
1

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Loop Unrolling
Source:
for i := 1 to 100 by 1

 A[i] := A[i] + B[i];

endfor

Transformed Code:
for i := 1 to 100 by 4

 A[i] := A[i] + B[i];

 A[i+1] := A[i+1] + B[i+1];

 A[i+2] := A[i+2] + B[i+2];

 A[i+3] := A[i+3] + B[i+3];

endfor

2

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Loop Unrolling
Source:
for i := 1 to 100 by 1

 A[i] := A[i] + B[i];

endfor

Transformed Code:
for i := 1 to 100 by 4

 A[i] := A[i] + B[i];

 A[i+1] := A[i+1] + B[i+1];

 A[i+2] := A[i+2] + B[i+2];

 A[i+3] := A[i+3] + B[i+3];

endfor
Benefits:

• The overhead of testing and
 branching is reduced.
•!This optimization may
 “enable” other optimizations.

3

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Loop Unrolling
Source:
for i := 1 to 100 by 1

 A[i] := A[i] + B[i];

endfor

Transformed Code:
for i := 1 to 100 by 4

 A[i] := A[i] + B[i];

 A[i+1] := A[i+1] + B[i+1];

 A[i+2] := A[i+2] + B[i+2];

 A[i+3] := A[i+3] + B[i+3];

endfor
Benefits:

• The overhead of testing and
 branching is reduced.
•!This optimization may
 “enable” other optimizations.

Larger Basic Blocks are Good!
 More opportunities for
 optimizations such as
 scheduling

4

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Loop Unrolling
Source:
for i := 1 to MAX by 1

 A[i] := A[i] + B[i];

endfor

Transformed Code:
i := 1;

 while (i+3 <= MAX) do

 A[i] := A[i] + B[i];

 A[i+1] := A[i+1] + B[i+1];

 A[i+2] := A[i+2] + B[i+2];

 A[i+3] := A[i+3] + B[i+3];

 i := i + 4;

endwhile

while (i <= MAX) do

 A[i] := A[i] + B[i];

 i := i + 1;

endwhile

Do 0 to 3 more iterations,
 as necessary, to finish

Number of iterations is
not known at compile-time.

5

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Loop-Invariant Computations

An assignment

x := y ! z

is “Loop-Invariant” if..

•!It is in a loop, and

•!All definitions of y and z that reach the statement

are outside the loop.

We may be able to move the computation

into the “preheader”.

Step 1: Detect the Loop-Invariant Computations.

Step 2: See if it is okay to move the statement

into the pre-header.

6

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Example

y := ...

z := ...

 ...

x := y ! z

 ...

•
•
•

y := ...

z := ...

7

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Example

y := ...

z := ...

 ...

x := y ! z

 ...

•
•
•

 ...

 ...

•
•
•

x := y ! z Preheader

y := ...

z := ...

y := ...

z := ...

y := ...

z := ...

8

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Detecting Loop-Invariant Computations

Input:

Loop L (= a set of basic blocks)

U-D Chain information

Output:

The set of loop-invariant statements.

Idea:

•!Mark some of the statements as “loop-invariant”.

• This may allow us to mark even more statements

as loop-invariant.

•!Remember the order in which theses statements

are marked.

9

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Detecting Loop-Invariant Computations

repeat until no new statements are marked...

 Look at each statement in the loop.

 If all its operands are unchanging then

 mark the statement as “loop-invariant”.

 An operand is “unchanging” if...

• It is a constant

• It has all reaching definitions

outside of the loop

• It has exactly one reaching definition

and that definition has already

been marked “loop-invariant”.

end

Remember the order in which statements are

marked “loop-invariant.”

10

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Moving Loop-Invariant Computations
Consider moving statement

S: x := y ! z

into the loop’s preheader.

The statement must satisfy three conditions.

If it satisfies all conditions, then it can be moved.

11

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 1
The block containing S must dominate

all exits from the loop.

x := 1

...x...

x := 2

A Exit
Block

This is
loop-invariant

12

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 1
The block containing S must dominate

all exits from the loop.

x := 1

x := 2

...x...

x := 1

...x...

x := 2

A Exit
Block

This is
loop-invariant

13

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 2
There must be no other assignments to “x” in the loop.

 := ...x...

x := 1

•••

x := a+b

This is
loop-invariant

14

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 2
There must be no other assignments to “x” in the loop.

 := ...x...

x := 1

•••

x := a+b

 := ...x...

x := 1

•••

x := a+b

This is
loop-invariant

15

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 3
All uses of “x” in the loop must be reached by ONLY

the loop-invariant assignment.

 := ...x...

x := 0

x := 1

This is
loop-invariant

16

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

Condition 3
All uses of “x” in the loop must be reached by ONLY

the loop-invariant assignment.

 := ...x...

x := 1

x := 0

 := ...x...

x := 0

x := 1

This is
loop-invariant

17

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

x := w + 1

y := x * 5

w := a + b

18

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

x := w + 1

y := x * 5

w := a + b

Marked Loop-Invariant

19

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

x := w + 1

y := x * 5

w := a + b

Now this becomes loop-invariant

20

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

w := a + b Create a preheader

x := w + 1

y := x * 5

21

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

x := w + 1

y := x * 5

w := a + b
Move this into preheader first

22

CS-322 Optimization, Part 4

© Harry H. Porter, 2006

If all three conditions are satisfied,

move the statements into the preheader

in the order they were marked Loop-Invariant.

x := w + 1

y := x * 5

w := a + b

Move this into preheader second

