Syntax Analysis

Outline

Context-Free Grammars (CFGs) Parsing
Top-Down
Recursive Descent
Table-Driven
Bottom-Up
LR Parsing Algorithm
How to Build LR Tables
Parser Generators
Grammar Issues for Programming Languages

- LL Grammars - A subclass of all CFGs
- Recursive-Descent Parsers - Programmed "by hand"
- Non-Recursive Predictive Parsers - Table Driven
- Simple, Easy to Build, Better Error Handling

Bottom-Up Parsing

- LR Grammars - A larger subclass of CFGs
- Complex Parsing Algorithms - Table Driven
- Table Construction Techniques
- Parser Generators use this technique
- Faster Parsing, Larger Set of Grammars
- Complex
- Error Reporting is Tricky

Output of Parser?

Succeed is string is recognized
... and fail if syntax errors
Syntax Errors?
Good, descriptive, helpful message!
Recover and continue parsing!
Build a "Parse Tree" (also called "derivation tree")
Build Abstract Syntax Tree (AST)
In memory (with objects, pointers) Output to a file

Execute Semantic Actions
Build AST
Type Checking
Generate Code
Don't build a tree at all!

Errors in Programs

Lexical
if $x<1$ thenn $y=5$:
"Typos"

Syntactic
if $((x<1) \&(y>5))) \ldots$
\{ ... \{ ... _ ... \}

Semantic

if ($x+5$) then ...
Type Errors
Undefined IDs, etc.

Logical Errors
if (i<9) then ...
Should be <= not <
Bugs
Compiler cannot detect Logical Errors

Compiler

Always halts
Any checks guaranteed to terminate
"Decidable"

Other Program Checking Techniques

Debugging
Testing
Correctness Proofs
"Partially Decidable"
Okay? \Rightarrow The test terminates.
Not Okay? \Rightarrow The test may not terminate!
You may need to run some programs to see if they are okay.

Requirements

Detect All Errors (Except Logical!)
Messages should be helpful.
Difficult to produce clear messages!

```
Example:
            Syntax Error
Example:
                    Line 23: Unmatched Paren
                    if ((x == 1) then
```

Compiler Should Recover
Keep going to find more errors
Example:

$$
\mathbf{x}:=(a+5)) *(b+7))
$$

We're in the middle of a statement
This error missed
Skip tokens until we see a ";"
Error detected here
Resume Parsing
Misses a second error... Oh, well...
Checks most of the source

Difficult to generate clear and accurate error messages.

© Harry H. Porter, 2005

Syntax Analysis - Part 1

For Mature Languages

Catalog common errors
Statistical studies
Tailor compiler to handle common errors well
Statement terminators versus separators
Terminators: C, Java, PCAT \{A;B;C;\}
Separators: Pascal, Smalltalk, Haskell

Pascal Examples

begin
var t: Integer;
$\mathrm{t}:=\mathbf{x}$;

end
if (\ldots) then \quad Tend to insert a; here
else
$\mathrm{y}:=2 ;$
z := 3;
function foo (x : Integer; y : Integer)...

Error-Correcting Compilers

- Issue an error message
- Fix the problem
- Produce an executable

Example

$$
\begin{aligned}
& \text { Error on line 23: "myVarr" undefined. } \\
& \text { "myVar" was used. }
\end{aligned}
$$

Is this a good idea???
Compiler guesses the programmer's intent
A shifting notion of what constitutes a correct / legal / valid program
May encourage programmers to get sloppy
Declarations provide redundancy
\Rightarrow Increased reliability

Syntax Analysis - Part 1

Error Avalanche

One error generates a cascade of messages

```
Example
    x := 5 while ( a == b ) do
        Expecting ;
            ^
                Expecting ;
                        ^
                        Expecting ;
```

The real messages may be buried under the avalanche.
Missing \#include or import will also cause an avalanche.

Approaches:

Only print 1 message per token [or per line of source]
Only print a particular message once

```
Error: Variable "myVarr" is undeclared
    All future notices for this ID have been suppressed
```

Abort the compiler after 50 errors.

Error Recovery Approaches: Panic Mode

Discard tokens until we see a "synchronizing" token.

Example

Skip to next occurrence of \} end ;
Resume by parsing the next statement

- Simple to implement
- Commonly used
- The key..

Good set of synchronizing tokens
Knowing what to do then

- May skip over large sections of source

Error Recovery Approaches: Phrase-Level Recovery

Compiler corrects the program by deleting or inserting tokens ...so it can proceed to parse from where it was.

Example

- The key...

Don't get into an infinite loop
...constantly inserting tokens
...and never scanning the actual source

Error Recovery Approaches: Error Productions

Augment the CFG with "Error Productions"
Now the CFG accepts anything!
If "error productions" are used...
Their actions:

$$
\text { \{ print ("Error...") \} }
$$

Used with...

- LR (Bottom-up) parsing
- Parser Generators

Error Recovery Approaches: Global Correction

Theoretical Approach
Find the minimum change to the source to yield a valid program
(Insert tokens, delete tokens, swap adjacent tokens)
Impractical algorithms - too time consuming

Syntax Analysis - Part 1

CFG: Context Free Grammars

Example Rule:

Stmt \rightarrow if Expr then Stmt else Stmt
Terminals
Keywords
else "else"
Token Classes
ID INTEGER REAL
Punctuation
; ";"

Non-terminals
Any symbol appearing on the lefthand side of any rule

Start Symbol

Usually the non-terminal on the lefthand side of the first rule
Rules (or "Productions")
BNF: Backus-Naur Form / Backus-Normal Form
Stmt : := if Expr then Stmt else Stmt

Rule Alternatives

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \\
& \mathrm{E} \rightarrow(\mathrm{E}) \\
& \mathrm{E} \rightarrow-\mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{ID} \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \\
& \rightarrow \text { (E) } \\
& \rightarrow-\mathrm{E} \\
& \rightarrow \text { ID } \\
& \text { All Notations are Equivalent } \\
& E \rightarrow E+E \\
& \text { I (E) } \\
& \text { I-E } \\
& \text { I ID } \\
& E \rightarrow E+E \quad I \quad(E) \quad I-E \quad I \quad I D
\end{aligned}
$$

Notational Conventions

Terminals

a b c...
Nonterminals
A B C...
S
Expr
Grammar Symbols (Terminals or Nonterminals)
X Y Z U V W ...
Strings of Symbols A sequence of zero
$\alpha \beta \gamma \ldots$
Or more terminals And nonterminals
Strings of Terminals
x y z u v w...
Examples Including ε
$\mathrm{A} \rightarrow \alpha \mathrm{B}$
A rule whose righthand side ends with a nonterminal
$\mathrm{A} \rightarrow \mathrm{x} \alpha$
A rule whose righthand side begins with a string of terminals (call it " x ")

Derivations

$$
\begin{aligned}
\text { 1. } & & \rightarrow E+E \\
\text { 2. } & & \rightarrow E * E \\
\text { 3. } & & \rightarrow(E) \\
\text { 4. } & & \rightarrow-E \\
\text { 5. } & & \rightarrow \text { ID }
\end{aligned}
$$

A"Derivation" of "(id*id)"

A sequence of terminals and nonterminals in a derivation (id*E)

Derives in one step \Rightarrow

If $\mathrm{A} \rightarrow \beta$ is a rule, then we can write

Any sentential form containing a nonterminal (call it A)
... such that A matches the nonterminal in some rule.
Derives in zero-or-more steps \Rightarrow *

$$
\mathrm{E} \Rightarrow * \quad\left(\underline{\text { id }}{ }^{*} \underline{i d}\right)
$$

$$
\text { If } \alpha \Rightarrow^{*} \beta \text { and } \beta \Rightarrow \gamma \text {, then } \alpha \Rightarrow^{*} \gamma
$$

Derives in one-or-more steps $\Longrightarrow+$

Given
G A grammar
S The Start Symbol

Define

$\mathrm{L}(\mathrm{G})$ The language generated

$$
L(G)=\{w \mid S \Rightarrow+w\}
$$

"Equivalence" of CFG's

If two CFG's generate the same language, we say they are "equivalent."

$$
\mathrm{G}_{1} \approx \mathrm{G}_{2} \text { whenever } \mathrm{L}\left(\mathrm{G}_{1}\right)=\mathrm{L}\left(\mathrm{G}_{2}\right)
$$

In making a derivation...
Choose which nonterminal to expand
Choose which rule to apply

Leftmost Derivations

In a derivation... always expand the leftmost nonterminal.

$$
\begin{array}{ll}
& E \\
\Rightarrow & E+E \\
\Rightarrow & (E)+E \\
\Rightarrow & (E * E)+E \\
\Rightarrow & (\underline{i d} * E)+E \\
\Rightarrow & (\underline{i d} * i d)+E \\
\Rightarrow & (\underline{i d} * \underline{i d})+i d
\end{array}
$$

1.	E	$\rightarrow \mathrm{E}+\mathrm{E}$
2.		$\rightarrow \mathrm{E} * \mathrm{E}$
3.		$\rightarrow(\mathrm{E})$
4.		$\rightarrow-\mathrm{E}$
5.		$\rightarrow \mathrm{ID}$

Let $\Rightarrow \mathbf{L M}_{\mathbf{M}}$ denote a step in a leftmost derivation $\left(\Rightarrow_{\mathbf{L M}}{ }^{*}\right.$ means zero-or-more steps $)$
At each step in a leftmost derivation, we have

$$
\mathrm{wA} \gamma \Rightarrow_{\mathbf{L M}} \mathrm{w} \beta \gamma \quad \text { where } \mathrm{A} \rightarrow \beta \text { is a rule }
$$

(Recall that w is a string of terminals.)

Each sentential form in a leftmost derivation is called a "left-sentential form."

If $S \Rightarrow \mathbf{L M}^{*} \alpha$ then we say α is a "left-sentential form."

Rightmost Derivations

In a derivation... always expand the rightmost nonterminal.

$$
\begin{array}{ll}
& E \\
\Rightarrow & E+E \\
\Rightarrow & E+i d \\
\Rightarrow & (E)+i d \\
\Rightarrow & (E * E)+i d \\
\Rightarrow & (E * i d)+i d \\
\Rightarrow & (\underline{i d} * i d)+i d
\end{array}
$$

$$
\begin{array}{lll}
\text { 1. } & & \rightarrow E+E \\
2 . & & \rightarrow E * E \\
\text { 3. } & & \rightarrow(E) \\
\text { 4. } & & \rightarrow-E \\
\text { 5. } & & \rightarrow \text { ID }
\end{array}
$$

Let $\Rightarrow_{\mathbf{R M}}$ denote a step in a rightmost derivation $\left(\Longrightarrow_{\mathbf{R M}} *\right.$ means zero-or-more steps $)$
At each step in a rightmost derivation, we have

$$
\alpha A \mathrm{~W} \Longrightarrow_{\mathbf{R M}} \alpha \beta \mathrm{W} \quad \text { where } \mathrm{A} \rightarrow \beta \text { is a rule }
$$

(Recall that w is a string of terminals.)
Each sentential form in a rightmost derivation is called a "right-sentential form."

If $\mathrm{S} \Rightarrow_{\mathbf{R} \mathbf{M}^{*}}{ }^{*} \alpha$ then we say α is a "right-sentential form."

