + x
...

...
x := y
...
...
z := b + y
...

A “copy”

Any statement that uses
the value of “x’

19

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Copy Propagation”

Why perform this optimization?

The copy may become DEAD CODE.

We may delete the copy later!

...
x := y
...
...
z := b + x
...

...
x := y
...
...
z := b + y
...

A “copy”

Any statement that uses
the value of “x’

20

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

 Global Common Sub-expression Elimination

An expression...

Simple computation

Computed in several places c := d + e

a := d + e b := d + e

21

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

 Global Common Sub-expression Elimination

An expression...

Simple computation

Computed in several places

Copies will be introduced during sub-expression elimination

c := d + e

a := d + e b := d + e

c := t

t := d + e

a := t

t := d + e

b := t

22

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

 Global Common Sub-expression Elimination

An expression...

Simple computation

Computed in several places

Copies will be introduced during sub-expression elimination

 ...but they may be DEAD CODE!

c := d + e

a := d + e b := d + e

c := t

t := d + e

a := t

t := d + e

b := t

23

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := 4 * i
x := A[t6]
t8 := 4 * j
t9 := A[t8]
A[t6] := t9
A[t8] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := 4 * i
x := A[t11]
t13 := 4 * n
t14 := A[t13]
A[t11] := t14
A[t13] := x

B1

B2

B3

B4

B5 B6

24

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := 4 * i
x := A[t6]
t8 := 4 * j
t9 := A[t8]
A[t6] := t9
A[t8] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := 4 * i
x := A[t11]
t13 := 4 * n
t14 := A[t13]
A[t11] := t14
A[t13] := x

B1

B2

B3

B4

B5 B6

Global Common
Sub-Expression Elimination

25

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := A[t6]
t8 := t4
t9 := A[t8]
A[t6] := t9
A[t8] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := A[t11]
t13 := t1
t14 := A[t13]
A[t11] := t14
A[t13] := x

B1

B2

B3

B4

B5 B6

Global Common
Sub-Expression Elimination

26

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := A[t6]
t8 := t4
t9 := A[t8]
A[t6] := t9
A[t8] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := A[t11]
t13 := t1
t14 := A[t13]
A[t11] := t14
A[t13] := x

B1

B2

B3

B4

B5 B6

Copy Propagation

27

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := A[t2]
t8 := t4
t9 := A[t4]
A[t2] := t9
A[t4] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := A[t2]
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := x

B1

B2

B3

B4

B5 B6

Copy Propagation

28

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := A[t2]
t8 := t4
t9 := A[t4]
A[t2] := t9
A[t4] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := A[t2]
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := x

B1

B2

B3

B4

B5 B6

Global Common
Sub-Expression Elimination

29

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := t3
t8 := t4
t9 := t5
A[t2] := t9
A[t4] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := t3
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := x

B1

B2

B3

B4

B5 B6

Global Common
Sub-Expression Elimination

30

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := t3
t8 := t4
t9 := t5
A[t2] := t9
A[t4] := x

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := t3
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := x

B1

B2

B3

B4

B5 B6

Copy Propagation

31

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := t3
t8 := t4
t9 := t5
A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := t3
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Copy Propagation

32

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

t6 := t2
x := t3
t8 := t4
t9 := t5
A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t11 := t2
x := t3
t13 := t1
t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Dead Code Elimination

33

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Comparison to
Original

t6 := 4 * i
x := A[t6]
t8 := 4 * j
t9 := A[t8]
A[t6] := t9
A[t8] := x

t11 := 4 * i
x := A[t11]
t13 := 4 * n
t14 := A[t13]
A[t11] := t14
A[t13] := x

34

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Consider This Example
debug := FALSE;

...

if (debug) then print (...) endif

Unreachable? Can this
code be eliminated?

35

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Consider This Example
debug := FALSE;

...

if (debug) then print (...) endif

Data Flow Analysis
“Which computations can reach which points”

Only one DEFINITION of “debug” can reach this USE.

 Must have the value “false”, so okay to optimize the IF statement.

Global Common Sub-Expression Elimination.

Copy Propagation.

Live-Variable Anaylsis.

Constant Folding
“If we know the value of a variable at compile-time,

we may go ahead and perform the computation.”

Dead-Code Elimination
“Eliminate code that is unreachable.”

“Eliminate code that compute DEAD variables.”

Unreachable? Can this
code be eliminated?

36

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Optimizing Loops

The 90-10 Rule
“90% of execution time is spent in 10% of the code.”

