<u>Global Data_Flow Analysis</u>

Examples:

Reaching Definitions: Which DEFINITIONs reach which USEs?

LIVE Variable Analysis: Which variables are live at a given point, P?

Global Sub-Expression Elimination:

Which expressions reach point P and do not need to be re-computed?

Copy Propagation:

Which copies reach point P? Can we do copy propagation?

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3 **The Universe** U = Universe= the set of all DEFINITIONs in the program / CFG Number them **D**₁, **D**₂, **D**₃, ... B₁ i := m-1 D j := n a := w **Example:** D₄: i := i+1 D₅: j := j-1 if... B₂ $B_3 \boxed{D_6: a := y}$ **D**₇: i := z **B**₄ if... © Harry H. Porter, 2006

CS-322 Optimization, Part 3

The Data Flow Algorithm

Approach:

Build the IN and OUT sets simultaneously, by successive approximations!

Given:

A control flow graph of basic blocks.

Assume:

GEN[B] and **KILL[B]** have already be computed for each basic block.

Output: IN[B] and OUT[B] for each basic block.

CS-322 Optimization, Part 3 IN[B] := OUT[P] P is a predecessor of B $OUT[B] := GEN[B] \cup (IN[B] - KILL[B])$ for each block B do Initialize OUT on the OUT[B] := GEN[B]assumption that **IN**[**B**] = {} for all blocks. endfor while change do or each block B do $IN[B] := \bigcup_{P \text{ is a predecessor of B}} OUT \rightarrow P_1 OUT \rightarrow P_2 OUT \rightarrow P_3$ $IN \Rightarrow P_1 OUT \rightarrow P_2 OUT \rightarrow P_3$ $IN \Rightarrow P_1 OUT \rightarrow P_2 OUT \rightarrow P_3$ for each block B do $OUT[B] := GEN[B] \cup (IN[B] - KILL[B])$ endfor endwhile © Harry H. Porter, 2006

Exai	mple	$B_1 \begin{array}{c} D_1: \\ D_2: \\ D_3: \end{array}$ $B_2 \begin{array}{c} D_4: \\ D_5: \end{array}$ $a := y$	i := m-: j := n a := w i := i+: j := j-: if				KILL[F GEN[B] KILL[F GEN[B] KILL[F GEN[B]		$ \begin{array}{c} , D_2, D_3\\ 1 & 0 & 0 & 0 \\ , D_5, D \\ 0 & 1 & 1 & 1 \\ , D_5 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} $	$ \begin{bmatrix} $
		B ₄	7: i := : if	z			KILL[P	$\mathbf{B}_4] = \{ \begin{array}{c} \mathbf{D} \\ 1 \\ 0 \end{array} \}$	$\{ \begin{array}{c} 1, \mathbf{D}_4 \\ 0 & 1 & 0 \end{array} \}$	0
	B	B ₄	P7: i := : if B ₂	2	Ι	B ₃	KILL[E	$\mathbf{B}_4] = \{ \begin{array}{c} \mathbf{D} \\ 1 \\ 0 \end{array} \\ \mathbf{B}_4 \end{bmatrix}$	0 , D ₄ 00 100	0
OUT	B 111	B ₄ B ₄	B ₂ 000	z 2 1100	I 000	3 ₃ 0010	KILL[F	$B_4] = \{ \begin{array}{c} D\\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	1, D ₄ } 00 100	0
OUT IN	B 111 000	B ₄ B ₄ 0000 0000	B ₂ 000 111	z 2 1100 0001	E 000 000	B ₃ 0010 1100	KILL[F	$\mathbf{B}_{4} = \{ \begin{array}{c} \mathbf{D} \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0$	$\{ \begin{array}{c} \mathbf{D}_{4} \\ $	0
OUT IN OUT	B 111 000 111	B ₄ B ₄ B ₁ 0000 0000 0000	B2 000 111 001	z 1100 0001 1100	I 000 000 000	B ₃ 0010 1100 1110	KILL[F	$\mathbf{B}_{4} = \{ \begin{array}{c} \mathbf{D} \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1$	$\{\mathbf{p}_{1}, \mathbf{p}_{4}\}$	0
OUT IN OUT IN	B 111 000 111 000	B ₄ B ₄ B ₁ 0000 0000 0000 0000	B2 000 111 001 111	z 1100 0001 1100 0111	F 000 000 000 001	B ₃ 0010 1100 1110 1100	KILL[F 000 000 000 001	$ \begin{bmatrix} 3_4 \\ $	1, D ₄ }	0