Syntax Analysis - Part 1

Bottom-Up Parsing

Bottom-up parsers discover rightmost derivations!
Parser moves from input string back to S .
Follow $\mathrm{S} \Rightarrow_{\mathbf{R M}}{ }^{*} \mathrm{~W}$ in reverse.
At each step in a rightmost derivation, we have

String of terminals (i.e., the rest of the input, which we have not yet seen)

Parse Trees

Two choices at each step in a derivation...

- Which non-terminal to expand

The parse tree remembers only this

- Which rule to use in replacing it

> Leftmost Derivation: $\Rightarrow E+E$ \Rightarrow $\Rightarrow(E)+E$ $\Rightarrow(E * E)+E$ $\Rightarrow(\underline{i d} * E)+E$ \Rightarrow $\Rightarrow(\underline{i d} * i d)+E$ \Rightarrow $(\underline{i d} *)+\underline{i d}$

1.	E	$\rightarrow \mathrm{E}+\mathrm{E}$
2.	$\rightarrow \mathrm{E} * \mathrm{E}$	
3.		$\rightarrow(\mathrm{E})$
4.	$\rightarrow-\mathrm{E}$	
5.		$\rightarrow \mathrm{ID}$

© Harry H. Porter, 2005

Syntax Analysis - Part 1

Parse Trees

Two choices at each step in a derivation...

- Which non-terminal to expand

The parse tree remembers only this

- Which rule to use in replacing it

$$
\begin{aligned}
\mathrm{E} & \rightarrow \mathrm{E}+\mathrm{E} \\
& \rightarrow \mathrm{E} * \mathrm{E} \\
& \rightarrow(\mathrm{E}) \\
& \rightarrow-\mathrm{E} \\
& \rightarrow I D
\end{aligned}
$$

Parse Trees

Two choices at each step in a derivation...

- Which non-terminal to expand

The parse tree remembers only this

- Which rule to use in replacing it

1.	E	$\rightarrow \mathrm{E}+\mathrm{E}$
2.	$\rightarrow \mathrm{E} * \mathrm{E}$	
3.		$\rightarrow(\mathrm{E})$
4.	$\rightarrow-\mathrm{E}$	
5.		$\rightarrow \mathrm{ID}$

$$
\begin{aligned}
& \underline{\text { Rightmost Derivation: }} \\
& \\
& \Rightarrow E \\
& \Rightarrow E+E \\
& \Rightarrow \\
& \Rightarrow(E+i d \\
& \Rightarrow \\
& \Rightarrow(E * E)+i d \\
& \Rightarrow \\
& \Rightarrow \\
& \left.\Rightarrow\left(E^{*}\right)+i d\right)+i d \\
&
\end{aligned}
$$

© Harry H. Porter, 2005

Syntax Analysis - Part 1

Given a leftmost derivation, we can build a parse tree.
Given a rightmost derivation, we can build a parse tree.

Lefttmost Derivation of

(id*id) +id

Same Parse Tree
Rightmost Derivation of
(id*id) + id

Every parse tree corresponds to...

- A single, unique leftmost derivation
- A single, unique rightmost derivation

Ambiguity:

However, one input string may have several parse trees!!!
Therefore:

- Several leftmost derivations
- Several rightmost derivations

Ambuiguous Grammars

Leftmost Derivation \#1

$$
\begin{array}{ll}
& E \\
\Rightarrow & E+E \\
\Rightarrow & \underline{i d}+E \\
\Rightarrow & \underline{i d}+E * E \\
\Rightarrow & \underline{i d}+\underline{i d} * E \\
\Rightarrow & \underline{i d}+\underline{i d} * i d
\end{array}
$$

Leftmost Derivation \#2

$$
\begin{array}{ll}
& E \\
\Rightarrow & E \star E \\
\Rightarrow & E+E \star E \\
\Rightarrow & \underline{i d}+E * E \\
\Rightarrow & \underline{i d}+i d * E \\
\Rightarrow & \underline{i d}+i d * * i d
\end{array}
$$

Ambiguous Grammar

More than one Parse Tree for some sentence.
The grammar for a programming language may be ambiguous
Need to modify it for parsing.

Also: Grammar may be left recursive.
Need to modify it for parsing.

Translating a Regular Expression into a CFG

First build the NFA.

For every state in the NFA...
Make a nonterminal in the grammar

For every edge labeled c from A to B...
Add the rule

$$
\mathrm{A} \rightarrow \mathrm{cB}
$$

For every edge labeled ε from A to B...
Add the rule

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

For every final state B...
Add the rule

$$
\mathrm{B} \rightarrow \varepsilon
$$

Syntax Analysis - Part 1

Recursive Transition Networks

Regular Expressions \Leftrightarrow NFA \Leftrightarrow DFA
Context-Free Grammar \Leftrightarrow Recursive Transition Networks
Exactly as expressive a CFGs... But clearer for humans!

The Dangling "Else" Problem

This grammar is ambiguous!

$$
\begin{aligned}
\text { Stmt } & \rightarrow \text { if Exp then Stmt } \\
& \rightarrow \text { if Exp then Stmt else Stmt } \\
& \rightarrow \text {...Other Stmt Forms... }
\end{aligned}
$$

Example String: if E_{1} then if E_{2} then S_{1} else S_{2}
Interpretation \#1: if E_{1} then (if E_{2} then S_{1}) else S_{2}

Interpretation \#2: if E_{1} then (if E_{2} then S_{1} else S_{2})

© Harry H. Porter, 2005

The Dangling "Else" Problem

Goal: "Match else-clause to the closest if without an else-clause already." Solution:

$$
\begin{aligned}
\text { Stat } & \rightarrow \text { if Exp then Stmt } \\
& \rightarrow \text { if Expr then WithElse else Stmt } \\
& \rightarrow \text {...Other Stmt Forms... } \\
\text { WithElse } & \rightarrow \text { if Exp then WithElse else WithElse } \\
& \rightarrow \text {...Other Stmt Forms... }
\end{aligned}
$$

Any Stmt occurring between then and else must have an else. ie., the Stmt must not end with "then Stmt".

Interpretation \#2: if E_{1} then (if E_{2} then S_{1} else S_{2})

The Dangling "Else" Problem

Goal: "Match else-clause to the closest if without an else-clause already." Solution:

```
Stmt }->\mathrm{ if Expr then Stmt
    if Expr then WithElse else Stmt
    ...Other Stmt Forms...
WithElse }->\mathrm{ if Expr then WithElse else WithElse
    ...Other Stmt Forms...
```

Any Stmt occurring between then and else must have an else. i.e., the Stmt must not end with "then Stmt".

Interpretation \#1: if E_{1} then (if E_{2} then S_{1}) else S_{2}

The Dangling "Else" Problem

Goal: "Match else-clause to the closest if without an else-clause already." Solution:

```
Stmt }->\mathrm{ if Expr then Stmt
    if Expr then WithElse else Stmt
    ...Other Stmt Forms...
WithElse }->\mathrm{ if Expr then WithElse else WithElse
    | ...Other Stmt Forms...
```

Any Stmt occurring between then and else must have an else. i.e., the Stmt must not end with "then Stmt".

Interpretation \#1: if E_{1} then (if E_{2} then S_{1}) else S_{2}

The Dangling "Else" Problem

Goal: "Match else-clause to the closest if without an else-clause already." Solution:

```
Stmt }->\mathrm{ if Expr then Stmt
    if Expr then WithElse else Stmt
    |...Other Stmt Forms...
WithElse }->\mathrm{ if Expr then WithElse else WithElse
    ...Other Stmt Forms...
```

Any Stmt occurring between then and else must have an else. i.e., the Stmt must not end with "then Stmt".

Interpretation \#1: if E_{1} then (if E_{2} then S_{1}) else S_{2}

Top-Down Parsing

Find a left-most derivation
Find (build) a parse tree
Start building from the root and work down...
As we search for a derivation...
Must make choices: • Which rule to use

- Where to use it

May run into problems!

Option 1:

"Backtracking"
Made a bad decision
Back up and try another choice
Option 2:
Always make the right choice.
Never have to backtrack: "Predictive Parser"
Possible for some grammars (LL Grammars)
May be able to fix some grammars (but not others)

- Eliminate Left Recursion
- Left-Factor the Rules

Syntax Analysis - Part 1

Backtracking

Input: aabbde

S

$$
\begin{aligned}
& \text { 1. } \mathrm{S} \rightarrow \mathrm{Aa} \\
& \text { 2. } \rightarrow \mathrm{Ce} \\
& \text { 3. } \mathrm{A} \rightarrow \mathrm{aaB} \\
& \text { 4. } \rightarrow \text { aaba } \\
& \text { 5. } \mathrm{B} \rightarrow \mathrm{bbb} \\
& \text { 6. } \mathrm{C} \rightarrow \mathrm{aaD} \\
& \text { 7. } \mathrm{D} \rightarrow \mathrm{bbd}
\end{aligned}
$$

Backtracking

Input: aabbde

$$
\begin{array}{rll}
\text { 1. } & \mathrm{S} & \rightarrow \mathrm{Aa} \\
\text { 2. } & \rightarrow \mathrm{Ce} \\
\text { 3. } & \mathrm{A} & \rightarrow \mathrm{aaB} \\
\text { 4. } & \rightarrow \mathrm{aaba} \\
\text { 5. } & \mathrm{B} & \rightarrow \mathrm{bbb} \\
\text { 6. } & \mathrm{C} & \rightarrow \mathrm{aaD} \\
\text { 7. } & \mathrm{D} & \rightarrow \mathrm{bbd}
\end{array}
$$

Syntax Analysis - Part 1

Syntax Analysis - Part 1

Backtracking

Input: aabbde


```
1. S }->\textrm{Aa
2. }->\textrm{Ce
3. A }->\textrm{aaB
4. }->\mathrm{ aaba
5. B }->\textrm{bbb
6. C }->\textrm{aaD
7. D }->\mathrm{ bbd
```

Syntax Analysis - Part 1

Backtracking

Input: aabbde


```
1. S }->\textrm{Aa
2. }->\textrm{Ce
3. A }->\textrm{aaB
4. }->\mathrm{ aaba
5. B }->\textrm{bbb
6. C }->\textrm{aaD
7. D }->\mathrm{ bbd
```

Syntax Analysis - Part 1

Backtracking

Input: aabbde

$$
\begin{aligned}
& \text { 1. } \mathrm{S} \rightarrow \mathrm{Aa} \\
& \text { 2. } \rightarrow \mathrm{Ce} \\
& \text { 3. } \mathrm{A} \rightarrow \mathrm{aaB} \\
& \text { 4. } \rightarrow \text { aaba } \\
& \text { 5. } \mathrm{B} \rightarrow \mathrm{bbb} \\
& \text { 6. } \mathrm{C} \rightarrow \mathrm{aaD} \\
& \text { 7. } \mathrm{D} \rightarrow \mathrm{bbd}
\end{aligned}
$$

Syntax Analysis - Part 1
Input: aabbde \quad Backtracking

Backtracking

Input: aabbde

$$
\begin{array}{rll}
\text { 1. } & \mathrm{S} & \rightarrow \mathrm{Aa} \\
\text { 2. } & & \rightarrow \mathrm{Ce} \\
\text { 3. } & \mathrm{A} & \rightarrow \mathrm{aaB} \\
\text { 4. } & \rightarrow \mathrm{aaba} \\
\text { 5. } & \mathrm{B} & \rightarrow \mathrm{bbb} \\
\text { 6. } & \mathrm{C} & \rightarrow \mathrm{aaD} \\
\text { 7. } & \mathrm{D} & \rightarrow \mathrm{bbd}
\end{array}
$$

