Global Data_Flow Analysis

Examples:

Reaching Definitions:

Which DEFINITIONs reach which USEs?

LIVE Variable Analysis:

Which variables are live at a given point, P ?
Global Sub-Expression Elimination:
Which expressions reach point P
and do not need to be re-computed?

Copy Propagation:

Which copies reach point P ?
Can we do copy propagation?
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Reaching Definitions

A "definition" of variable x

A statement that assigns to \mathbf{x} (or might assign to \mathbf{x}).
Ambiguous Definitions -- Might assign
Unambiguous Definitions -- Will definitely assign
Examples

CS-322 Optimization, Part 3
A definition D "reaches" a point P...
if there is a path from D to P along which D is not killed.
If " x " is defined at D , then the value given to " x " might be the value of " x " at point P.

When \mathbf{D} reaches \mathbf{P}, it means...
The value of " x " might reach P at runtime.

CS-322 Optimization, Part 3

A definition D "reaches" a point P...

if there is a path from D to P along which D is not killed.
If " x " is defined at D , then the value given to " x " might be the value of " x " at point P.

When D reaches P, it means...
The value of " x " might reach P at runtime.

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

A definition D "reaches" a point P...

if there is a path from D to P along which D is not killed.
If " x " is defined at D , then the value given to " x " might be the value of " x " at point P.

When \mathbf{D} reaches \mathbf{P}, it means...
The value of " x " might reach P at runtime.

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable " x "...
build a list of all the DEFINITIONs of " x " that reach this USE.

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable "x"...
build a list of all the DEFINITIONs of " x " that reach this USE.

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable " x "...
build a list of all the DEFINITIONs of " x " that reach this USE.

CS-322 Optimization, Part 3

DEFINITION-USE Chains (D-U Chains)

A variable is USED at statement S if its value may be required.
For each DEFINITION of a variable...
compute a list of all possible USEs of that variable.

If we can deduce that the definition D has NO POSSIBLE USES then D is "DEAD" (useless code) and can be eliminated !

© Harry H. Porter, 2006
15

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Representing Sets

We will work with sets.
How to represent?
Each set is represented with a Bit Vector

Example

$$
\begin{aligned}
& \mathbf{A}=\left\{\mathbf{D}_{2}, \mathbf{D}_{4}, \mathbf{D}_{7}\right\} \\
& \mathbf{A}^{\prime}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Representing Sets

We will work with sets.
How to represent?
Each set is represented with a Bit Vector

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}

Example
$\mathrm{A}=\left\{\mathrm{D}_{2}, \mathrm{D}_{4}, \mathrm{D}_{7}\right\}$

$\mathbf{A}^{\prime}=$| 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How to compute set operations?
Set Union
$\mathbf{A} \cup \mathbf{B} \Rightarrow$
Set Intersection
$\mathbf{A} \cap \mathbf{B} \Rightarrow$
Set Difference

$$
\mathbf{A}-\mathbf{B} \quad \Rightarrow
$$

Representing Sets

We will work with sets.
How to represent?
Each set is represented with a Bit Vector

> | Example |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \mathbf{A}=\left\{\mathbf{D}_{2}, \mathbf{D}_{4}, \mathbf{D}_{7}\right\} \\
& \mathbf{A}^{\prime}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

How to compute set operations?
Set Union
$\mathbf{A} \cup \mathbf{B} \Rightarrow \mathbf{A}^{\prime} \underline{\text { or }} \mathbf{B}^{\prime}$
Set Intersection
$A \cap B \Rightarrow A^{\prime}$ and B^{\prime}
Set Difference
$A-B \quad \Rightarrow A^{\prime}$ and (not B^{\prime})
© Harry H. Porter, 2006

CS-322 Optimization, Part 3
$\stackrel{\text { Approach }}{\text { Figure out what happens in each basic block... }}$.
GEN[B] =

- The set of definitions appearing in block B which reach the end of B
(without being KILLed before the end of the block)
In the text: DefKill ()
KILL[B] =
- The set of definitions KILLed by statements in block B.
- If B contains an unambiguous definition of variable " x ", then add all definitions of " x " to KILL[B].
(unless the definition D of " x " also occurs in B and there are no unambiguous definitions between D and the end of B).