Try to move code out of loops

Identify Loops

Nesting of loops

“inner loops”

“outer loops”

GOAL:

Move Code “Outward”

Make Loops Run Faster

37

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Loop-Invariant Computations

If an expression is computed within a loop

and

It does not depend on variables that change in the loop

while i <= MAX-1 do
...
j := i * (MIN+1);
...

end;

Assume MAX and MIN
are not altered in the loop

38

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Loop-Invariant Computations

If an expression is computed within a loop

and

It does not depend on variables that change in the loop

then

Move it to just before the loop!

while i <= MAX-1 do
...
j := i * (MIN+1);
...

end;

These computations are

“loop-invariant”

39

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Loop-Invariant Computations

If an expression is computed within a loop

and

It does not depend on variables that change in the loop

then

Move it to just before the loop!

while i <= MAX-1 do
...
j := i * (MIN+1);
...

end;

t1 := MAX-1;
t2 := MIN-1;
while i <= t1 do

...
j := i * t2;
...

end;

These computations are

“loop-invariant”

40

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Induction Variables
Definition:

Loop counters that move together (in “lock-step”)

during loop execution.

loop
 ...
 i := i + 1;
 ... A[i]...
 ...
endloop

 ...
 i := i + 1
 t := i * 4
 ... A[t]...
 ...

Example Source:

Translation to IR:

Relationship:

t = i*4

Note:

t := i*4

 Establishes the relationship.

Also: We know this relationship

 exists directly after

t := i*4

 is executed.

i t

1 4

2 8

3 12

4 16

5 20

•
•
•

41

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

•
•
•
i := i + 1
t := i * 4
•
•
•

42

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4

•
•
•
i := i + 1
t := i * 4
•
•
•

43

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4
Rewriting:

t = i*4 - 4
Or:

i = (t + 4) / 4

•
•
•
i := i + 1
t := i * 4
•
•
•

44

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4
Rewriting:

t = i*4 - 4
Or:

i = (t + 4) / 4

Use this value of “i” to compute
the new “t” as a function of the old “t”.

t := i * 4

t := [(t + 4) / 4] * 4

•
•
•
i := i + 1
t := i * 4
•
•
•

45

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4
Rewriting:

t = i*4 - 4
Or:

i = (t + 4) / 4

Use this value of “i” to compute
the new “t” as a function of the old “t”.

t := i * 4

t := [(t + 4) / 4] * 4
Rewriting:

t := t + 4

•
•
•
i := i + 1
t := i * 4
•
•
•

46

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4
Rewriting:

t = i*4 - 4
Or:

i = (t + 4) / 4

Use this value of “i” to compute
the new “t” as a function of the old “t”.

t := i * 4

t := [(t + 4) / 4] * 4
Rewriting:

t := t + 4

Conclusion:
It is okay to replace t := i * 4

by: t := t + 4

•
•
•
i := i + 1
t := i * 4
•
•
•

47

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Some Reasoning
Assume t = i*4 here.

Then, after “i” is incremented, the
relationship will be

t = (i-1) * 4
Rewriting:

t = i*4 - 4
Or:

i = (t + 4) / 4

Use this value of “i” to compute
the new “t” as a function of the old “t”.

t := i * 4

t := [(t + 4) / 4] * 4
Rewriting:

t := t + 4

Conclusion:
It is okay to replace t := i * 4

by: t := t + 4

But don’t forget to establish t = i*4 before the loop begins!

•
•
•
i := i + 1
t := i * 4
•
•
•

48

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Transformation

...
i := i + 1
t := i * 4
... A[t]...
...

Before:

...
i := i + 1
t := t + 4
... A[t]...
...

t := i * 4

After:

“Preheader”
A new block added
to “just before” the loop.

49

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Transformation

Must also check:

“t” and “i” are not changed

elsewhere in the loop

...
i := i + 1
t := i * 4
... A[t]...
...

Before:

...
i := i + 1
t := t + 4
... A[t]...
...

t := i * 4

After:

“Preheader”
A new block added
to “just before” the loop.

50

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Transformation

Must also check:

“t” and “i” are not changed

elsewhere in the loop

Benefit:

The definition of i may

become DEAD.

... Eliminate it altogether!

...
i := i + 1
t := i * 4
... A[t]...
...

Before:

...
i := i + 1
t := t + 4
... A[t]...
...

t := i * 4

After:

“Preheader”
A new block added
to “just before” the loop.

51

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Definitions

“Reduction in Strength”
A costly operation is replaced by a cheaper operation.

t := i * 4

t := t + 4

“Constant Folding”
If all operands to an operator are constants...

 evaluate the operator at compile-time.

t := 100 * 4

t := 400

52

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Our Example,
so far...

53

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := 4 * i
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := 4 * j
t5 := A[t4]
if t5 > v goto B3

if i $ j goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Induction Variables

t2 := 4 * i
t4 := 4 * j

54

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := t2 + 4
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := t4 - 4
t5 := A[t4]
if t5 > v goto B3

if t2 $ t4 goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Induction Variables

t2 := 4 * i
t4 := 4 * j

55

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

i := i + 1
t2 := t2 + 4
t3 := A[t2]
if t3 < v goto B2

j := j - 1
t4 := t4 - 4
t5 := A[t4]
if t5 > v goto B3

if t2 $ t4 goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Dead Code
Elimination

t2 := 4 * i
t4 := 4 * j

56

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

A[t2] := t5
A[t4] := t3

i := m - 1
j := n
t1 := 4 * n
v := A[t1]

t2 := t2 + 4
t3 := A[t2]
if t3 < v goto B2

t4 := t4 - 4
t5 := A[t4]
if t5 > v goto B3

if t2 $ t4 goto B6

t14 := A[t1]
A[t2] := t14
A[t1] := t3

B1

B2

B3

B4

B5 B6

Dead Code
Elimination

t2 := 4 * i
t4 := 4 * j

57

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

 Given:

A Control Flow Graph

(Each node is a Basic Block)

Goal:

Locate the loops.