Syntax Analysis - Part 1

Syntax Analysis - Part 1

Backtracking

Input: aabbde

$$
\begin{aligned}
\text { 1. } & \mathrm{S} \\
\text { 2. } & \rightarrow \mathrm{Aa} \\
& \rightarrow \mathrm{Ce} \\
\text { 3. } & \mathrm{A}
\end{aligned} \rightarrow_{\mathrm{aaB}} \begin{aligned}
& \text { 4. } \\
& \text { 4. }
\end{aligned}
$$

Backtracking

Input: aabbde

$$
\begin{array}{rll}
\text { 1. } & \mathrm{S} & \rightarrow \mathrm{Aa} \\
\text { 2. } & \rightarrow \mathrm{Ce} \\
\text { 3. } & \mathrm{A} & \rightarrow \mathrm{aaB} \\
\text { 4. } & \rightarrow \mathrm{aaba} \\
\text { 5. } & \mathrm{B} & \rightarrow \mathrm{bbb} \\
\text { 6. } & \mathrm{C} & \rightarrow \mathrm{aaD} \\
\text { 7. } & \mathrm{D} & \rightarrow \mathrm{bbd}
\end{array}
$$

Syntax Analysis - Part 1

Backtracking

Input: aabbde

$$
\begin{aligned}
& \text { 1. } \mathrm{S} \rightarrow \mathrm{Aa} \\
& \text { 2. } \rightarrow \mathrm{Ce} \\
& \text { 3. } \mathrm{A} \rightarrow \mathrm{aaB} \\
& \text { 4. } \rightarrow \text { aaba } \\
& \text { 5. } \mathrm{B} \rightarrow \mathrm{bbb} \\
& \text { 6. } \mathrm{C} \rightarrow \mathrm{aaD} \\
& \text { 7. } \mathrm{D} \rightarrow \mathrm{bbd}
\end{aligned}
$$

Backtracking

Input: aabbde

$$
\begin{array}{lll}
\text { 1. } & \mathrm{S} & \rightarrow \mathrm{Aa} \\
\text { 2. } & \rightarrow \mathrm{Ce} \\
\text { 3. } & \mathrm{A} & \rightarrow \mathrm{aaB} \\
\text { 4. } & \rightarrow \mathrm{aaba} \\
\text { 5. } & \mathrm{B} & \rightarrow \mathrm{bbb} \\
\text { 6. } & \mathrm{C} & \rightarrow \mathrm{aaD} \\
\text { 7. } & \mathrm{D} & \rightarrow \mathrm{bbd}
\end{array}
$$

Predictive Parsing

Will never backtrack!

Requirement:

For every rule:

$$
\mathrm{A} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \alpha_{3}|\ldots| \alpha_{\mathrm{N}}
$$

We must be able to choose the correct alternative
by looking only at the next symbol
May peek ahead to the next symbol (token).
Example
A $\rightarrow a B$
$\rightarrow \mathrm{cD}$
$\rightarrow \mathrm{E}$
Assuming a, c $\notin \operatorname{FIRST}$ (E)
Example
Stmt \rightarrow if Expr...
\rightarrow for LValue...
\rightarrow while Expr...
\rightarrow return Expr ...
\rightarrow ID ...
© Harry H. Porter, 2005

Predictive Parsing

LL(1) Grammars

Can do predictive parsing
Can select the right rule
Looking at only the next 1 input symbol

Predictive Parsing

LL(1) Grammars

Can do predictive parsing
Can select the right rule
Looking at only the next 1 input symbol

$\underline{L L(k) \text { Grammars }}$

Can do predictive parsing
Can select the right rule
Looking at only the next k input symbols

Predictive Parsing

LL(1) Grammars

Can do predictive parsing
Can select the right rule
Looking at only the next 1 input symbol
$\underline{L L(k) \text { Grammars }}$
Can do predictive parsing
Can select the right rule
Looking at only the next k input symbols
Techniques to modify the grammar:

- Left Factoring
- Removal of Left Recursion

Predictive Parsing

LL(1) Grammars

Can do predictive parsing
Can select the right rule
Looking at only the next 1 input symbol

$\underline{L L(k) \text { Grammars }}$

Can do predictive parsing
Can select the right rule
Looking at only the next k input symbols

Techniques to modify the grammar:

- Left Factoring
- Removal of Left Recursion

But these may not be enough!

Predictive Parsing

LL(1) Grammars

Can do predictive parsing
Can select the right rule
Looking at only the next 1 input symbol
$\underline{L L(k) \text { Grammars }}$
Can do predictive parsing
Can select the right rule
Looking at only the next k input symbols
Techniques to modify the grammar:

- Left Factoring
- Removal of Left Recursion

But these may not be enough!

LL(k) Language

Can be described with an $\operatorname{LL}(\mathrm{k})$ grammar.

Left-Factoring

Problem:
Stmt \rightarrow if Expr then Stmt else Stmt
\rightarrow if Expr then Stmt
\rightarrow OtherStmt
With predictive parsing, we need to know which rule to use!
(While looking at just the next token)

Left-Factoring

Problem:
Stmt \rightarrow if Expr then Stmt else Stmt
\rightarrow if Expr then Stmt
\rightarrow OtherStmt
With predictive parsing, we need to know which rule to use!
(While looking at just the next token)
Solution:
Stmt \rightarrow if Expr then Stmt ElsePart
\rightarrow OtherStmt
ElsePart \rightarrow else Stmt I ε

Left-Factoring

Problem:
Stmt \rightarrow if Expr then Stmt else Stmt
\rightarrow if Expr then Stmt
\rightarrow OtherStmt
With predictive parsing, we need to know which rule to use!
(While looking at just the next token)
Solution:
Stmt \rightarrow if Expr then Stmt ElsePart
\rightarrow OtherStmt
ElsePart \rightarrow else Stmt I ε
General Approach:

$$
\text { Before: } \mathrm{A} \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \delta_{1}\left|\delta_{2}\right| \delta_{3} \mid \ldots
$$

After: A $\quad \rightarrow \alpha \mathrm{Cl} \delta_{1}\left|\delta_{2}\right| \delta_{3} \mid \ldots$
C $\quad \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3} \mid \ldots$

Left-Factoring

Problem:
$\begin{aligned} & \text { Stmt } \rightarrow \text { if Expr then Stmt else } \operatorname{Stmt} \\ & \mathbf{A} \rightarrow \underset{\alpha}{\text { if Expr then } \operatorname{Stmt}} \\ & \rightarrow \text { OtherStmt } \\ & \delta\end{aligned}$
With predictive parsing, we need to know which rule to use!
(While looking at just the next token)
Solution:
Stmt \rightarrow if Expr then Stmt ElsePart
\rightarrow OtherStmt
ElsePart \rightarrow else Stmt \| ε
General Approach:
Before: A $\rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \delta_{1}\left|\delta_{2}\right| \delta_{3} \mid \ldots$
After: $\quad \mathrm{A} \quad \rightarrow \alpha \mathrm{C}\left|\delta_{1}\right| \delta_{2}\left|\delta_{3}\right| \ldots$
C $\quad \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3} \mid \ldots$

Left-Factoring

Problem:

With predictive parsing, we need to know which rule to use!

> (While looking at just the next token)

Solution:

$\underset{\text { General Approach: } \beta_{1}^{\text {ElsePart }}}{\text { Eltst }} \rightarrow \underbrace{\text { else }}_{\beta_{2}}$
Before: $\mathrm{A} \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \delta_{1}\left|\delta_{2}\right| \delta_{3} \mid \ldots$
After: \quad A $\quad \rightarrow \alpha C\left|\delta_{1}\right| \delta_{2}\left|\delta_{3}\right| \ldots$
$\mathrm{C} \quad \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3} \mid \ldots$

Left Recursion

Whenever

$$
\mathrm{A} \Rightarrow^{+} \mathrm{A} \alpha
$$

Simplest Case: Immediate Left Recursion

Given:

$$
A \rightarrow A \alpha \mid \beta
$$

Transform into:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \beta \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \alpha \mathrm{A}^{\prime} \mid \varepsilon \quad \text { where } \mathrm{A}^{\prime} \text { is a new nonterminal }
\end{aligned}
$$

More General (but still immediate):

$$
A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| A \alpha_{3}|\ldots| \beta_{1}\left|\beta_{2}\right| \beta_{3} \mid \ldots
$$

Transform into:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \beta_{1} \mathrm{~A}^{\prime}\left|\beta_{2} \mathrm{~A}^{\prime}\right| \beta_{3} \mathrm{~A}^{\prime} \mid \ldots \\
& \mathrm{A}^{\prime} \rightarrow \alpha_{1} \mathrm{~A}^{\prime}\left|\alpha_{2} \mathrm{~A}^{\prime}\right| \alpha_{3} \mathrm{~A}^{\prime}|\ldots| \varepsilon
\end{aligned}
$$

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac} \mathrm{I} \operatorname{S\underline {d}|\underline {e}}$
Is A left recursive? Yes.

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac} \mathrm{I} \mathrm{S} \underline{\mathrm{d}} \mathrm{e}$
Is A left recursive? Yes.
Is S left recursive?

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac} \mathrm{I} \operatorname{S\underline {d}|\underline {e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{\mathbf{f}} \Rightarrow$ Sdf

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}$ I Sd I $\underline{\mathbf{e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{\mathbf{f}} \Rightarrow$ dif
Approach:
Look at the rules for S only (ignoring other rules)... No left recursion.

Left Recursion in More Than One Step

Example:

$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac} \mathrm{I} \operatorname{S\underline {d}|\underline {e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{\mathbf{f}} \Rightarrow$ Sdf Approach:

Look at the rules for S only (ignoring other rules)... No left recursion.
Look at the rules for A...