Use this info to do the entire flow graph...
Using DATA FLOW EQUATIONS
© Harry H. Porter, 2006

Example of GEN [B]

Consider this Basic Block:

Consider D_{5}, a definition of " c "...
Add D_{5} to GEN [B].
Consider D_{6}, a definition of " x "...
But this is KILLed before the end of the block.
Consider D_{7}, a definition of " x "...
Add D_{7} to GEN [B].
GEN $[B]=\left\{D_{5}, D_{7}\right\}$
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Example of KILL [B]

Consider this Basic Block:

Consider D_{5}, an unambiguous defintion of " c "...
Add all other definitions of " c " to KILL [B].
(Except, do not add D_{5} itself, since this definition "makes it to the end of the block".)

Consider D_{7}, an unambiguous defintion of " x "...
Add all other definitions of " x " to KILL [B]
(Except, do not add D_{7} itself, since this definition "makes it to the end of the block".)

Overview of the Computation

For every point in the program...
we want to know which definitions can reach that point.
We will compute the set of definitions that can reach the beginning of a basic block:

In the text: Reaches ()
IN [B]
Then, using GEN [B] and KILL [B], we will compute the set of definitions reaching the end of the basic block:

OUT [B]

Then we will use OUT [B] to compute the set of definitions that can reach other basic blocks.
... And we will repeat, until we learn which definitions could possibly reach which blocks.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

The Data Flow Algorithm

Approach:

Build the IN and OUT sets simultaneously, by successive approximations!

Given:

A control flow graph of basic blocks.

Assume:

GEN[B] and KILL[B] have already be computed for each basic block.

Output:

IN[B] and OUT[B] for each basic block.

Start by setting IN[B] to \{\} for each basic block.
Then compute OUT[B] from the previous estimate of IN[B].
Finally, propagate OUT[B] to the IN[B']
for all successor blocks to B.
Repeat, until no more changes.
As the definitions "flow through the graph", the IN and OUT sets grow and grow.

The approximation gets closer and closer.

Conservative: May overestimate how far definitions will reach.
(i.e., the results may be larger than "truly" necessary.)
© Harry H. Porter, 2006

CS-322 Optimization, Part 3
A Recurrence (a set of simultaneous equations)

CS-322 Optimization, Part

CS-322 Optimization, Part 3

$$
\begin{aligned}
& \text { IN [B] }:=\bigcup_{P} \text { OUT [P] a predecessor of } B \\
& \text { OUT [B] }:=\text { GEN[B] } \cup(\operatorname{IN}[B]-\operatorname{KILL}[B])
\end{aligned}
$$

for each block B do Initialize OUT on the
OUT[B] := GEN[B]
endfor
assumption that
change := true
while change do
change := false
for each block B do
IN[B] $:=\bigcup_{P}$ is a predecessor of B
OLD_OUT := OUT[B]
OUT[B] := GEN[B] U (IN[B] - KILL[B])
if OUT[B] \neq OLD_OUT then
change := true
endif
endfor
endwhile
© Harry H. Porter, 2006
28

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

This algorithm converges.
OUT[B] never decreases...
Once in OUT[B] a definition stays there.
Eventually, no changes will be made to OUT[B].
An upper bound on the "while" loop?
Number of nodes in the flow graph.
Each iteration propagates reaching definitions.
The "while" loop will converge quickly
...if you select a good order for the nodes in the "for" loop.

This algorithm is efficient in practice.

CS-322 Optimization, Part 3

LIVE Variable Analysis

A similar Data Flow Algorithm
Goal: Compute IN[] and OUT[]
However, it will work backwards!
(i.e., data will flow "upwards", against the arrow directions)

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

LIVE Variable Analysis

Then:

Compute the OUT set from all the IN sets of the block's successors!

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

LIVE Variable Analysis

Then:

Compute the OUT set from all the IN sets of the block's successors!

Info flows upwards!
"against" the flow graph edges

Definitions

Variable " x " is LIVE at some point P
if its value might be used at some point later, on a path starting at \mathbf{P}.