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

58

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Definition:

A relation between nodes...

Node D “dominates” node N

D dom N

If every path from the initial node

 to N must go through D.

The entry node in a loop will dominate

all nodes in the loop.

Every node dominates itself.

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

59

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1

2

3

4

5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

60

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2

3

4

5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

61

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3

4

5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

62

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4

5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

63

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

64

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

65

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

66

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

67

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8 8,9,10

9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

68

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8 8,9,10

9 9

10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

69

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

“Dominates”

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8 8,9,10

9 9

10 10

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

70

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Dominator Tree

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8 8,9,10

9 9

10 10

BB1

BB2 BB3

BB4

BB5 BB6 BB7

BB10

BB8

BB9

71

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Dominator Tree

Node Dominates

1 All

2 2

3 3 - 10

4 4 - 10

5 5

6 6

7 7,8,9,10

8 8,9,10

9 9

10 10

BB1

BB2 BB3

BB4

BB5 BB6 BB7

BB10

BB8

BB9

Initial node will
be the “root” of the

dominator tree

NOTE: This tree is
different than the
Control Flow Graph

72

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Definition of “Natural Loops”
What is a loop anyway?

•!Must have a single entry point

The Header Node

(The Header dominates all nodes in the loop.)

•!Must be a path back to the header.

73

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Definition of “Natural Loops”
What is a loop anyway?

•!Must have a single entry point

The Header Node

(The Header dominates all nodes in the loop.)

•!Must be a path back to the header.

A loop is defined by an edge B"A such that A dom B.

A

B

74

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Definition of “Natural Loops”
What is a loop anyway?

•!Must have a single entry point

The Header Node

(The Header dominates all nodes in the loop.)

•!Must be a path back to the header.

A loop is defined by an edge B"A such that A dom B.

A

B

75

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Definition of “Natural Loops”
What is a loop anyway?

•!Must have a single entry point

The Header Node

(The Header dominates all nodes in the loop.)

•!Must be a path back to the header.

A loop is defined by an edge B"A such that A dom B.

Definition: Given such an edge B"A,

A “natural loop” is the set of nodes...

•!Node A, and

•!All nodes that can reach B

 without going through A.

A

B

76

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

The Definition of “Natural Loops”
What is a loop anyway?

•!Must have a single entry point

The Header Node

(The Header dominates all nodes in the loop.)

•!Must be a path back to the header.

A loop is defined by an edge B"A such that A dom B.

Definition: Given such an edge B"A,

A “natural loop” is the set of nodes...

•!Node A, and

•!All nodes that can reach B

 without going through A.

A

B

77

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

78

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

79

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

80

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

 while
 •
 •
 •
 if xxx

 then
 •
 •
 •
 else
 •
 •
 •
 endif
endwhile

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

81

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

82

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Where are the Loops?

BB1

BB2

BB3

BB4

BB5 BB6

BB7

BB10

BB8

BB9

83

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

An Algorithm to Find a Natural Loop
Input: A Control Flow Graph

A Back-Edge, B"A
Output: Result = Set of nodes in the natural loop

Stack := empty

ResultSet := {A}

Insert (B)

while NotEmpty (Stack) do

 M := Pop (Stack)

 for each predecessor of P of M do

 Insert (P)

 endfor

endwhile

procedure Insert(X)

 if X is not in ResultSet then

 Add X to ResultSet

 Push X onto Stack

 endif

84

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Inner / Outer Loops

A loop is a set of nodes.

Given two Natural Loops...

Either...

•!The loops are disjoint, or

•!One loop is contained in (i.e., nested)

within the other, or

•!Both loops have the same header.

If two loops have the same header...

They will be the same loop (same set of nodes)

85

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Loops with Multiple Back-Edges

Which path is traversed most frequently?

Undecideable...

Must treat as equally probable.

while (...) do

 ...A...

 ...B...

 if ... then

 ...C...

 else

 ...D...

 endif

endwhile

A

B

C D

86

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Loop “Preheader”

We can place loop-invariant computations in the preheader.

Header

Preheader

Header

87

CS-322 Optimization, Part 1

© Harry H. Porter, 2006

Reducible Control Flow Graphs

Definition:

In a reducible control flow graph, all loops have a single entry point.

Structured programming constructs

! The control flow graph is reducible.

! All loops are natural.

In a reducible flow graph...

We have only...

• Forward Edges

These form an acyclic graph.

All nodes can be reached via

forward edges from initial node.

•!Back Edges

The HEAD dominates the TAIL

• No “Cross Edges”