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathrm{c}} \mathrm{I} \operatorname{S\underline {d}} \mathrm{I} \underline{\mathbf{e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{\mathbf{f}} \Rightarrow$ Sdf
Approach:
Look at the rules for S only (ignoring other rules)... No left recursion.
Look at the rules for A...
Do any of A's rules start with S? Yes.

$$
\mathrm{A} \rightarrow \mathrm{~S} \underline{\mathbf{d}}
$$

Left Recursion in More Than One Step

Example:

$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathrm{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathrm{c}} \mathrm{I}$ Sd $\mathrm{I} \underline{\mathrm{e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{f} \Rightarrow$ Sdf Approach:

Look at the rules for S only (ignoring other rules)... No left recursion.
Look at the rules for A...
Do any of A's rules start with S? Yes.

$$
\mathrm{A} \rightarrow \mathrm{~S} \underline{\mathbf{d}}
$$

Get rid of the S . Substitute in the righthand sides of S . $\mathrm{A} \rightarrow \mathrm{Afd}$ I bd

Left Recursion in More Than One Step

Example:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathrm{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}$ I Sd I $\underline{\mathbf{e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{\mathbf{f}} \Rightarrow$ df
Approach:
Look at the rules for S only (ignoring other rules)... No left recursion.
Look at the rules for A...
Do any of A's rules start with S? Yes.
$\mathrm{A} \rightarrow \mathrm{Sd}$
Get rid of the S. Substitute in the righthand sides of S.
$\mathrm{A} \rightarrow$ Afd I bd
The modified grammar:
$S \rightarrow A \underline{\mathbf{f}} \mid \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathbf{c}} I \mathrm{~A} \underline{\underline{f} d}|\underline{\mathbf{b d}}| \underline{\mathbf{e}}$

Left Recursion in More Than One Step

Example:

$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathrm{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathrm{c}} \mathrm{I}$ Sd $\mathrm{I} \underline{\mathrm{e}}$
Is A left recursive? Yes.
Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow A \underline{f} \Rightarrow$ Sdf Approach:

Look at the rules for S only (ignoring other rules)... No left recursion.
Look at the rules for A...
Do any of A's rules start with S? Yes.

$$
\mathrm{A} \rightarrow \mathrm{~S} \underline{\mathbf{d}}
$$

Get rid of the S . Substitute in the righthand sides of S .
$\mathrm{A} \rightarrow$ Afd I bd
The modified grammar:

$$
\begin{aligned}
& S \rightarrow A \underline{f} I \underline{b} \\
& A \rightarrow A \underline{c}|A \underline{f d}| \underline{b d} \mid \underline{e}
\end{aligned}
$$

Now eliminate immediate left recursion involving A.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \underline{\mathbf{f}} I \underline{\mathbf{b}} \\
& \mathrm{~A} \rightarrow \underline{\mathbf{b d}} \mathrm{~A}^{\prime} \mid \underline{\mathrm{e}} \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}^{\prime}} \mathrm{A}^{\prime} \mid \underline{\mathbf{f}} \mathrm{A}^{\prime} \mathrm{I} \underline{\varepsilon}
\end{aligned}
$$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathrm{c}} \mathrm{I} \mathrm{S} \underline{\mathrm{d}} \mathrm{I} \underline{\mathbf{e}}$

Left Recursion in More Than One Step

The Original Grammar:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{S} \rightarrow \mathrm{~A} \underline{\mathbf{f}} \mid \underline{\mathbf{b}} \\
\mathrm{A} \rightarrow \mathrm{~A}|S \underline{\mathbf{c}}| \mathrm{Be} \\
\mathrm{~B} \rightarrow \mathrm{~A}|\mathrm{~S} \underline{\mathbf{h}}| \underline{\mathbf{k}}
\end{array} \\
& \text { Look at the next one... }
\end{aligned}
$$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}|\mathrm{Sd}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{Ag}|\mathrm{S} \underline{\mathbf{h}}| \underline{\mathbf{k}}$

So Far:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}} \\
& \mathrm{~A} \rightarrow \underline{\mathbf{b d}} \mathrm{~A}^{\prime} \mathrm{I} \mathrm{Be}^{\prime} \mathrm{A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon
\end{aligned}
$$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mid \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathbf{c}}|S \underline{\mathrm{~d}}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{A} \underline{\mathbf{e}}|\mathrm{S} \underline{\mathbf{h}}| \underline{\mathbf{k}}$

So Far:
$S \rightarrow$ ÁI \underline{b}
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mathrm{I}$ Be A^{\prime}
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathrm{fd}} \mathrm{A}^{\prime}\right| \varepsilon$
Look at the B rules next;
$\mathrm{B} \rightarrow \mathrm{Ag}|\mathrm{Sh}| \underline{\mathbf{k}}$ Does any righthand side start with " S ".

Left Recursion in More Than One Step

The Original Grammar:
$S \rightarrow$ ÁI $\underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac} \mid \mathrm{S} \underline{\mathrm{d}} \mathrm{I} \mathrm{Be}$
$B \rightarrow A \underline{I} \operatorname{Sh} \mid \underline{k}$

So Far:
$S \rightarrow \operatorname{Af} \mid \underline{b}$
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mid \mathrm{Be}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon$
$\mathrm{B} \rightarrow \mathrm{Ag}|\underbrace{\text { Afh } \mid \underline{\text { bh }}}| \underline{k}$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mid \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathbf{c}}|\mathrm{S} \underline{\mathrm{d}}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{A} \underline{\mathbf{e}}|\mathrm{S} \underline{\mathbf{h}}| \underline{\mathbf{k}}$

So Far:

$$
\begin{aligned}
& S \rightarrow A \underline{f} \mid \underline{b} \\
& \mathrm{~A} \rightarrow \underline{\underline{b d} \mathrm{~A}^{\prime} \mathrm{I}} \mathrm{Be}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon \\
& \text { Does any righthand side } \\
& \text { start with " } A \text { "? } \\
& \mathrm{B} \rightarrow \mathrm{Ag}|\mathrm{Afh}| \underline{\mathrm{bh}} \mid \underline{k}
\end{aligned}
$$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}$ I $\mathrm{S} \underline{\mathrm{d}}$ I Be
$B \rightarrow A \underline{I} \operatorname{Sh} \mid \underline{k}$

So Far:
$S \rightarrow$ Af $\mid \mathbf{b}$
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mathrm{I} \mathrm{Be}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon$
$\mathrm{B} \rightarrow \mathrm{Ag}$ I Afh | bh I k

Do this one first.

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mid \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathbf{c}}|\mathrm{S} \underline{\mathbf{d}}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{A} \underline{\mathbf{e}}|\mathrm{S} \underline{\mathbf{h}}| \underline{\mathbf{k}}$

So Far:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mathrm{I}$ Be A^{\prime}
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathrm{fd}} \mathrm{A}^{\prime}\right| \varepsilon$
$\mathrm{B} \rightarrow \underline{\text { bdA}} \mathrm{A}^{\prime} \mathrm{I}$ BeA'g I Afh I bh $\mid \underline{k}$ bd $\mathrm{A}^{\prime} . .$. I $\mathrm{Be}^{\prime}{ }^{\prime} .$.

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}|\mathrm{Sd}| \mathrm{Be}$
$B \rightarrow A \underline{I} \operatorname{Sh} \mid \underline{k}$

So Far:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mathrm{I} \mathrm{Be}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon$

Left Recursion in More Than One Step

The Original Grammar:

$$
S \rightarrow A \underline{f} I \underline{\mathbf{b}}
$$

$\mathrm{A} \rightarrow \mathrm{Ac}|\mathrm{Sd}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{Ag} \mid \mathrm{S} \underline{\mathbf{h}} \mathrm{l} \underline{\mathbf{k}}$

So Far:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \underline{\mathrm{bd}} \mathrm{A}^{\prime} \mathrm{I}$ BeA'
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathrm{fd}} \mathrm{A}^{\prime}\right| \varepsilon$

Left Recursion in More Than One Step

The Original Grammar:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathrm{f}} \mathrm{I} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}$ I $\mathrm{S} \underline{\mathrm{d}}$ I Be
$B \rightarrow A \underline{I} \operatorname{Sh} \mid \underline{k}$

So Far:
$\mathrm{S} \rightarrow \mathrm{A} \underline{\mathbf{f}} \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mathrm{I} \mathrm{Be}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon$

Left Recursion in More Than One Step

The Original Grammar:
$S \rightarrow A \underline{A} \mid \underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{A} \underline{\mathbf{c}}|S \underline{\mathrm{~d}}| \mathrm{Be}$
$\mathrm{B} \rightarrow \mathrm{A} \underline{\mathbf{e}}|\mathrm{S} \underline{\mathbf{h}}| \underline{\mathbf{k}}$

So Far:
$S \rightarrow$ ÁI \underline{b}
$\mathrm{A} \rightarrow \underline{\mathbf{b d}} \mathrm{A}^{\prime} \mid \mathrm{Be} \mathrm{A}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \varepsilon$
$B \rightarrow \underline{b d} A^{\prime} \mathbf{g} B^{\prime}\left|\underline{b d} A^{\prime} \underline{f^{\prime}} B^{\prime}\right| \underline{b h} B^{\prime} \mid \underline{k} B^{\prime}$
$B^{\prime} \rightarrow \underline{e} A^{\prime} \mathbf{g B}^{\prime}\left|\underline{e} A^{\prime} \underline{f^{\prime}} B^{\prime}\right| \varepsilon$

Finally, eliminate any immediate Left recursion involving "B" ving "B"

Left Recursion in More Than One Step

The Original Grammar:
$S \rightarrow$ ÁI $\underline{\mathbf{b}}$
$\mathrm{A} \rightarrow \mathrm{Ac}|\mathrm{S} \underline{\mathrm{d}} \mathrm{I} \mathrm{Be}| \mathrm{C}$
$B \rightarrow A \overline{\mathbf{g}}|S \underline{\mathbf{h}}| \underline{\mathbf{k}}$
If there is another nonterminal,
$\mathrm{C} \rightarrow$ BkmA I AS I \mathbf{j} then do it next.

So Far:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \underline{\mathrm{~A}} \underline{I} \underline{\mathbf{b}} \\
& \mathrm{~A} \rightarrow \underline{\mathbf{b d}} \mathrm{~A}^{\prime}\left|\mathrm{Be}^{\prime}\right| \mathrm{CA}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \underline{\mathbf{c}} \mathrm{A}^{\prime}\left|\underline{\mathbf{f d}} \mathrm{A}^{\prime}\right| \boldsymbol{\varepsilon} \\
& \mathrm{B} \rightarrow \underline{\mathbf{b d}} \mathrm{~A}^{\prime} \underline{\mathbf{g} B^{\prime}}\left|\underline{\mathbf{b d}} \mathrm{A}^{\prime} \underline{\mathbf{f h}} \mathrm{B}^{\prime}\right| \underline{\mathbf{b h}} \mathrm{B}^{\prime}\left|\underline{\mathbf{k}} \mathrm{B}^{\prime}\right| \mathrm{CA}^{\prime} \mathbf{g} B^{\prime} \mid \mathrm{CA}^{\prime} \underline{\mathbf{f h}} \mathrm{B}^{\prime} \\
& \mathrm{B}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{A}^{\prime} \mathbf{g} \mathrm{B}^{\prime}\left|\underline{\mathbf{e}} \mathrm{A}^{\prime} \underline{\mathbf{f h}} \mathrm{B}^{\prime}\right| \underline{\varepsilon}
\end{aligned}
$$

```
                    Algorithm to Eliminate Left Recursion
Assume the nonterminals are ordered A A, A2, A3,\ldots
            (In the example: S, A, B)
for each nonterminal }\mp@subsup{A}{i}{}\mathrm{ (for i = 1 to N) do
    for each nonterminal }\mp@subsup{A}{j}{}\mathrm{ (for j = 1 to i-1) do
        Let }\mp@subsup{A}{j}{}->\mp@subsup{\beta}{1}{}|\mp@subsup{\beta}{2}{}|\mp@subsup{\beta}{3}{}|\ldots||\mp@subsup{\beta}{N}{}\mathrm{ be all the rules for }\mp@subsup{A}{j}{
        if there is a rule of the form
            A
        then replace it by
            A
        endIf
    endFor
    Eliminate immediate left recursion
        among the }\mp@subsup{A}{i}{}\mathrm{ rules
endFor
\begin{tabular}{l|l}
\(A_{1}\) \\
\(A_{2}\) & \\
\(A_{3}\) & Inner Loop \\
\(\dddot{A_{j}}\) & \\
\(\dddot{A_{7}}\) \\
\(A_{i}\) & \(\leftarrow\) \\
Outer Loop
\end{tabular}
```


Table-Driven Predictive Parsing Algorithm

Assume that the grammar is LL(1)
i.e., Backtracking will never be needed Always know which righthand side to choose (with one look-ahead)

- No Left Recursion
- Grammar is Left-Factored.