DEF [B] = the set of variables definitely assigned values in block B
(prior to any use in B)
USE [B] = the set of variables whose values may be used in B
(prior to any definitions of the variable)
IN $[B]=$ the set of variables LIVE at the beginning of B OUT $[B]=$ the set of variables LIVE at the end of B
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Definitions

Variable " x " is LIVE at some point P
if its value might be used at some point later, on a path starting at \mathbf{P}. Text: VarKill()
$\mathrm{DEF}[\mathrm{B}]=$ the set of variables definitely assigned values in block B (prior to any use in B) Text: UEVar ()
USE $[B]=$ the set of variables whose values may be used in B
(prior to any definitions of the variable)
IN $[B]=$ the set of variables LIVE at the beginning of B
OUT [B]= the set of variables LIVE at the end of B

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Recurrence Equations to be Solved:

```
IN[B] := USE[B] U ( OUT[B] - DEF[B] )
OUT[B] := \bigcup IN[S]
    S is a successor of B
```


CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Example

Which expressions are available?

$$
\begin{aligned}
\mathrm{x} & :=\mathrm{y}+\mathrm{z} \\
\mathrm{y} & :=\mathrm{x}-\mathrm{w} \\
\mathrm{a} & :=\mathrm{w}+\mathrm{z} \\
\mathrm{z} & :=\mathrm{x}-\mathrm{w} \\
\mathrm{y} & :=\mathrm{y}+\mathrm{z}
\end{aligned}
$$

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Example

Which expressions are available?

$$
\begin{aligned}
& U=\{y+z, x-w, w+z\} \\
& \mathrm{x}:=\mathrm{y}+\mathrm{z} \longleftarrow \text { Avail = \{\} } \\
& \text { y := x - w } \\
& \text { a := w + z } \\
& \text { z := x - w } \\
& \mathrm{y}:=\mathrm{y}+\mathrm{z}
\end{aligned}
$$

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Example

Which expressions are available?

$$
\begin{aligned}
& U=\{y+z, x-w, w+z\} \\
& \begin{array}{l}
\mathrm{x}:=\mathrm{y}+\mathrm{z} \longleftarrow \text { Avail }=\{ \} \\
\mathrm{y}:=\mathrm{x}-\mathrm{w} \longleftarrow \text { Avail }=\left\{\begin{array}{l}
\mathrm{w}+\mathrm{z}\} \\
\longleftarrow
\end{array}\right. \\
\text { Avail }=\{x-\mathrm{w}\}
\end{array} \\
& \text { a := w + z } \\
& \text { z := x - w } \\
& \mathrm{y}:=\mathrm{y}+\mathrm{z}
\end{aligned}
$$

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Example

Which expressions are available?

$$
\begin{aligned}
& U=\{y+z, x-w, w+z\} \\
& \begin{array}{l}
\mathrm{x}:=\mathrm{y}+\mathrm{z} \longleftarrow \text { Avail }=\{ \} \\
\longleftarrow \text { Avail }=\{\mathrm{y}+\mathrm{z}\}
\end{array} \\
& \mathrm{y}:=\mathrm{x}-\mathrm{w} \\
& \text { a := w + z } \\
& \longleftarrow \text { Avail = \{ x-w, w+z \} } \\
& \text { z := x - w } \\
& \mathrm{y}:=\mathrm{y}+\mathrm{z} \longleftarrow \text { Avail = \{x-w \}}
\end{aligned}
$$

CS-322 Optimization, Part 3

Example

Which expressions are available?

$$
\begin{aligned}
& \mathbb{U}=\{y+z, x-w, w+z\} \\
& \longleftarrow \text { Avail = \{\} } \\
& \mathbf{x}:=\mathrm{y}+\mathrm{z} \longleftarrow \text { Avail }=\{\mathrm{y}+\mathrm{z}\} \\
& \mathrm{y}:=\mathrm{x}-\mathrm{w} \\
& \longleftarrow \text { Avail = \{ x-w \} } \\
& \text { a := w + z } \\
& \longleftarrow \text { Avail = \{ x-w, w+z \} } \\
& \text { z := x - w } \\
& \longleftarrow \text { Avail = \{ x-w \} } \\
& \text { y := y + z } \\
& \longleftarrow \text { Avail = \{ x-w \} }
\end{aligned}
$$

© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Computing Available Expressions

The Universe
$=$ The set of all expressions appearing in the flow graph
Example: $\mathbb{U}=\left\{\mathbf{a}-\mathrm{b}, \mathrm{w}+\mathrm{x}, \mathrm{y}^{*} 4, \mathrm{x}+1, \mathrm{~b}-\mathrm{c}\right\}$
E_GEN [B] =
The set of expressions computed in the block
$x \oplus y$ is included if some statement in B evaluates it and the block does not assign to x or y after that.