Exar B	$B_{1} D_{1} D_{2} D_{3}$ $B_{2} D_{4} D_{5}$ $B_{4} = y$		$ \begin{array}{c} \operatorname{GEN}[B_1] = \{ \begin{array}{c} \mathbf{D}_1, \mathbf{D}_2, \mathbf{D}_3 \} \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \mathbf{KILL}[B_1] = \{ \begin{array}{c} \mathbf{D}_4, \mathbf{D}_5, \mathbf{D}_6, \mathbf{D}_7 \} \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \end{array} \\ \hline \operatorname{GEN}[B_2] = \{ \begin{array}{c} \mathbf{D}_4, \mathbf{D}_5 \} \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{array} \\ \hline \operatorname{KILL}[B_2] = \{ \begin{array}{c} \mathbf{D}_4, \mathbf{D}_5 \} \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{array} \\ \hline \operatorname{GEN}[B_3] = \{ \begin{array}{c} \mathbf{D}_6 \} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \\ \hline \operatorname{GEN}[B_3] = \{ \begin{array}{c} \mathbf{D}_5 \} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \\ \hline \operatorname{GEN}[B_4] = \{ \begin{array}{c} \mathbf{D}_7 \} \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \operatorname{KILL}[B_4] = \{ \begin{array}{c} \mathbf{D}_1, \mathbf{D}_4 \} \\ 1 & 0 & 0 & 0 & 0 \\ \end{array} \end{array} $							
	В	1	В	2	F	B ₃]	B ₄		
OUT	111	0000	000	1100	000	0010	000	0001		
IN	000	0000	111	0001	000	1100	000	1110		
OUT	111	0000	001	1100	000	1110	000	0111		
IN	000	0000	111	0111	001	1100	001	1110		
OUT	111	0000	001	1110	000	1110	001	0111		
IN	000	0000	111	0111	001	1110	001	1110		4
© Harry H.	Porter	, 2006							- 34	

Exai	ation, F B_1 B_2 B_2 B_2 B_4		$ \begin{array}{c} \operatorname{GEN}[B_1] = \{ \begin{array}{c} D_1, D_2, D_3 \} \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \end{array} \\ \operatorname{KILL}[B_1] = \{ \begin{array}{c} D_4, D_5, D_6, D_7 \} \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \end{array} \\ \overline{\operatorname{GEN}}[B_2] = \{ \begin{array}{c} D_4, D_5 \} \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \end{array} \\ \operatorname{KILL}[B_2] = \{ \begin{array}{c} D_1, D_2, D_7 \} \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \\ \overline{\operatorname{GEN}}[B_3] = \{ \begin{array}{c} D_6 \} \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{array} \\ \operatorname{KILL}[B_3] = \{ \begin{array}{c} D_3 \} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \end{array} \\ \overline{\operatorname{GEN}}[B_4] = \{ \begin{array}{c} D_7 \} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \\ \operatorname{KILL}[B_4] = \{ \begin{array}{c} D_1, D_4 \} \end{array} $						
	E	B ₁	◆ B	2	F	B ₃]	B ₄	
OUT	111	0000	000	1100	000	0010	000	0001	
IN	000	0000	111	0001	000	1100	000	1110	
OUT	111	0000	001	1100	000	1110	000	0111	
IN	000	0000	111	0111	001	1100	001	1110	
OUT	111	0000	001	1110	000	1110	001	0111	
IN	000	0000	111	0111	001	1110	001	1110	I
OUT	111	0000	001	1110	000	1110	001	0111	_ 35
© Harry H.	Porter	:. 2006							

CS-322 Optimization, Part 3

This algorithm converges. OUT[B] never decreases... **Once in OUT[B] a definition stays there.** Eventually, no changes will be made to OUT[B]. An upper bound on the "while" loop? Number of nodes in the flow graph. Each iteration propagates reaching definitions. The "while" loop will converge quickly ... if you select a good order for the nodes in the "for" loop. This algorithm is efficient in practice.

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3 **Eliminating Common Global Subexpressions The Transformation** t := x 🕀 y := x ⊕ y t b := ta := t w := t And use it here. 66

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

o 11111 j 111 i or or j 2000

CS-322 Optimization, Part 3

Copy Propagation x := y x := y $x := b \oplus x$ $x := b \oplus x$

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Then, Use Data Flow to Compute...

C_IN [**B**]

The set of all copy statements x := y such that every path from the initial block to the beginning of B contains the copy and there are no assignments to x or y on any path from the copy statement to the beginning of block B.

[Technically, there must be no assignments on the path between the last occurrence of the copy and the beginning of block B.]

C_OUT [B]

Same, at the end of the block.

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Copy Deletion Algorithm

Input:

Control Flow Graph U-D Chain info D-U Chain info Results of Data Flow Analysis; C_IN [B], for each block

Output:

Modified Flow Graph

CS-322 Optimization, Part 3