Step 1: From grammar, construct table.
Step 2: Use table to parse strings.

Table-Driven Predictive Parsing Algorithm

Syntax Analysis - Part 1

Predictive Parsing Algorithm

Set input ptr to first symbol; Place $\$$ after last input symbol
Push \$
Push S
repeat
$\mathrm{X}=$ stack top
a $=$ current input symbol
if X is a terminal or $\mathrm{X}=\$$ then
if $X==a$ then
Pop stack Advance input ptr
else Error
endIf
elseIf Table[X,a] contains a rule then $/ /$ call it $X \rightarrow Y_{1} Y_{2} \ldots Y_{K}$
Pop stack
Push Y_{K}
Push Y_{2}
Push Y_{1}
Print ("X $\rightarrow Y_{1} Y_{2} \ldots Y_{K}$)
else // Table[X,a] is blank Syntax Error
endIf
until $\mathrm{X}==\$$

Syntax Analysis - Part 1
Input:
Example

> | $\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$ |
| :--- |
| $\mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon$ |
| $\mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime}$ |

(id*id)+id
Output:

Add \$ to end of input
Push \$
Push E

	id	+	* ()	\$
E	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$			$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$		
\mathbf{E}^{\prime}		$\mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime}$			$\mathrm{E}^{\prime} \rightarrow \varepsilon$	$\mathrm{E}^{\prime} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$			$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$		
T		$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow$ * FT^{\prime}		$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow \varepsilon$
F	F \rightarrow id			$\mathrm{F} \rightarrow(\mathrm{E})$		

Syntax Analysis - Part 1

Syntax Analysis - Part 1
Input:

Example

$$
\begin{aligned}
& \hline \mathbf{E} \rightarrow \mathbf{T E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F}^{\prime} \mid \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \text { I } \underline{\text { id }} \\
& \hline \hline
\end{aligned}
$$

(id*id)+id
Output:

Look at Table [E, '(']
Use rule $\mathrm{E} \rightarrow \mathrm{TE}{ }^{\prime}$
Pop E
Push E^{\prime}
Push T

	id	$+\quad{ }^{\text {Print } \mathrm{E} \rightarrow \mathrm{TE}^{\prime}}$)	\$
E	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$			$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$		
\mathbf{E}^{\prime}		$\mathrm{E}^{\prime} \rightarrow+$ TE'			$\mathrm{E}^{\prime} \rightarrow \varepsilon$	$\mathrm{E}^{\prime} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$			$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$		
T^{\prime}		$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow \star \mathrm{FT}^{\prime}$		$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow \varepsilon$
F	F \rightarrow id			$\mathrm{F} \rightarrow(\mathrm{E})$		

Example

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F ~ T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \text { Id } \\
& \hline
\end{aligned}
$$

(id*id)+id
Output:

$$
\begin{array}{ll}
\mathbf{E} & \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
\mathbf{T} & \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
\mathbf{F} & \rightarrow(\mathbf{E})
\end{array}
$$

Top of Stack matches next input Pop and Scan

	id	+	*	$($)	\$
E	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$			$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$		
\mathbf{E}^{\prime}		$\mathbf{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime}$			$\mathbf{E}^{\prime} \rightarrow \varepsilon$	$\mathbf{E}^{\prime} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$			$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$		
T ${ }^{\prime}$		$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow$ * FT^{\prime}		T' $\rightarrow \varepsilon$	T' $\rightarrow \varepsilon$
F	F \rightarrow id			$\mathrm{F} \rightarrow(\mathrm{E})$		

Syntax Analysis - Part 1

Syntax Analysis - Part 1

Syntax Analysis - Part 1
Input: \quad Reconstructing the Parse Tree
(id*id)+id
Output:
$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$

Input:
(id*id) +id
Output:
$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$
$\mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime}$

Reconstructing the Parse Tree

Input: \quad Reconstructing the Parse Tree
(id*id) +id
Output:
$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$
$\mathbf{T} \rightarrow \mathbf{F}^{\prime}$
$\mathrm{F} \rightarrow(\mathrm{E})$

$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$
$\mathrm{E}^{\prime} \rightarrow+$ TE' 1ε $\mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime}$
$\mathbf{T}^{\prime} \rightarrow$ * $\mathbf{F T}^{\prime} \mid \varepsilon$
F \rightarrow (E) I id

"FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{\mathrm{a} \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \text { id }
\end{aligned}
$$

FIRST (F) = ?

"FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{\text { a } \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \hline \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \text { F T T } \| \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

FIRST $(\mathrm{F})=\{(, \underline{i d}\}$
FIRST $\left(\mathrm{T}^{\prime}\right)=$?

"FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{a \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \text { id }
\end{aligned}
$$

$\operatorname{FIRST}(\mathrm{F})=\{(, \underline{\text { id }}\}$
FIRST $\left(\mathrm{T}^{\prime}\right)=\{*, \varepsilon\}$
FIRST (T) = ?

'FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{\mathrm{a} \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \hline \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \text { F T T } \| \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

FIRST $(\mathrm{F})=\{(, \underline{i d}\}$
FIRST $\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
FIRST (T) $=\{(, \underline{i d}\}$
FIRST (E^{\prime}) = ?

"FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{a \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \text { id }
\end{aligned}
$$

FIRST $(\mathrm{F})=\{(, \underline{\text { id }}\}$
FIRST (T') $=\{*, \varepsilon\}$
$\operatorname{FIRST}(\mathrm{T})=\{(, \underline{\text { id }}\}$
FIRST $\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$
FIRST (E) = ?

"FIRST" Function

Let α be a string of symbols (terminals and nonterminals) Define:

FIRST $(\alpha)=$ The set of terminals that could occur first
in any string derivable from α

$$
=\left\{\mathrm{a} \mid \alpha \Rightarrow^{*} \text { aw, plus } \varepsilon \text { if } \alpha \Rightarrow^{*} \varepsilon\right\}
$$

Example:

$$
\begin{aligned}
& \hline \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \text { F T T } \| \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

FIRST $(\mathrm{F})=\{(, \underline{i d}\}$
FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{i d}\}$
FIRST (E') $=\{+, \varepsilon\}$
$\operatorname{FIRST}(E)=\{(, \underline{\text { id }}\}$

To Compute the "FIRST" Function

For all symbols X in the grammar...

```
if X is a terminal then
    FIRST(X) = { X }
if X 
    add \varepsilon to FIRST(X)
if X 
    if a }\in\mathrm{ FIRST(Y ) then
        add a to FIRST(X)
    if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{Y}{1}{})\mathrm{ and a }\in\operatorname{FIRST}(\mp@subsup{Y}{2}{})\mathrm{ then
        add a to FIRST(X)
    if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{Y}{1}{})\mathrm{ and }\varepsilon\in\operatorname{FIRST (Y
        add a to FIRST(X)
    if }\varepsilon\in\operatorname{FIRST(Y}\mp@subsup{M}{i}{\prime})\mathrm{ for all Yi then
        add \varepsilon to FIRST(X)
```

Repeat until nothing more can be added to any sets.

To Compute the $\operatorname{FIRST}\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \ldots \mathbf{X}_{\mathrm{N}}\right)$

Result $=\{ \}$
Add everything in FIRST (X_{1}), except ε, to result

To Compute the $\operatorname{FIRST}\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \ldots \mathbf{X}_{\mathbf{N}}\right)$
Result $=\{ \}$
Add everything in FIRST $\left(X_{1}\right)$, except ε, to result if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{X}_{1}\right)$ then

Add everything in FIRST $\left(X_{2}\right)$, except ε, to result
endIf

Syntax Analysis - Part 1

To Compute the $\operatorname{FIRST}\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \ldots \mathbf{X}_{\mathrm{N}}\right)$

Result $=\{ \}$
Add everything in FIRST $\left(X_{1}\right)$, except ε, to result if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{X}_{1}\right)$ then

Add everything in FIRST $\left(X_{2}\right)$, except ε, to result if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{X}_{2}\right)$ then

Add everything in $\operatorname{FIRST}\left(\mathrm{X}_{3}\right)$, except ε, to result
endIf
endIf

```
                    To Compute the FIRST( }\mp@subsup{\mathbf{X}}{1}{}\mp@subsup{\mathbf{X}}{2}{}\mp@subsup{\mathbf{X}}{3}{}\ldots\mp@subsup{|}{\mathbf{N}}{\prime}
Result = {}
Add everything in FIRST(X ( }\mp@subsup{)}{1}{\prime}\mathrm{ , except }\varepsilon\mathrm{ , to result
if }\varepsilon\in\operatorname{FIRST(X (X) then
    Add everything in FIRST( }\mp@subsup{X}{2}{}\mathrm{ ), except }\varepsilon\mathrm{ , to result
    if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{\textrm{X}}{2}{})\mathrm{ then
        Add everything in FIRST(X }\mp@subsup{X}{3}{}\mathrm{ ), except &, to result
        if }\varepsilon\in\operatorname{FIRST(X }\mp@subsup{\textrm{X}}{3}{}\mathrm{ ) then
            Add everything in FIRST(X }\mp@subsup{\textrm{X}}{4}{}\mathrm{ ), except &, to result
        endIf
    endIf
endIf
```

Syntax Analysis - Part 1

To Compute the $\operatorname{FIRST}\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \ldots \mathbf{X}_{\mathrm{N}}\right)$

```
Result = {}
```

Add everything in FIRST (X_{1}), except ε, to result
if $\varepsilon \in$ FIRST (X_{1}) then
Add everything in FIRST $\left(X_{2}\right)$, except ε, to result
if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{X}_{2}\right)$ then
Add everything in FIRST $\left(X_{3}\right)$, except ε, to result
if $\varepsilon \in \operatorname{FIRST}\left(X_{3}\right)$ then
Add everything in FIRST $\left(\mathrm{X}_{4}\right)$, except ε, to result
if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{X}_{\mathrm{N}-1}\right)$ then
Add everything in FIRST $\left(X_{N}\right)$, except ε, to result
endIf
endIf
endIf
endIf

```
                    To Compute the FIRST( }\mp@subsup{\mathbf{X}}{1}{}\mp@subsup{\mathbf{X}}{2}{}\mp@subsup{\mathbf{X}}{3}{}\ldots\mp@subsup{|}{\mathbf{N}}{\prime}
Result = {}
Add everything in FIRST(X ( }\mp@subsup{)}{1}{\prime}\mathrm{ , except }\varepsilon\mathrm{ , to result
if }\varepsilon\in\operatorname{FIRST(X}\mp@subsup{|}{1}{})\mathrm{ then
    Add everything in FIRST( }\mp@subsup{\textrm{X}}{2}{}\mathrm{ ), except }\varepsilon\mathrm{ , to result
    if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{\textrm{X}}{2}{})\mathrm{ then
        Add everything in FIRST(X }\mp@subsup{\textrm{X}}{3}{}\mathrm{ ), except &, to result
        if }\varepsilon\in\operatorname{FIRST(X }\mp@subsup{\textrm{X}}{3}{}\mathrm{ ) then
            Add everything in FIRST(X }\mp@subsup{\textrm{X}}{4}{}\mathrm{ ), except &, to result
            ..
                if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{\textrm{X}}{\textrm{N}-1}{})\mathrm{ then
                        Add everything in FIRST(X }\mp@subsup{\textrm{X}}{\textrm{N}}{\prime}\mathrm{ ), except &, to result
                        if \varepsilon G FIRST( (X N
                        // Then }\mp@subsup{\mathbf{X}}{1}{}\mp@subsup{|}{}{*}\varepsilon,\mp@subsup{\mathbf{X}}{2}{\prime}\mp@subsup{|}{}{*}\varepsilon,\mp@subsup{\mathbf{X}}{3}{}\mp@subsup{|}{}{*}\varepsilon,\ldots
                            Add \varepsilon to result
                    endIf
                endIf
        endIf
    endIf
endIf
```