E_KILL [B] =

The set of expressions that are invalidated because
the block contains an assignment to a variable they use.
E_IN [B] =
The set of expressions available at the beginning of block B.
E_OUT [B] =
The set of expressions available at the end of block B.

CS-322 Optimization, Part 3

Computing Available Expressions

The Universe

$=$ The set of all expressions appearing in the flow graph
Example: $\mathbb{U}=\{\mathbf{a}-\mathrm{b}, \mathrm{w}+\mathrm{x}, \mathrm{y} * 4, \mathrm{x}+1, \mathrm{~b}-\mathrm{c}\}$

The set of expressions computed in the block $x \oplus y$ is included if some statement in B evaluates it and the block does not assign to x or y after that.
E_KILL [B] = \qquad Text: ExprKill ()
The set of expressions that are invalidated because the block contains an assignment to a variable they use.
E_IN [B] = Text: Avail ()

The set of expressions available at the beginning of block B.
E_OUT [B] =
The set of expressions available at the end of block B.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Recurrence Equations to be Solved:

```
E_OUT[B] := E_GEN[B] U ( E_IN[B] - E_KILL[B] )
    E_IN[B] := E_OUT[P] For B}\not=\boldsymbol{B1
    P}\mathrm{ is a predecessor of B}}\mathrm{ (the initial block)
    E_IN[B}\mp@subsup{B}{1}{}]={}\quadNothing available before the initial bloc
```

CS-322 Optimization, Part 3

Forward Propagation
 (like reaching definitions, but \cap instead of \cup)

Reaching Definitions
Start with estimates that are too small, and enlarge them.

Available Expressions
Start with estimates that are too large, and shrink them.

$$
E_{-} \text {IN }[B]=\text { E_OUT[P] }
$$

p=predecessor
© Harry H. Porter, 2006

CS-322 Optimization, Part 3
Algorithm to Compute Available Expressions
Input:
E_GEN and E_KILL for each block Output:

E_IN[B] = Expressions available at begining of B

Algorithm:

```
E_IN[ \(\left.\mathrm{B}_{1}\right]:=\) \{\}
E_OUT [ \(\mathrm{B}_{1}\) ] := E_GEN[ \(\mathrm{B}_{1}\) ]
for each block \(B\) except \(B_{1}\) do
    E_OUT[B] := 『 - E_KILL[B]
endfor
while changes occur for any E_OUT set do
    for each block \(B\) except \(B_{1}\) do
        E_IN[B] := \(\bigcap_{\text {is }} \underset{\text { predecesso }}{\text { E OUT [P] }}\)
        E_OUT[B] := E_GEN[B] U ( E_IN[B] - E_KILL[B] )
        endfor
endwhile
```


Conservative, Safe Estimates

- Begin by assuming all expressions available anywhere.
- Work toward a smaller solution.
- If there is a possible definition of x or y then consider $\mathrm{x} \oplus \mathrm{y}$ as not available.
- We will tend to err by eliminating too many expressions from E_IN and E_OUT.
- Our computed result will be a subset of the expressions that are truly available at point P.
- If our computation determines that $x \oplus y$ is available at point P, then it surely is.

We can eliminate its recomputation!
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Algorithm

Input: Flow Graph, Available Expression Information
Output: Revised Flow Graph
Step 1:
Find a statement such as
$\mathrm{w}:=\mathrm{x} \oplus \mathrm{y}$
such that expression $\mathrm{x} \oplus \mathrm{y}$ is available directly before it.
[Or: $\mathrm{x} \oplus \mathrm{y}$ is available in E_{-}IN[B] for the block and there are no assignments to x or y before this statement.]

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Algorithm

Step 3:

Create a new temporary (say " t ")

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Algorithm

Step 3:
Create a new temporary (say " t ")
Step 4:
Replace all statements found in step 2.
$\mathrm{a}:=\mathrm{x} \oplus \mathrm{y}$

$\mathrm{a}:=\mathrm{t}$
$\mathrm{b}:=\mathbf{x} \oplus \mathbf{y}$

b:= t
$\mathrm{c}:=\mathrm{x} \oplus \mathrm{y}$

$\mathrm{t}:=\mathrm{x} \oplus \mathrm{y}$
$\mathrm{c}:=\mathrm{t}$

Step 5:
Replace
$\mathrm{w}:=\mathbf{x} \oplus \mathbf{y}$

w := t

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Copy Propagation

A copy statement
$x:=Y$

Where do the copies come from:

- IR code generation
- Common Sub-Expression Elimination
- Other Optimizations

CS-322 Optimization, Part 3

We can use y instead of x if...