Syntax Analysis - Part 1
To Compute FOLLOW $\left(\mathrm{A}_{\mathrm{i}}\right)$ for all Nonterminals in the Grammar
add \$ to FOLLOW (S)
repeat
if $A \rightarrow \alpha B \beta$ is a rule then add every terminal in FIRST (β) except ε to FOLLOW (B) if FIRST (β) contains ε then
add everything in FOLLOW (A) to FOLLOW (B) endIf
endIf
if $\mathrm{A} \rightarrow \alpha \mathrm{B}$ is a rule then add everything in FOLLOW (A) to FOLLOW (B)
endIf
until We cannot add anything more

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

The FOLLOW sets...

$$
\begin{array}{lll}
\hline \text { FOLLOW }(\mathrm{E}) & =\{ & ? \\
\text { FOLLOW }\left(\mathrm{E}^{\prime}\right) & =\{ & ? \\
\text { FOLLOW }(\mathrm{T}) & =\{ & ? \\
\text { FOLLOW } \left.(\mathrm{T})^{\prime}\right) & =\{ & ? \\
\text { FOLLOW }(\mathrm{F}) & =\{ & ?
\end{array}
$$

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{i d}\}$
FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{i d}\}$
FIRST ($\left.\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

The FOLLOW sets...

```
FOLLOW (E) = {
Add $ to FOLLOW(S)
FOLLOW (E') = {
FOLLOW (T) = {
FOLLOW (T') = {
FOLLOW (F) = {
```


Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{\text { id }}\}$
FIRST (T) $=\{*, \varepsilon\}$
$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $=\{(, \underline{i d}\}$

The FOLLOW sets...
FOLLOW (E) $=\{$ \$, Add \$ to FOLLOW(S)
FOLLOW (E') = \{
FOLLOW (T) = \{
FOLLOW (T^{\prime}) = \{
FOLLOW (F) =\{

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\text { FIRST }(\mathrm{F})=\{(, \underline{\text { id }}\}
$$

FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{i d}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

The FOLLOW sets...

```
FOLLOW (E) = \{ \$,
    FOLLOW (E') = \{
    FOLLOW (T) \(=\{\)
```

 FOLLOW (\(\mathrm{T}^{\prime}\)) \(=\{\)
 FOLLOW (F) = \{
 $$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow * \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \text { * } \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \text { id }
\end{aligned}
$$

Example of FOLLOW Computation	
Previously computed FIRST sets...	$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$
$\begin{aligned} & \text { FIRST (F) }=\{(, \underline{\text { id }}\} \\ & \text { FIRST (T) } \\ &=\{*, \varepsilon\}\end{aligned}$	E $\mathbf{E} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon$ $\mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime}$
FIRST (T) $=\{*, \varepsilon\}$ FIRST (T) $=\{(, \underline{\text { id }}\}$	
$\operatorname{FIRST}\left(\mathrm{E}^{\prime}\right) \quad=\{+, \varepsilon\}$	$\mathrm{F} \rightarrow$ (E$) \mathrm{l}$ id
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$	
The FOLLOW sets...	
FOLLOW (E) = \{ \$,	Look at rule
FOLLOW (E') $=$ \{	$F \rightarrow(E) \mid \text { id }$
FOLLOW (T) $=$ = FOLLOW $\left(\mathrm{T}^{\prime}\right)=\{$	What can follow E?
FOLLOW (F) $=\{$	

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{i d}
\end{aligned}
$$

```
FIRST (F) ={(, \underline{id}}
FIRST (T') ={ *, \varepsilon}
FIRST (T) ={(, id }
FIRST (E') ={ +, \varepsilon}
FIRST (E) = {(, iq }
```

The FOLLOW sets...

FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{
FOLLOW (T) $=\{$
FOLLOW (T^{\prime}) = \{
FOLLOW $(\mathrm{F})=\{$

Look at rule
$F \rightarrow(E)$ id
What can follow E?

Example of FOLLOW Computation

Previously computed FIRST sets...
$\operatorname{FIRST}(\mathrm{F})=\{(, \underline{\mathrm{id}}\}$
FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{\text { id }}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

The FOLLOW sets...
FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{
FOLLOW (T) $=\{$
FOLLOW (T') = \{
FOLLOW (F) = \{

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

Look at rule
$\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}$
Whatever can follow \mathbf{E} can also follow \mathbf{E}^{\prime}

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{\text { id }}\}$
$\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\{*, \varepsilon\}$
$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E^{\prime}) $=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{i d}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \text { * } \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

The FOLLOW sets...
FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{ \$,)
FOLLOW (T) $=\{$
FOLLOW (T^{\prime}) = \{
FOLLOW (F) =\{

Look at rule

$$
\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime}
$$

Whatever can follow E can also follow \mathbf{E}^{\prime}

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\text { FIRST }(\mathrm{F})=\{(, \underline{\text { id }}\}
$$

FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{\text { id }}\}$
FIRST ($\left.\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \text { id }
\end{aligned}
$$

The FOLLOW sets...

$$
\begin{aligned}
& \text { FOLLOW }(\mathrm{E})=\{\$,) \\
& \text { FOLLOW }\left(\mathrm{E}^{\prime}\right)=\{\$,) \\
& \text { FOLLOW }(\mathrm{T})=\{ \\
& \text { FOLLOW }\left(\mathrm{T}^{\prime}\right)=\{ \\
& \text { FOLLOW }(\mathrm{F})=\{
\end{aligned}
$$

Look at rule

$$
\mathrm{E}_{0}^{\prime} \rightarrow+\mathrm{T}_{1}^{\prime}
$$

Whatever is in $\operatorname{FIRST}\left(\mathbf{E}_{1}{ }_{\mathbf{1}}\right)$ can follow T

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \text { * } \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

```
FIRST (F) ={(, 亩 }
FIRST (T') ={ *, \varepsilon}
FIRST (T) ={(, id }
FIRST (E') ={+, &}
FIRST (E) ={(, id }
```

FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{ \$,)
FOLLOW $(\mathrm{T})=\{+$,
FOLLOW (T^{\prime}) = \{
FOLLOW (F) $=\{$

Look at rule
$\mathrm{E}_{0}^{\prime} \rightarrow+\mathrm{T}^{\prime}{ }_{1}$
Whatever is in $\operatorname{FIRST}\left(\mathbf{E}_{1}^{\prime}\right)$ can follow T

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{\text { id }}\}$
FIRST (T') $=\{*, \varepsilon\}$
$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E^{\prime}) $=\{+, \varepsilon\}$
$\operatorname{FIRST}(E)=\{(, \underline{\text { id }}\}$
The FOLLOW sets...

$$
\begin{aligned}
& \text { FOLLOW }(\mathrm{E})=\{\$,) \\
& \text { FOLLOW }\left(\mathrm{E}^{\prime}\right)=\{\$,) \\
& \text { FOLLOW }(\mathrm{T})=\{+, \\
& \text { FOLLOW }\left(\mathrm{T}^{\prime}\right)=\{ \\
& \text { FOLLOW }(\mathrm{F})=\{
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

Look at rule

$$
\mathrm{T}_{0}^{\prime} \rightarrow \star \mathrm{F}^{\prime}{ }_{1}
$$

Whatever is in $\operatorname{FIRST}\left(\mathbf{T}_{1}{ }_{1}\right)$ can follow \mathbf{F}

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST $(\mathrm{F})=\{(, \underline{\mathrm{id}}\}$
$\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\{*, \varepsilon\}$
$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E^{\prime}) $=\{+, \varepsilon\}$
FIRST (E) $=\{(, \underline{i d}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \text { * } \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

The FOLLOW sets...
FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{ \$,)
FOLLOW $(T)=\{+$,
FOLLOW (T^{\prime}) = \{
FOLLOW (F) $=\{$ *,

Look at rule

$$
\mathrm{T}_{0}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}_{1}^{\prime}
$$

Whatever is in $\operatorname{FIRST}\left(\mathbf{T}^{1}{ }_{1}\right)$ can follow \mathbf{F}

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\text { FIRST }(\mathrm{F})=\{(, \underline{\text { id }}\}
$$

$$
\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\{*, \overline{\varepsilon\}}
$$

$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E^{\prime}) $=\{+, \varepsilon\}$
FIRST (E) $=\{(, \underline{i d}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{i d}
\end{aligned}
$$

The FOLLOW sets...

$$
\begin{aligned}
& \text { FOLLOW }(\mathrm{E})=\{\$,) \\
& \text { FOLLOW }\left(\mathrm{E}^{\prime}\right)=\{\$,) \\
& \text { FOLLOW }(\mathrm{T})=\{+, \\
& \text { FOLLOW }\left(\mathrm{T}^{\prime}\right)=\{ \\
& \text { FOLLOW }(\mathrm{F})=\{*,
\end{aligned}
$$

Look at rule
$\mathrm{E}_{0}^{\prime} \rightarrow+\mathrm{TE}_{1}$
Since $E_{1}{ }_{1}$ can go to ε i.e., $\varepsilon \in \operatorname{FIRST}\left(\mathbf{E}^{\prime}\right)$

Everything in $\operatorname{FOLLOW}\left(\mathbf{E}_{0}{ }_{0}\right)$ can follow T

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

```
FIRST (F) ={(, 亩 }
FIRST (T') ={ *, \varepsilon}
FIRST (T) ={(, id }
FIRST (E') = { +, \varepsilon}
FIRST (E) = {(, iq }
```

The FOLLOW sets...

```
FOLLOW (E) = \{ \$, )
FOLLOW (E') = \{ \$, )
FOLLOW (T) \(=\{+, \$\), )
FOLLOW ( \(\mathrm{T}^{\prime}\) ) = \{
FOLLOW (F) \(=\{\) *,
Look at rule
\[
\begin{aligned}
& \mathbf{E}_{0}^{\prime} \rightarrow+\mathrm{T} \mathbf{E}_{1} \\
& \text { Since } \mathbf{E}_{1}^{\prime} \text { can go to } \varepsilon \\
& \text { i.e., } \varepsilon \in \operatorname{FIRST}\left(\mathbf{E}^{\prime}\right) \\
& \text { Everything in } \operatorname{FOLLOW}\left(\mathbf{E}_{0}^{\prime}\right) \\
& \text { can follow T }
\end{aligned}
\]
```


Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{i d}\}$
FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{\text { id }}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

The FOLLOW sets...
FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{ \$,)
FOLLOW (T) $=\{+, \$$,)
FOLLOW (T') = \{
FOLLOW (F) $=\{$ *,

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{\text { id }}\}$
FIRST (T') $=\{*, \varepsilon\}$
$\operatorname{FIRST}(T)=\{(, \underline{i d}\}$
FIRST (E') $=\{+, \varepsilon\}$
$\operatorname{FIRST}(\mathrm{E})=\{(, \underline{\mathrm{id}}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \text { * } \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

The FOLLOW sets...
FOLLOW (E) = \{ \$,)
FOLLOW (E') = \{ \$,)
FOLLOW $(T)=\{+, \$$,
FOLLOW $\left(\mathrm{T}^{\prime}\right)=\{+, \$$,)
FOLLOW $(\mathrm{F})=\{*$,

Look at rule
$\mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime}$
Whatever can follow T
can also follow \mathbf{T}^{\prime}
can also follow T

Syntax Analysis - Part 1

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\text { FIRST (F) }=\{(, \underline{i d}\}
$$

$$
\text { FIRST (T') }=\{*, \overline{\varepsilon\}}
$$

FIRST (T) $=\{(, \underline{\text { id }}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $=\{(, \underline{\text { id }}\}$
The FOLLOW sets...
FOLLOW (E) $=\{\$$,)
FOLLOW (E') = \{ \$,)
FOLLOW (T) $=\{+, \$$,)
FOLLOW $\left(\mathrm{T}^{\prime}\right)=\{+, \$$,)
FOLLOW (F) $=\{$ *,

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow * \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

Example of FOLLOW Computation

Previously computed FIRST sets...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T} \mathbf{E}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{\text { id }}
\end{aligned}
$$

```
FIRST (F) ={(, \underline{id}}
FIRST (T') ={ *, \varepsilon}
FIRST (T) ={(, id }
FIRST (E') ={ +, \varepsilon}
\[
\text { FIRST (E) } \quad=\{(, \underline{i d}\}
\]
FIRST (E) = {(, iq }
```

Look at rule

$$
\mathrm{T}_{0}^{\prime} \rightarrow * \mathrm{~F}_{1}^{\prime}
$$

Since $\mathrm{T}^{\prime}{ }_{1}$ can go to ε
i.e., $\varepsilon \in \operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)$

Everything in FOLLOW $\left(\mathrm{T}^{\prime}{ }_{0}\right)$ can follow \mathbf{F}

Example of FOLLOW Computation

Previously computed FIRST sets...
FIRST (F) $=\{(, \underline{i d}\}$
FIRST (T') $=\{*, \varepsilon\}$
FIRST (T) $=\{(, \underline{\text { id }}\}$
FIRST (E') $=\{+, \varepsilon\}$
FIRST (E) $\quad=\{(, \underline{\text { id }}\}$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}^{\prime} \\
& \mathbf{E}^{\prime} \rightarrow+\mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{T} \rightarrow \mathbf{F} \mathbf{T}^{\prime} \\
& \mathbf{T}^{\prime} \rightarrow \star \mathbf{F} \mathbf{T}^{\prime} \mid \varepsilon \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \underline{i d}
\end{aligned}
$$

The FOLLOW sets...

```
FOLLOW (E) = { $, ) }
FOLLOW (E') = { $, ) }
FOLLOW (T) = { +, $, ) }
Nothing more can be added.
FOLLOW (T') = { +, $, ) }
FOLLOW (F) = { *, +, $, ) }
```


Building the Predictive Parsing Table

The Main Idea:
Assume we're looking for an A
i.e., A is on the stack top.

Assume b is the current input symbol.

Building the Predictive Parsing Table

The Main Idea:

Assume we're looking for an A
i.e., A is on the stack top.

Assume b is the current input symbol.
If $\mathrm{A} \rightarrow \alpha$ is a rule and b is in $\operatorname{FIRST}(\alpha)$
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!

Building the Predictive Parsing Table

The Main Idea:

Assume we're looking for an A
i.e., A is on the stack top.

Assume b is the current input symbol.
If $\mathrm{A} \rightarrow \alpha$ is a rule and b is in $\operatorname{FIRST}(\alpha)$
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!
What if ε is in $\operatorname{FIRST}(\alpha)$? [i.e., $\alpha \Rightarrow^{*} \varepsilon$]
If b is in FOLLOW(A)
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!

Building the Predictive Parsing Table

The Main Idea:

Assume we're looking for an A
i.e., A is on the stack top.

Assume b is the current input symbol.
If $\mathrm{A} \rightarrow \alpha$ is a rule and b is in $\operatorname{FIRST}(\alpha)$
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!
What if ε is in $\operatorname{FIRST}(\alpha)$? [i.e., $\alpha \Rightarrow^{*} \varepsilon$]
If b is in FOLLOW(A)
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!
If ε is in $\operatorname{FIRST}(\alpha)$ and $\$$ is the current input symbol
then if $\$$ is in FOLLOW(A)
then expand A using the $\mathrm{A} \rightarrow \alpha$ rule!

Example: The "Dangling Else" Grammar

```
1. S 暒 E then S S'
2. S }->\mathrm{ otherStmt
3. S' }->\mathrm{ else S
4. S'}->
5. E -> boolExpr
```

"if \underline{b} then if \underline{b} then otherStmt else otherStmt"

Example: The "Dangling Else" Grammar

$\underline{\mathrm{i}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{o}} \underline{\mathrm{e}} \underline{\mathrm{o}} \Leftarrow$ "́if $\underline{\mathrm{b}} \underline{\text { then }} \underline{\text { if }} \underline{\mathrm{b}}$ then otherStmt $\underline{\text { else otherStmt" }}$

Example: The "Dangling Else" Grammar

$$
\begin{array}{ll}
\text { 1. } & S \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathbf{t}} \mathrm{~S} \mathrm{~S}^{\prime} \\
\text { 2. } & \mathrm{S} \rightarrow \underline{\mathbf{o}} \\
\text { 3. } & \mathrm{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S} \\
\text { 4. } & \mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon} \\
\text { 5. } & \mathrm{E} \rightarrow \underline{\mathbf{b}}
\end{array}
$$

$\underline{\mathrm{i}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{o}} \underline{\mathrm{e}} \underline{\mathrm{o}}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{~S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

ibtibtoloc
$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\boldsymbol{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\underline{t}}\}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E}$ tS S'
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \varepsilon$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 1: S $\rightarrow \underline{\underline{i}} \mathrm{E} t \mathrm{~S} S^{\prime}$
If we are looking for an S
and the next symbol is in FIRST(\underline{i} E t S S')... Add that rule to the table

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\mathbf{o}}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}, \$\}}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{t}\}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E}$ t S S
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \varepsilon$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 1: S $\rightarrow \underline{\mathbf{i}} \mathrm{E}$ t $S S^{\prime}$
If we are looking for an S
and the next symbol is in FIRST($\underline{\text { i }}$ E $\underline{S} S^{\prime}$)... Add that rule to the table

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\boldsymbol{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\underline{t}}\}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E}$ t S S
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \varepsilon$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 2: $\mathrm{S} \rightarrow$ 응 If we are looking for an S and the next symbol is in FIRST(o)... Add that rule to the table
ibtibtoco
$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}(E)=\{\underline{b}\} \quad \operatorname{FOLLOW}(E)=\{\underline{t}\}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}^{\prime}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 2: $\mathrm{S} \rightarrow$
If we are looking for an S and the next symbol is in FIRST(o)... Add that rule to the table

ibtiblyodo

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\mathrm{t}}\}$

	-	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ ㅇ			$\mathrm{S} \rightarrow$ iEt $\underline{\text { d }}$ S ${ }^{\prime}$		
S'						
E						

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{~S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \varepsilon$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 5: $\mathrm{E} \rightarrow \underline{\mathrm{b}}$ If we are looking for an E and the next symbol is in FIRST(b)... Add that rule to the table

$\underline{i} \underline{b} \underline{t} \underline{i} \underline{t} \underline{o} \underline{e} \underline{o}$

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\mathbf{o}}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}, \$\}}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}(E)=\{\underline{\boldsymbol{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\boldsymbol{t}}\}$

	응	$\underline{\mathrm{b}}$	e	i	t	\$
S	$\mathrm{S} \rightarrow$ 으			$\mathrm{S} \rightarrow$ 르tㅢS ${ }^{\prime}$		
\mathbf{S}^{\prime}						
E						

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathbf{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 5: $\mathrm{E} \rightarrow \underline{\mathrm{b}}$
If we are looking for an E and the next symbol is in FIRST(b)... Add that rule to the table

ibtiblyodo

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\mathbf{o}}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\mathrm{t}}\}$

	-	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ ㅇ			$\mathrm{S} \rightarrow \underline{\text { i }}$ EtSS'		
S^{\prime}						
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 3: $\mathrm{S}^{\prime} \rightarrow \boldsymbol{\operatorname { e }} \mathrm{S}$
If we are looking for an S^{\prime} and the next symbol is in FIRST(e S)... Add that rule to the table

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\mathbf{o}}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}, \$\}}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\boldsymbol{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\boldsymbol{t}}\}$

	응	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ 으			$\mathrm{S} \rightarrow \underline{\text { i }}$ EtSS ${ }^{\prime}$		
S'						
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathbf{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{~S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathbf{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 3: $S^{\prime} \rightarrow$ es
If we are looking for an S^{\prime} and the next symbol is in FIRST(e S)... Add that rule to the table

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\mathrm{t}}\}$

	-	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ ㅇ			$\mathrm{S} \rightarrow \underline{\text { i }}$ EtSS ${ }^{\prime}$		
\mathbf{S}^{\prime}			$S^{\prime} \rightarrow$ e S			
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}^{\prime}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 4: $\mathrm{S}^{\prime} \rightarrow \varepsilon$
If we are looking for an S^{\prime} and $\varepsilon \in$ FIRST(rhs)... Then if $\$ \in \operatorname{FOLLOW}\left(S^{\prime}\right)$... Add that rule under \$

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{t}\}$

	응	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ 으			$\mathrm{S} \rightarrow$ 르tㅢS ${ }^{\prime}$		
\mathbf{S}^{\prime}			$S^{\prime} \rightarrow$ e S			
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{~S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 4: $\mathrm{S}^{\prime} \rightarrow \varepsilon$
If we are looking for an S^{\prime} and $\varepsilon \in$ FIRST(rhs)... Then if $\$ \in \operatorname{FOLLOW}\left(S^{\prime}\right)$... Add that rule under \$

$\underline{i} \underline{t} \underline{i} \underline{b} \underline{t} \underline{e} \underline{o}$

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\mathbf{o}}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\mathrm{t}}\}$

	O	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ 으			$\mathrm{S} \rightarrow \underline{\text { i }}$ Et SS^{\prime}		
S'			$S^{\prime} \rightarrow \underline{\text { e }} \mathrm{S}$			$S^{\prime} \rightarrow \varepsilon$
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathrm{t}} \mathrm{S}^{\prime}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 4: $S^{\prime} \rightarrow \varepsilon$
If we are looking for an S^{\prime} and $\varepsilon \in$ FIRST(rhs)...
Then if $\underline{e} \in \operatorname{FOLLOW}\left(S^{\prime}\right) . .$. Add that rule under \underline{e}

$\underline{i} \underline{b} \underline{t} \underline{i} \underline{t} \underline{o} \underline{e} \underline{o}$

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{\text { o }}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}\left(S^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}(E)=\{\underline{b}\} \quad \operatorname{FOLLOW}(E)=\{\underline{t}\}$

	응	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ ㅇ			$\mathrm{S} \rightarrow$ íEtSS'		
\mathbf{S}^{\prime}			$S^{\prime} \rightarrow$ e S			$S^{\prime} \rightarrow \varepsilon$
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathbf{t}} \mathrm{SS}^{\prime}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

Look at Rule 4: $S^{\prime} \rightarrow \varepsilon$
If we are looking for an S^{\prime} and $\varepsilon \in$ FIRST(rhs)... Then if $\underline{e} \in$ FOLLOW(S')... Add that rule under \boldsymbol{e}

$\underline{\mathrm{i}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{b}} \underline{\mathrm{t}} \underline{\mathrm{o}} \underline{\mathrm{e}} \underline{o}$

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(S)=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}\left(S^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\mathrm{t}}\}$

Example: The "Dangling Else" Grammar

1.	$\mathrm{~S} \rightarrow \underline{\mathbf{i}} \mathrm{E}$ tS S'
2.	$\mathrm{~S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{~S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{~S}^{\prime} \rightarrow \varepsilon$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

CONFLICT!