- The only definition of x reaching $a:=b \oplus x$ is $x:=y$, and
- There is no assignment to y on any path
from $x:=y$ to a $:=b \oplus \mathbf{x}$.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

Copy Propagation

There must be no assignment to y on any path from $\mathrm{x}:=\mathrm{y}$ to $\mathrm{a}:=\mathrm{b} \oplus \mathrm{x}$

CS-322 Optimization, Part 3

Copy Propagation

We can not propagate the copy in this example:

CS-322 Optimization, Part 3
We can use y instead of x if...

- The only definition of x reaching $a:=b \oplus x$ is $x:=y$, and
- There is no assignment to y on any path from $\mathrm{x}:=\mathrm{y}$ to $\mathrm{a}:=\mathrm{b} \oplus \mathrm{x}$.

We can use y instead of x if...

- The only definition of x reaching $a:=b \oplus x$ is $x:=y$, and

Compute the U-D Chains and use that info to determine this!

- There is no assignment to y on any path from $x:=y$ to $a:=b \oplus x$.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3
We can use y instead of x if...

- The only definition of x reaching $a:=b \oplus x$ is $x:=y$, and

Compute the U-D Chains and use that info to determine this!

- There is no assignment to y on any path from $x:=y$ to $a:=b \oplus x$.

A new Data Flow problem!

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Look at the entire Control Flow Graph
Identify all copy statements.
Two copy statements are different, even if they have the same variables!

Example:

Universe = ???

CS-322 Optimization, Part 3

Look at the entire Control Flow Graph
Identify all copy statements.
Two copy statements are different, even if they have the same variables!

Example:

Universe $=\left\{\quad S_{1}: x:=y\right.$

$$
\begin{aligned}
& \mathrm{S}_{4}: \mathrm{a}:=\mathrm{d} \\
& \mathrm{~S}_{6}: \mathrm{x}:=\mathrm{y} \\
& \left.\mathrm{~S}_{8}: \mathrm{z}:=\mathrm{w}\right\}
\end{aligned}
$$

$$
\begin{array}{|lll|}
\hline S_{1}: & x:=y \\
S_{2}: & a & :=b * 3 \\
S_{3}: & c & :=x+1 \\
\hline
\end{array}
$$

$$
S_{4}: a:=d
$$

$$
S_{5}: b:=x+b
$$

$$
S_{6}: x:=y
$$

$$
\begin{array}{ll}
\hline S_{7}: & x:=a+c \\
S_{8}: & z:=w \\
S_{9}: & c:=a-1 \\
\hline
\end{array}
$$

© Harry H. Porter, 2006

CS-322 Optimization, Part 3
A block "kills" a copy

$$
x:=y
$$

if it contains an assignment to x or $y . .$.

CS-322 Optimization, Part 3
A block "kills" a copy

$$
x:=y
$$

if it contains an assignment to x or $y . .$.

... unless the block contains the copy itself and does not assign to x or y after the copy.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

For each basic block, we first compute...

C_GEN [B]

The set of all copy statements in basic block B, not killed before they reach the end of the block.

C_KILL [B]

The set of all copies in \mathbb{U} that are killed by block B.

Then, Use Data Flow to Compute...

C_IN [B]

The set of all copy statements $x:=y$ such that every path from the initial block to the beginning of B contains the copy and there are no assignments to x or y on any path from the copy statement to the beginning of block B.
[Technically, there must be no assignments on the path between the last occurrence of the copy and the beginning of block B.]

C_OUT [B]

Same, at the end of the block.
© Harry H. Porter, 2006

CS-322 Optimization, Part 3

The Data Flow Equations

```
C_OUT[B] := C_GEN[B] U ( C_IN[B] - C_KILL[B] )
C_IN[B] := C_OUT[P] For B}\not=B
    P}\mathrm{ is a predecessor of B (the initial block)
C_IN [B1] = {} Nothing available before the initial block
```

CS-322 Optimization, Part 3

CS-322 Optimization, Part 3

Copy Deletion Algorithm

Input:

Control Flow Graph
U-D Chain info
D-U Chain info
Results of Data Flow Analysis; C_IN [B], for each block

Output:
 Modified Flow Graph

CS-322 Optimization, Part 3