Two rules in one table entry.

ibtibtoeq

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \boldsymbol{\$}\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\mathrm{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{t}\}$

	응	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ 응			$\mathrm{S} \rightarrow \underline{\text { i }}$ EtSS ${ }^{\prime}$		
\mathbf{S}^{\prime}			$\begin{aligned} & S^{\prime} \rightarrow \mathbf{e} S \\ & S^{\prime} \rightarrow \varepsilon \end{aligned}$			$S^{\prime} \rightarrow \varepsilon$
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Example: The "Dangling Else" Grammar

1.	$\mathrm{S} \rightarrow \underline{\mathbf{i}} \mathrm{E} \underline{\mathbf{t}} \mathrm{S} \mathrm{S}$
2.	$\mathrm{S} \rightarrow \underline{\mathbf{o}}$
3.	$\mathrm{S}^{\prime} \rightarrow \underline{\mathbf{e}} \mathrm{S}$
4.	$\mathrm{S}^{\prime} \rightarrow \boldsymbol{\varepsilon}$
5.	$\mathrm{E} \rightarrow \underline{\mathbf{b}}$

CONFLICT!
 Two rules in one table entry.
 The grammar is not $\operatorname{LL}(1)$!

$\underline{i} \underline{t} \underline{i} \underline{b} \underline{t} \underline{e} \underline{o}$

$\operatorname{FIRST}(S)=\{\underline{\mathbf{i}}, \underline{o}\} \quad \operatorname{FOLLOW}(\mathrm{S})=\{\underline{\mathbf{e}}, \mathbf{\$}\}$
$\operatorname{FIRST}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \varepsilon\} \quad \operatorname{FOLLOW}\left(\mathrm{S}^{\prime}\right)=\{\underline{\mathbf{e}}, \$\}$
$\operatorname{FIRST}(\mathrm{E})=\{\underline{\boldsymbol{b}}\} \quad \operatorname{FOLLOW}(\mathrm{E})=\{\underline{\boldsymbol{t}}\}$

	-	b	e	i	t	\$
S	$\mathrm{S} \rightarrow$ ㅇ			$\mathrm{S} \rightarrow \underline{\text { i }}$ EtSS ${ }^{\prime}$		
\mathbf{S}^{\prime}			$\begin{aligned} & \mathrm{S}^{\prime} \rightarrow \mathbf{e} S \\ & \mathrm{~S}^{\prime} \rightarrow \boldsymbol{\varepsilon} \end{aligned}$			$\mathrm{S}^{\prime} \rightarrow \varepsilon$
E		$\mathrm{E} \rightarrow \underline{\mathrm{b}}$				

Algorithm to Build the Table
 Input: Grammar G
 Output: Parsing Table, such that TABLE [A,b] = Rule to use or "ERROR/Blank"

Algorithm to Build the Table

Input: Grammar G
Output: Parsing Table, such that TABLE [A,b] = Rule to use or "ERROR/Blank"

Compute FIRST and FOLLOW sets

```
                                    Algorithm to Build the Table
Input: Grammar G
Output: Parsing Table, such that TABLE [A,b] = Rule to use or "ERROR/Blank"
Compute FIRST and FOLLOW sets
for each rule A }->\alpha\mathrm{ do
    for each terminal b in FIRST( }\alpha\mathrm{ ) do
        add A}->\alpha\mathrm{ to TABLE[A,b]
    endFor
```

endFor

```
                    Algorithm to Build the Table
Input: Grammar G
Output: Parsing Table, such that TABLE [A,b]= Rule to use or "ERROR/Blank"
Compute FIRST and FOLLOW sets
for each rule A }->\alpha\mathrm{ do
    for each terminal b in FIRST( }\alpha\mathrm{ ) do
        add A}->\alpha\mathrm{ to TABLE[A,b]
    endFor
    if }\varepsilon\mathrm{ is in FIRST( }\alpha\mathrm{ ) then
        for each terminal b in FOLLOW(A) do
            add A}->\alpha\mathrm{ to TABLE[A,b]
        endFor
    endIf
    endFor
```

```
                    Algorithm to Build the Table
Input: Grammar G
Output: Parsing Table, such that TABLE [A,b] = Rule to use or "ERROR/Blank"
Compute FIRST and FOLLOW sets
for each rule \(A \rightarrow \alpha\) do
    for each terminal \(b\) in FIRST ( \(\alpha\) ) do
        add \(\mathrm{A} \rightarrow \alpha\) to TABLE [A,b]
    endFor
    if \(\varepsilon\) is in FIRST \((\alpha)\) then
        for each terminal \(b\) in FOLLOW (A) do
                add \(A \rightarrow \alpha\) to TABLE[A,b]
            endFor
        if \(\$\) is in FOLLOW \((A)\) then
                add \(\mathrm{A} \rightarrow \alpha\) to TABLE[A,\$]
            endIf
    endIf
endFor
```

```
    Algorithm to Build the Table
Input: Grammar G
Output: Parsing Table, such that TABLE [A,b]= Rule to use or "ERROR/Blank"
Compute FIRST and FOLLOW sets
for each rule A }->\alpha\mathrm{ do
    for each terminal b in FIRST( }\alpha\mathrm{ ) do
        add A}->\alpha\mathrm{ to TABLE[A,b]
    endFor
    if }\varepsilon\mathrm{ is in FIRST( }\alpha\mathrm{ ) then
        for each terminal b in FOLLOW(A) do
            add A}->\alpha\mathrm{ to TABLE[A,b]
        endFor
        if $ is in FOLLOW(A) then
            add A}->\alpha\mathrm{ to TABLE[A,$]
            endIf
        endIf
endFor
TABLE[A,b] is undefined? Then set TABLE[A,b] to "error"
```

```
Algorithm to Build the Table
Input: Grammar G
Output: Parsing Table, such that TABLE [A,b] = Rule to use or "ERROR/Blank"
Compute FIRST and FOLLOW sets
for each rule \(A \rightarrow \alpha\) do
    for each terminal \(b\) in FIRST ( \(\alpha\) ) do
        add \(\mathrm{A} \rightarrow \alpha\) to TABLE[A,b]
    endFor
    if \(\varepsilon\) is in FIRST \((\alpha)\) then
        for each terminal \(b\) in FOLLOW (A) do
                add \(A \rightarrow \alpha\) to TABLE[A,b]
            endFor
        if \(\$\) is in FOLLOW \((\mathrm{A})\) then
                add \(\mathrm{A} \rightarrow \alpha\) to TABLE[A,\$]
            endIf
    endIf
endFor
TABLE[A,b] is undefined? Then set TABLE[A,b] to "error"
TABLE[A,b] is multiply defined?
The algorithm fails!!! Grammar G is not LL(1)!!!
```

LL(1) grammars

- Are never ambiguous.
- Will never have left recursion.

LL(1) Grammars

Furthermore...

Find Leftmost derivation

Scanning input left-to-right

If we are looking for an "A" and the next symbol is "b ",
Then only one production must be possible.

More Precisely...

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ are two rules
If $\alpha \Rightarrow^{*} \underline{\mathrm{a}} \ldots$ and $\beta \Rightarrow^{*} \underline{\mathrm{~b}} .$.
then we require $\underline{a} \neq \underline{b}$
(i.e., $\operatorname{FIRST}(\alpha)$ and $\operatorname{FIRST}(\beta)$ must not intersect)

If $\alpha \Rightarrow^{*} \varepsilon$
then $\beta \Rightarrow^{*} \varepsilon$ must not be possible.
(i.e., only one alternative can derive ε.)

If $\alpha \Rightarrow^{*} \varepsilon$ and $\beta \Rightarrow^{*} \underline{\mathrm{~b}} .$.
then \underline{b} must not be in FOLLOW(A)

Error Recovery

We have an error whenever...

- Stacktop is a terminal, but stacktop \neq input symbol
- Stacktop is a nonterminal but TABLE[A,b] is empty

Options

1. Skip over input symbols, until we can resume parsing Corresponds to ignoring tokens
2. Pop stack, until we can resume parsing

Corresponds to inserting missing material
3. Some combination of 1 and 2
4. "Panic Mode" - Use Synchronizing tokens

- Identify a set of synchronizing tokens.
- Skip over tokens until we are positioned on a synchronizing token.
- Pop stack until we can resume parsing.

Option 1: Skip Input Symbols

Example:
Decided to use rule

$$
S \rightarrow \text { IF E Then } S \text { else } S \text { end }
$$

Stack tells us what we are expecting next in the input.
We've already gotten IF and E
Assume there are extra tokens in the input.
if $(x<5))$) then $y=7 ; \ldots$
\uparrow
A syntax error occurs here.

We want to skip tokens until we can resume parsing.

Option 2: Pop The Stack

Example:

Decided to use rules

$$
\begin{aligned}
& \mathrm{S} \rightarrow \text { IF E THEN } S \text { ELSE } S \text { END } \\
& \mathrm{E} \rightarrow(\mathrm{E})
\end{aligned}
$$

We've already gotten if (E
Assume there are missing tokens.

A syntax error occurs here.

)
THEN
S
ELSE
S
$E N D$
...
$\$$

We want to pop the stack until we can resume parsing.

Panic Mode Recovery

The "Synchronizing Set" of tokens

... is determined by the compiler writer beforehand Example: \{ SEMI-COLON, RIGHT-BRACE \}

Skip input symbols until we find something in the synchronizing set.

Idea:

Look at the non-terminal on the stack top.
Choose the synchronizing set based on this non-terminal.
Assume A is on the stack top
Let SynchSet = FOLLOW(A)
Skip tokens until we see something in FOLLOW(A)
Pop A from the stack.
Should be able to keep going.

Idea:

Look at the non-terminals in the stack (e.g., A, B, C, ...)
Include FIRST(A), FIRST(B), FIRST(C), ... in the SynchSet.
Skip tokens until we see something in FIRST(A), FIRST(B), FIRST(C), ...
Pop stack until NextToken \in FIRST(NonTerminalOnStackTop)

Error Recovery - Table Entries

Each blank entry in the table indicates an error.
Tailor the error recovery for each possible error. Fill the blank entry with an error routine.

The error routine will tell what to do.

Error Recovery - Table Entries

Each blank entry in the table indicates an error.
Tailor the error recovery for each possible error.
Fill the blank entry with an error routine.
The error routine will tell what to do.

Example:

Error Recovery - Table Entries

Each blank entry in the table indicates an error.
Tailor the error recovery for each possible error.
Fill the blank entry with an error routine.
The error routine will tell what to do.

Example:

