

How to construct the ACTION and GOTO tables?

- Define "items"
- Define "viable prefix"
- Define the "closure function"

Set-of-items \rightarrow Set-of-items

- Define the GOTO function
- Work with a set of sets of items

A collection of sets of items
$\mathrm{CC}=$ Cannonical Collection of LR items

- Describe how to construct CC
- Given all this, describe how to construct the tables

$\underline{\mathbf{L R}(0) \text { Items }}$

Given: A grammar, G
Items look like productions
... augmented with a dot in the righthand side.

Grammar:

$$
\begin{array}{|ll}
\hline \text { 1. } & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
\text { 2. } & \mathrm{E} \rightarrow \mathrm{~T} \\
\text { 3. } & \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
\text { 4. } & \mathrm{T} \rightarrow \mathrm{~F} \\
\text { 5. } & \mathrm{F} \rightarrow \text { (} \mathrm{E}) \\
\text { 6. } & \mathrm{F} \rightarrow \text { id } \\
\hline
\end{array}
$$

Special Case:
Rule:

$$
A \rightarrow \varepsilon
$$

Yields one item:

$$
\mathrm{A} \rightarrow \text { • }
$$

The Items:

$$
\begin{array}{ll}
\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T} & \mathbf{T} \rightarrow \cdot \mathbf{F} \\
\mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T} & \mathbf{T} \rightarrow \mathbf{F} \cdot \\
\mathbf{E} \rightarrow \mathbf{E}+\bullet \mathbf{T} & \mathbf{F} \rightarrow \cdot(\mathbf{E}) \\
\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \cdot & \mathbf{F} \rightarrow(\cdot \mathbf{E}) \\
\mathbf{E} \rightarrow \cdot \mathbf{T} & \mathbf{F} \rightarrow(\mathbf{E} \cdot) \\
\mathbf{E} \rightarrow \mathbf{T} \cdot & \mathbf{F} \rightarrow(\mathbf{E}) \cdot \\
\mathbf{T} \rightarrow \cdot \mathbf{T} * \mathbf{F} & \mathbf{F} \rightarrow \bullet \mathbf{i d} \\
\mathbf{T} \rightarrow \mathbf{T} \cdot \star \mathbf{F} & \mathbf{F} \rightarrow \underline{\text { id }} \cdot \\
\mathbf{T} \rightarrow \mathbf{T} * \cdot \mathbf{F} & \\
\mathbf{T} \rightarrow \mathbf{T} * \mathbf{F} \cdot &
\end{array}
$$

$\underline{\text { LR(1) Items }}$

Just like before, except...

- Look-ahead symbol
- Terminal symbol from grammar

Grammar:

$$
\begin{array}{|ll}
\hline \text { 1. } & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
\text { 2. } & \mathrm{E} \rightarrow \mathrm{~T} \\
\text { 3. } & \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
\text { 4. } & \mathrm{T} \rightarrow \mathrm{~F} \\
\text { 5. } & \mathrm{F} \rightarrow \text { (} \mathrm{E}) \\
\text { 6. } & \mathrm{F} \rightarrow \text { id } \\
\hline
\end{array}
$$

Examples:

$\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathrm{T}$,
$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T}, \$$
$\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$,)
$\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}, \$$
© Harry H. Porter, 2005

Syntax Analysis - Part 3

Intuition behind LR(1) Items

F \rightarrow (•E) ,)

We were hoping / expecting to see an \mathbf{F} next, followed by a) and we have already seen a (.

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

We are on the path to finding an \mathbf{F}, followed by a).
Using rule 5 , one way to find an \mathbf{F} is to find (\mathbf{E}) next.
So now we are looking for \mathbf{E}), followed by a).

```
F ( E ) •, )
```

We were looking for an \mathbf{F}, followed by a) and we have found (E)
If a) comes next then the parse is going great! ... Now reduce, using rule $\mathbf{F} \rightarrow$ (E)

Syntax Analysis - Part 3

Intuition behind LR(1) Items

F \rightarrow • (E$),$)

It would be legal at this point in the parse
to see an \mathbf{F}, followed by a).

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathbf{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

Using rule 5, one way to find an \mathbf{F} is to find (\mathbf{E}) next.
So, among other possibilities, we are looking for (\mathbf{E}), followed by a).
If a (comes next, then let's scan it and keep going,
looking for \mathbf{E}), followed by a).
If we get \mathbf{E}) later, then we will be able to reduce it to \mathbf{F}
... but we may get something different (although perfectly legal).
$\mathbf{E} \rightarrow \bullet \mathbf{T}$,)
It would be legal at this point in the parse
to see an \mathbf{E}, followed by a).
Using rule 2, one way to find an \mathbf{E} is to find \mathbf{T} next.
So, among other possibilities, we are looking for a \mathbf{T} followed by a).
And how can we find a \mathbf{T} followed by a)?

$$
\begin{aligned}
& \mathbf{T} \rightarrow \bullet \mathbf{T} * \mathbf{F},) \\
& \mathbf{T} \rightarrow \bullet \mathbf{F}, \text {) }
\end{aligned}
$$

Syntax Analysis - Part 3

Step 1

Augment the grammar by adding...

- A new start symbol, \mathbf{S}^{\prime}
- A new rule $\mathbf{S}^{\prime} \rightarrow \mathbf{S}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $F \rightarrow(E)$
6. $F \rightarrow$ id

Our goal is to find an \mathbf{S}^{\prime}, followed by $\$$.

$$
\mathbf{S}^{\prime} \rightarrow \cdot \mathbf{E}, \$
$$

Whenever we are about to reduce using rule $0 \ldots$
Accept! Parse is finished!

The CLOSURE Function

Let's say we have this item:

$$
\mathbf{E} \rightarrow \cdot \mathbf{T},)
$$

What are the ways to find a T?

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~F} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F}
\end{aligned}
$$

We are looking for a T, followed by a), so we'll need to add these items:

$$
\begin{aligned}
& \mathrm{T} \rightarrow \cdot \mathbf{F}, \text {) } \\
& \mathrm{T} \rightarrow \cdot \mathbf{T} * \mathbf{F}, \text {) }
\end{aligned}
$$

We can find a \mathbf{T} followed by a) if we find an \mathbf{F} following by a).
How can we find that?

$$
\begin{aligned}
& \mathbf{F} \rightarrow \bullet(\mathbf{E}),) \\
& \mathbf{F} \rightarrow \cdot \underline{i d},)
\end{aligned}
$$

We can also find a \mathbf{T} followed by a) if we find an $\mathbf{T} * \mathbf{F}$ following by a).
To find that, we need to first find another T, but followed by *.

$$
\begin{aligned}
& \mathrm{T} \rightarrow \cdot \mathrm{~F}, * \\
& \mathrm{~T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, *
\end{aligned}
$$

So we should also look for a \mathbf{F} followed by a *.

$$
\begin{aligned}
& \mathbf{F} \rightarrow \bullet(\mathbf{E}), * \\
& \mathbf{F} \rightarrow \bullet i d, *
\end{aligned}
$$

The CLOSURE Function

Given:
$I=$ a set of items

Output:
CLOSURE(I) $=$ a new set of items
Algorithm:
result $=$ \{ \}
add all items in I to result
repeat
for every item $\mathrm{A} \rightarrow \beta \cdot \mathrm{C} \delta$, a in result do for each rule $C \rightarrow \gamma$ in the grammar do for each b in FIRST (δa) do add $\mathbf{C} \rightarrow \bullet \gamma, b$ to result
endFor endFor
endFor
until we can't add anything more to result

CLOSURE Function Example

$$
\begin{aligned}
\text { Example: Let } \mathrm{I}_{1}=\left\{\begin{array}{l}
\mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},) \\
\mathbf{T}
\end{array} \begin{array}{rl}
\mathbf{T} \bullet * \mathbf{F}, \\
\mathbf{F} & \rightarrow \mathbf{i d} \cdot,) \\
\mathbf{F} & \rightarrow(\mathbf{E}) \bullet,)
\end{array}\right. \\
\}
\end{aligned}
$$

Compute: CLOSURE (I_{1}) $=\{$

CLOSURE Function Example

Compute: CLOSURE (I_{1}) = \{
Start by adding all items in I...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},) \\
& \mathbf{T} \rightarrow \mathbf{T} \star \mathbf{F},) \\
& \left.\mathbf{F} \rightarrow \mathrm{id}^{\bullet} \cdot\right) \\
& \mathbf{F} \rightarrow(\mathbf{E}) \cdot,)
\end{aligned}
$$

Syntax Analysis - Part 3

CLOSURE Function Example

$$
\begin{aligned}
\text { Example: Let } \mathrm{I}_{1}=\left\{\begin{array}{l}
\mathbf{E} \rightarrow \mathbf{E} \bullet+\mathbf{T},) \\
\mathbf{T} \rightarrow \mathbf{T} \bullet * \mathbf{F},
\end{array}\right) \\
\mathbf{F} \rightarrow \mathbf{i d} \cdot,) \\
\mathbf{F} \rightarrow(\mathbf{E}) \bullet,) \\
\}
\end{aligned}
$$

Compute: CLOSURE (I_{1}) = \{
Start by adding all items in I...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},) \\
& \mathbf{T} \rightarrow \mathbf{T} \star \mathbf{F},) \\
& \mathbf{F} \rightarrow \mathbf{i d} \cdot,) \\
& \mathbf{F} \rightarrow(\mathbf{E}) \cdot,)
\end{aligned}
$$

Is the dot in front of a non-terminal?

CLOSURE Function Example

Example: Let $\mathrm{I}_{1}=\{\mathbf{E} \rightarrow \mathbf{E} \cdot+\mathrm{T}$,)

$$
T \rightarrow T \bullet * F,)
$$

$$
\mathbf{F} \rightarrow \underline{\text { id }} \cdot, \text {) }
$$

$$
F \rightarrow(\bar{E}) \cdot,)
$$

\}
Compute: CLOSURE (I_{1}) = \{
Start by adding all items in I...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},) \\
& \mathbf{T} \rightarrow \mathbf{T} \star \mathbf{F},) \\
& \left.\mathbf{F} \rightarrow \mathrm{id}^{\bullet} \cdot\right) \\
& \mathbf{F} \rightarrow(\mathbf{E}) \cdot,)
\end{aligned}
$$

Is the dot in front of a non-terminal?
No... no more items are added.
\}

CLOSURE Function Example

Example: Let $\left.\mathrm{I}_{\mathbf{2}}=\{\underset{\mathrm{T} \rightarrow \bullet \cdot \mathrm{F},}{\mathrm{T}} \boldsymbol{\rightarrow} \cdot \mathrm{T} * \mathrm{~F}),\right\}$
Compute: CLOSURE (I_{2}) = \{ Start by adding...
0. $S^{\prime} \rightarrow \mathbf{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E)
6. $F \rightarrow$ id

CLOSURE Function Example

Compute: CLOSURE (I_{2}) $=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first...

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\{\underset{\mathrm{T}}{\mathrm{T} \rightarrow \bullet \cdot \mathrm{F}, \text {) }}$
Compute: CLOSURE (I_{2}) $=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\{\mathrm{T} \rightarrow \cdot \mathrm{F}$,)

$$
\mathbf{T} \rightarrow \cdot \mathbf{T} * \mathbf{F},)\}
$$

Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \bullet \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$
(3) $\mathrm{F} \rightarrow \cdot(\mathrm{E})$,)
(4) $\mathrm{F} \rightarrow \cdot \underline{\text { id }}$,)

Look at (2) next...

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Let $\mathrm{I}_{\mathbf{2}}=\{\mathrm{T} \rightarrow \cdot \mathrm{F}$,)

$$
\mathbf{T} \rightarrow \cdot \mathbf{T} * \mathbf{F},)\}
$$

Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin FIRST $(\varepsilon))=\{)\} \ldots$
(3) $F \rightarrow \cdot(E)$,)
(4) $\mathrm{F} \rightarrow \cdot \underline{\text { id }}$,)

Look at (2) next. Look at each T rule. For every bin FIRST (*F)) $=\{*\} \ldots$
(5) $\mathrm{T} \rightarrow \cdot \mathrm{F}$, *
(6) $\mathrm{T} \rightarrow \cdot \mathrm{T} * \mathrm{~F}$, *

Look at (3) and (4) next...

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\{\mathrm{T} \rightarrow \cdot \mathrm{F}$,)

$$
\mathbf{T} \rightarrow \cdot \mathbf{T} * \mathbf{F},)\}
$$

Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$
(3) $F \rightarrow \cdot(E)$,)
(4) $\mathrm{F} \rightarrow \cdot$ id,)

Look at (2) next. Look at each T rule. For every bin FIRST (*F)) $=\{*\} \ldots$
(5) $\mathrm{T} \rightarrow \cdot \mathrm{F}$, *
(6) $\mathrm{T} \rightarrow \cdot \mathrm{T} * \mathrm{~F}$, *

Look at (3) and (4) next. The dot is not in front of a non-terminal. Look at (5) next...

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\left\{\begin{array}{c}\mathrm{T} \rightarrow \bullet \mathrm{F}, \\ \mathrm{T} \rightarrow \bullet \mathrm{T}\end{array}\right)$
Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \bullet \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$
(3) $\mathrm{F} \rightarrow \cdot(\mathrm{E})$,)
(4) $\mathrm{F} \rightarrow \cdot \underline{\text { id }}$,)

Look at (2) next. Look at each Trule. For every bin $\operatorname{FIRST}(* F))=\{*\} \ldots$
(5) $\mathrm{T} \rightarrow \cdot \mathrm{F}$, *
(6) $\mathrm{T} \rightarrow \cdot \mathrm{T} * \mathrm{~F}$, *

Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every b in FIRST $\left(\varepsilon^{\star}\right)=\{*\} \ldots$

> (7) $\mathrm{F} \rightarrow \cdot(\mathrm{E}),{ }^{\text {(}}$
> (8) $\mathrm{F} \rightarrow \cdot$ id, *

Look at (6) next...

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\{\mathrm{T} \rightarrow \cdot \mathrm{F}$,)

$$
T \rightarrow \cdot T * F,)\}
$$

Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$

> (3) $F \rightarrow \cdot(E)$,
> (4) $F \rightarrow$ id, id

Look at (2) next. Look at each Trule. For every bin FIRST (*F)) $=\{*\} \ldots$
(5) $\mathrm{T} \rightarrow \cdot \mathrm{F}$, *
(6) $\mathrm{T} \rightarrow \cdot \mathrm{T} * \mathrm{~F}$, *

Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every bin $\operatorname{FIRST}\left(\varepsilon^{*}\right)=\{*\} \ldots$

> (7) $\mathrm{F} \rightarrow$ •(E), *
> (8) $\mathrm{F} \rightarrow$ - id, *

Look at (6) next. Look at each Trule. For every bin FIRST ($* \mathrm{~F} *)=\{*\} \ldots$
We already added (5) and (6)
Look at (7) and (8) next...

CLOSURE Function Example

Example: Let $\mathrm{I}_{2}=\{\mathrm{T} \rightarrow \bullet \mathrm{F}$,)

$$
T \rightarrow \cdot T * F,)\}
$$

Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{2}\right)=\{$
Start by adding all items in I...
(1) $\mathrm{T} \rightarrow \cdot \mathrm{F}$,)
(2) $T \rightarrow \cdot T * F$,)

Look at (1) first. Look at each F rule. For every bin $\operatorname{FIRST}(\varepsilon))=\{)\} \ldots$

> (3) $\mathrm{F} \rightarrow \cdot(\mathrm{E})$,)
> (4) $\mathrm{F} \rightarrow$-id,

Look at (2) next. Look at each Trule. For every bin FIRST (*F)) $=\{*\} \ldots$
(5) $\mathrm{T} \rightarrow \cdot \mathrm{F}$, *
(6) $\mathrm{T} \rightarrow \cdot \mathrm{T} * \mathrm{~F}$, *

Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every bin $\operatorname{FIRST}\left(\varepsilon^{*}\right)=\{*\} \ldots$

> (7) $\mathrm{F} \rightarrow$ •(E),$*$
> (8) $\mathrm{F} \rightarrow$ - id, *

Look at (6) next. Look at each Trule. For every bin FIRST ($* \mathrm{~F} *)=\{*\} \ldots$
We already added (5) and (6)
Look at (7) and (8) next. The dot is not in front of a non-terminal.

CLOSURE Function Example

Example: Let $\left.\mathrm{I}_{3}=\{\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathrm{T}),\right\}$
Compute: $\operatorname{CLOSURE}\left(\mathrm{I}_{3}\right)=\{$

$$
\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},)
$$

Look at \mathbf{E} rules. For every b in $\operatorname{FIRST}(+\mathbf{T}))=\{+\} \ldots$
0. $S^{\prime} \rightarrow \mathrm{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E$)$
6. $F \rightarrow$ id

$$
\begin{aligned}
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+ \\
& \mathbf{E} \rightarrow \cdot \mathbf{T},+
\end{aligned}
$$

Look at E rules. For every b in FIRST ($+\mathbf{T}+$)... (Nothing new added)
Look at T rules. For every b in $\operatorname{FIRST}(\varepsilon+)=\{+\}$

$$
\begin{aligned}
& \mathbf{T} \rightarrow \cdot \mathbf{T} * \mathbf{F},+ \\
& \mathbf{T} \rightarrow \cdot \mathbf{F},+
\end{aligned}
$$

Look at T rules. For every b in $\operatorname{FIRST}(* \mathrm{~F}+)=\{*\}$

$$
\begin{aligned}
& \mathrm{T} \rightarrow \cdot \mathbf{T} * \mathbf{F}, * \\
& \mathrm{~T} \rightarrow \cdot \mathbf{F}, *
\end{aligned}
$$

Look at \mathbf{F} rules. For every b in $\operatorname{FIRST}(\varepsilon+)=\{+\}$

$$
\begin{aligned}
& \text { F } \rightarrow \cdot(E),+ \\
& F \rightarrow \bullet \text { id },+
\end{aligned}
$$

Look at \mathbf{F} rules. For every bin $\operatorname{FIRST}\left(\varepsilon^{*}\right)=\{*\}$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}), *
$$

$$
\mathbf{F} \rightarrow \cdot \underline{i d}, *
$$

\}

Syntax Analysis - Part 3

The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...
function $\operatorname{GOTO}(I, X)$ returns a set of items In other words, move result $=$ \{\}
look at all items in I...
if $A \rightarrow \alpha \cdot \mathbf{X} \delta, a$ is in I then add $\mathbf{A} \rightarrow \alpha \mathbf{X} \cdot \delta$, a to result result $=$ CLOSURE (result) the dot past the X in any items where it is in front of an X
...and take the CLOSURE of whatever items you get

The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...

...and take the CLOSURE

Intuition:

 of whatever items you get- I is a set of items indicating where we are so far, after seeing some prefix γ of the input.
- I describes what we might legally see next.
- Assume we get an X next.
- Now we have seen some prefix $\gamma \mathrm{X}$ of the input.
- $\operatorname{GOTO}(\mathrm{I}, \mathrm{X})$ tells what we could legally see after that.
- $\operatorname{GOTO}(\mathrm{I}, \mathrm{X})$ is the set of all items that are "valid" for prefix $\gamma \mathrm{X}$.

GOTO Function Example

Example: Let $\mathrm{I}_{4}=\{\mathrm{E} \rightarrow \mathrm{T} \cdot$,)

$$
T \rightarrow T \cdot * F,)\}
$$

Compute: $\operatorname{GOTO}\left(\mathrm{I}_{4}, *\right)=\{$
Is the \cdot in front of $*$ in any of the items?

$$
T \rightarrow T * \cdot F,)
$$

0. $S^{\prime} \rightarrow \mathrm{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $T \rightarrow T * F$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E)
6. $F \rightarrow$ id

Now take the closure...

$$
\begin{aligned}
& F\rightarrow \cdot(E),) \\
& F\rightarrow \cdot \underline{i d},) \\
&\}
\end{aligned}
$$

Intuition:
We found a \mathbf{T} and then we found $\mathrm{a} *$. What are we looking for next?

$$
T \rightarrow T * \cdot F,)
$$

Means: We are now looking for an F followed by)

$$
\mathrm{F} \rightarrow \cdot(\mathrm{E}),)
$$

Means: We could find that by finding (E) followed by) $\mathrm{F} \rightarrow$ • id,)

Means: We could find that by finding (E) followed by)

GOTO Function Example

Example: Let $\mathrm{I}_{5}=\{\mathrm{E} \rightarrow \cdot \mathrm{T}$,)

$$
T \rightarrow \cdot T * F,)\}
$$

Compute: $\operatorname{GOTO}\left(\mathrm{I}_{5}, \mathrm{~T}\right)=\{$
Is the \cdot in front of T in any of the items?

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \bullet,) \\
& \mathrm{T} \rightarrow \mathrm{~T} \cdot * \mathrm{~F},)
\end{aligned}
$$

0. $\mathrm{S}^{\prime} \rightarrow \mathrm{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E$)$
6. $F \rightarrow$ id

Now take the closure...
Is the • in from of any non-terminal? Nothing more added...
\}

Intuition:

We were looking for a T. Then we found it. What are we looking for next?

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \cdot, \text {) } \\
& \text { Means: We are now looking for) } \\
& \mathrm{T} \rightarrow \mathrm{~T} \cdot * \mathrm{~F}, \text {) }
\end{aligned}
$$

Means: We are now looking for * F followed by)

Constructing the Canonical Collection

Each CC_{i} will be a set of items.
We will build up a collection of these.
$=$ "The Canonical Collection of LR(1) items"
$=$ a set of sets of items
$=\left\{\mathrm{CC}_{0}, \mathrm{CC}_{1}, \mathrm{CC}_{2}, \mathrm{CC}_{3}, \ldots \mathrm{CC}_{\mathrm{N}}\right\}$

Syntax Analysis - Part 3

Constructing the Canonical Collection

Each CC_{i} will be a set of items.
We will build up a collection of these.
$=$ "The Canonical Collection of LR(1) items"
= a set of sets of items
$=\left\{\mathrm{CC}_{0}, \mathrm{CC}_{1}, \mathrm{CC}_{2}, \mathrm{CC}_{3}, \ldots \mathrm{CC}_{\mathrm{N}}\right\}$
Algorithm to construct $\mathbb{C} \mathbb{C}$, the Canonical Collection of LR(1) Items:
let $\mathrm{CC}_{\mathbf{0}}=\operatorname{CLOSURE}\left(\left\{\mathbf{S}^{\prime} \rightarrow \bullet \mathbf{S}, \$\right\}\right)$
add CC_{0} to $\mathbb{C C}$
repeat
let CC_{i} be some set of items already in $\mathbb{C} \mathbb{C}$ for each X (that follows a in some item in CC_{i})... compute $\mathrm{CC}_{\mathrm{k}}=\mathrm{GOTO}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{X}\right)$ if CC_{k} is not already in $\mathbb{C} \mathbb{C}$ then add it
set $\operatorname{MOVE}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{X}\right)=\mathrm{CC}_{\mathrm{k}}$ endIf
endFor
until nothing more can be added to $\mathbb{C} \mathbb{C}$

Example:

$$
\mathrm{CC}_{\mathbf{0}}=\operatorname{CLOSURE}\left(\left\{\mathbf{S}^{\prime} \rightarrow \cdot \mathrm{E}, \overline{\$\}}\right)\right.
$$

$$
=\left\{\mathbf{S}^{\prime} \rightarrow \bullet \mathbf{E}, \$\right.
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T}, \$
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{T}, \$
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{T},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, \$
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, *
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F}, \$
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~F}, *
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}), \$
$$

$$
F \rightarrow \cdot(\mathbf{E}),+
$$

$$
\mathrm{F} \rightarrow \cdot(\mathrm{E}), *
$$

$$
\mathrm{F} \rightarrow \cdot \underline{i d}, \$
$$

$$
\mathrm{F} \rightarrow \cdot \underline{\underline{\mathrm{dd}}},+
$$

$$
\mathbf{F} \rightarrow \cdot \underline{\underline{i d}}, *\}
$$

Example:

$$
\begin{aligned}
\mathrm{CC}_{\mathbf{0}} & =\operatorname{CLOSURE}\left(\left\{\mathbf{S}^{\prime} \rightarrow \bullet \mathbf{E}, \$\right\}\right) \\
& =\left\{\mathbf{S}^{\prime} \rightarrow \cdot \mathbf{E}, \$\right.
\end{aligned}
$$

$$
\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T}, \$
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{T}, \$
$$

> 0. $\mathrm{S}^{\prime} \rightarrow \mathrm{E}$
> 1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
> 2. $\mathrm{E} \rightarrow \mathrm{T}$
> 3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
> 4. $\mathrm{T} \rightarrow \mathrm{F}$
> 5. $\mathrm{F} \rightarrow$ (E$)$
> 6. $F \rightarrow$ id

$$
\mathbf{E} \rightarrow \cdot \mathbf{T},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, \$
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathbf{F},+
$$

$$
\mathrm{T} \rightarrow \bullet \mathrm{~T} * \mathrm{~F}, *
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F}, \$
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F},+
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F}, *
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}), \$
$$

$$
F \rightarrow \cdot(\mathbf{E}),+
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}), *
$$

$$
\mathrm{F} \rightarrow \cdot \underline{i d}, \$
$$

$$
\mathrm{F} \rightarrow \cdot \underline{\underline{\mathrm{id}}},+
$$

9 The \bullet is before $\mathbf{E}, \mathbf{T}, \mathbf{F}$, id , and (...
Next, we'll compute...

$$
\begin{array}{ll}
\operatorname{GOTO}\left(\mathrm{CC}_{0}, \mathrm{E}\right) & \Rightarrow \mathrm{CC}_{1} \\
\text { GOTO }\left(\mathrm{CC}_{0}, \mathrm{~T}\right) & \Rightarrow \mathrm{CC}_{2} \\
\text { GOTO }\left(\mathrm{CC}_{\mathbf{0}}, \mathbf{F}\right) & \Rightarrow \mathrm{CC}_{3} \\
\text { GOTO }\left(\mathrm{CC}_{0}, \text { id }\right) & \Rightarrow \mathrm{CC}_{5} \\
\text { GOTO }\left(\mathrm{CC}_{0}, \mathbf{()}\right. & \Rightarrow \mathrm{CC}_{4}
\end{array}
$$

$$
\mathbf{F} \rightarrow \cdot \overline{\mathrm{id}}, *\}
$$

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{0}}, \mathrm{E}\right)=\mathrm{CC}_{\underline{1}}$

Advance \bullet past \mathbf{E} in the items containing ${ }^{\bullet} \mathbf{E}$

$$
\mathrm{CC}_{1}=\{
$$

$$
\begin{aligned}
& S^{\prime} \rightarrow \mathbf{E} \cdot, \$ \\
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T}, \$ \\
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},+
\end{aligned}
$$

And take the closure... (Nothing more added.) \}

Intuition:

We will reduce by $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$ if the next symbol is $\$$.
Otherwise, we we will look for a + next.
The \bullet is in front of + . We'll come back to $\mathrm{CC}_{\mathbf{1}}$ later.

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{0}}, \mathrm{~T}\right)=\mathrm{CC}_{\underline{2}}$

Advance \cdot past T

$$
\mathrm{CC}_{2}=\{
$$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \bullet, \$ \\
& \mathbf{E} \rightarrow \mathbf{T} \bullet,+ \\
& \mathbf{T} \rightarrow \mathbf{T} \bullet \star \mathbf{F}, \$ \\
& \mathbf{T} \rightarrow \mathbf{T} \bullet \star \mathbf{F},+ \\
& \mathbf{T} \rightarrow \mathbf{T} \bullet \star \mathbf{F}, \star
\end{aligned}
$$

And take the closure...

$$
\}
$$

Intuition:

We will reduce by $\mathbf{T} \rightarrow \mathbf{F}$ if the next symbol is $\$$ or + . Otherwise, we will look for *.

The \bullet is in front of $*$. We'll come back to CC_{2} later.

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{0}}, \mathrm{~F}\right)=\mathrm{CC}_{\underline{3}}$

Advance - past \mathbf{F}

$$
\begin{aligned}
\mathrm{CC}_{3}=\{ & \\
\mathrm{T} & \rightarrow \mathbf{F} \bullet, \$ \\
\mathbf{T} & \rightarrow \mathbf{F} \bullet,+ \\
\mathbf{T} & \rightarrow \mathbf{F} \bullet, \star
\end{aligned}
$$

0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathbf{F} \rightarrow(\mathbf{E})$
6. $F \rightarrow$ id

And take the closure...

$$
\}
$$

Intuition:

We will reduce by $\mathbf{T} \rightarrow \mathbf{F}$ if the next symbol is $\$,+$, or $*$.
The • is not in front of any symbol; no further "GOTO"s.

Syntax Analysis - Part 3

Advance • past id

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{0}}\right.$, id $)=\mathrm{CC}_{\underline{5}}$

$\mathrm{CC}_{5}=\{$

$$
\begin{aligned}
& \mathbf{F} \rightarrow \text { id }^{\circ} \cdot, \$ \\
& \mathbf{F} \rightarrow \text { id }^{\circ} \cdot+ \\
& \mathbf{F} \rightarrow \text { id }^{\circ} \cdot,
\end{aligned}
$$

0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathbf{F} \rightarrow(\mathbf{E})$
6. $F \rightarrow$ id

And take the closure...
\}

Intuition:

We will reduce after seeing an id, if the next symbol is,$+ *$, or $\$$.
The • is not in front of any symbol; no further "GOTO"s.

$$
\begin{aligned}
\text { Advance } \cdot \text { past } & \left(\quad \mathrm { GOTO } \left(\mathrm{CC}_{\underline{0}}()=\mathrm{CC}_{4}\right.\right. \\
\mathrm{CC}_{\mathbf{4}}=\{\mathbf{F} & \rightarrow(\cdot \mathbf{E}), \$ \\
\mathbf{F} & \rightarrow(\cdot \mathbf{E}),+ \\
\mathbf{F} & \rightarrow(\cdot \mathbf{E}), \star
\end{aligned}
$$

And take the closure...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T}, \text {) } \\
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+ \\
& \mathbf{E} \rightarrow \bullet \mathbf{T}, \text {) } \\
& \mathbf{E} \rightarrow \bullet \mathbf{T},+ \\
& \mathrm{T} \rightarrow \bullet \mathrm{~T} * \mathbf{F} \text {,) } \\
& \mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F},+ \\
& \mathrm{T} \rightarrow \text { • } \mathrm{T} * \mathrm{~F} \text {, * } \\
& \mathbf{T} \rightarrow \bullet \mathbf{F}, \text {) } \\
& \mathbf{T} \rightarrow \bullet \mathbf{F},+ \\
& \mathbf{T} \rightarrow \bullet \mathbf{F} \text {, * } \\
& \mathbf{F} \rightarrow \cdot(\mathbf{E}), \text {) } \\
& \mathbf{F} \rightarrow \text { • (} \mathbf{E}),+ \\
& \mathbf{F} \rightarrow \text { • (} \mathbf{E} \text {), * } \\
& F \rightarrow \text { id,) } \\
& F \rightarrow \text { •id, + } \\
& F \rightarrow \text { id, * }\}
\end{aligned}
$$

The \bullet is before $\mathbf{E}, \mathbf{T}, \mathbf{F}$, (, and id...
Next, we'll compute...

$$
\begin{array}{ll}
\text { GOTO }\left(\mathrm{CC}_{4}, \mathrm{E}\right) & \Rightarrow \mathrm{CC}_{8} \\
\text { GOTO }\left(\mathrm{CC}_{4}, \mathrm{~T}\right) & \Rightarrow \mathrm{CC}_{9} \\
\text { GOTO }\left(\mathrm{CC}_{4}, \mathrm{~F}\right) & \Rightarrow \mathrm{CC}_{10} \\
\text { GOTO }\left(\mathrm{CC}_{4}, \mathbf{(}\right) & \Rightarrow \mathrm{CC}_{11} \\
\text { GOTO }\left(\mathrm{CC}_{4}, \underline{\text { id }}\right) & \Rightarrow \mathrm{CC}_{12}
\end{array}
$$

Syntax Analysis - Part 3

$$
\left.\begin{array}{ll}
\mathrm{CC}_{1}=\{ & \mathrm{S}^{\prime} \rightarrow \mathbf{E} \bullet, \$ \\
& \mathbf{E} \rightarrow \mathbf{E} \bullet+\mathbf{T}, \$ \\
& \mathbf{E} \rightarrow \mathbf{E} \bullet+\mathbf{T},+
\end{array}\right\}
$$

Advance \bullet past + in the items containing $\bullet+$ $\mathrm{CC}_{6}=\left\{\begin{array}{l}\mathrm{E} \rightarrow \mathrm{E}+\cdot \mathrm{T}, \$ \\ \mathrm{E} \rightarrow \mathrm{E}+\cdot \mathrm{T},+\end{array}\right.$
And take the closure...

$$
\begin{aligned}
& \mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathbf{F}, \$ \\
& \mathrm{~T} \rightarrow \cdot \mathrm{~T} * \mathbf{F},+ \\
& \mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathbf{F}, * \\
& \mathrm{~T} \rightarrow \cdot \mathbf{F}, \$ \\
& \mathrm{~T} \rightarrow \cdot \mathbf{F},+ \\
& \mathrm{T} \rightarrow \cdot \mathbf{F}, * \\
& \mathrm{~F} \rightarrow \cdot(\mathrm{E}), \$ \\
& \mathrm{~F} \rightarrow \cdot(\mathrm{E}),+ \\
& \mathrm{F} \rightarrow \cdot(\mathrm{E}), * \\
& \mathrm{~F} \rightarrow \cdot \mathbf{i d}, \$ \\
& \mathrm{~F} \rightarrow \cdot \underline{i d},+ \\
& \mathrm{F} \rightarrow \cdot \underline{i d}, *
\end{aligned}
$$

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{22} \star{ }_{2}\right)=\mathrm{CC}_{7}$

$$
\mathrm{CC}_{2}=\{
$$

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \cdot, \$ \\
& \mathbf{E} \rightarrow \mathrm{~T} \cdot,+ \\
& \mathbf{T} \rightarrow \mathrm{T} \bullet \star \mathbf{F}, \$ \\
& \mathbf{T} \rightarrow \mathrm{~T} \cdot \star \mathbf{F},+ \\
& \mathbf{T} \rightarrow \mathrm{T} \cdot \star \mathbf{F}, *
\end{aligned}
$$

0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathbf{F} \rightarrow(\mathbf{E})$
6. $F \rightarrow$ id

Advance - past *
$\mathrm{CC}_{7}=\{$

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~T} * \cdot \mathbf{F}, \$ \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \cdot \mathbf{F},+ \\
& \mathrm{T} \rightarrow \mathrm{~T} * \cdot \mathbf{F},
\end{aligned}
$$

And take the closure...

$$
\begin{aligned}
& \mathbf{F} \rightarrow \cdot(\mathbf{E}), \$ \\
& \mathbf{F} \rightarrow \cdot(\mathbf{E}),+ \\
& \mathbf{F} \rightarrow \cdot(\mathbf{E}), * \\
& \mathbf{F} \rightarrow \bullet \mathbf{i d}, \$ \\
& \mathbf{F} \rightarrow \bullet i d,+ \\
& \mathbf{F} \rightarrow \cdot i \underline{i d}, * \\
&\}
\end{aligned}
$$

Intuition:

We have found \mathbf{T} *.
Next, look for a \mathbf{F} followed by $\$,+$, or *.

Syntax Analysis - Part 3

Syntax Analysis - Part 3

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{4}, \mathrm{E}\right)=\mathrm{CC}_{\underline{8}}$

$$
\begin{aligned}
& \mathrm{CC}_{8}=\{ \\
& \mathrm{F} \rightarrow(\mathrm{E} \cdot), \$ \\
& \mathrm{~F} \rightarrow(\mathrm{E} \cdot),+ \\
& \mathrm{F} \rightarrow \text { (E•), * } \\
& \mathrm{E} \rightarrow \mathrm{E} \cdot+\mathrm{T} \text {,) } \\
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathbf{T},+
\end{aligned}
$$

0. $S^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $T \rightarrow T * F$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E)
6. $F \rightarrow$ id

And take the closure...

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{4}}, \mathrm{~T}\right)=\mathrm{CC}_{\underline{9}}$

$$
\begin{aligned}
\mathrm{CC}_{9}=\{ & \\
& \mathrm{E} \rightarrow \mathrm{~T} \cdot,) \\
\mathrm{E} & \rightarrow \mathrm{~T} \bullet,+ \\
\mathrm{T} & \rightarrow \mathrm{~T} \bullet \star \mathbf{F},) \\
\mathrm{T} & \rightarrow \mathrm{~T} \bullet \star \mathbf{F},+ \\
\mathrm{T} & \rightarrow \mathrm{~T} \bullet * \mathbf{F}, *
\end{aligned}
$$

0. $S^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $T \rightarrow T * F$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E)
6. $F \rightarrow$ id

And take the closure...

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{4}, \mathrm{~F}\right)=\mathrm{CC}_{\underline{10}}$

$$
\begin{aligned}
\mathrm{CC}_{10}=\{ & \\
\mathrm{T} & \rightarrow \mathrm{~F} \cdot,) \\
\mathrm{T} & \rightarrow \mathrm{~F} \cdot,,+ \\
\mathrm{T} & \rightarrow \mathrm{~F} \cdot,{ }^{-}
\end{aligned}
$$

0. $\mathrm{S}^{\prime} \rightarrow \mathrm{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathrm{T}$
2. $\mathrm{E} \rightarrow \mathrm{T}$
3. $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathrm{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow$ (E)
6. $F \rightarrow$ id

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{4}}\right.$, id $)=\mathrm{CC}_{\underline{12}}$

$$
\begin{aligned}
\mathrm{CC}_{12}=\{ & \\
& \mathrm{F} \rightarrow \underline{\mathrm{id}} \cdot,,) \\
\mathrm{F} & \rightarrow \underline{\mathrm{id}} \cdot,+ \\
\mathrm{F} & \rightarrow \underline{\mathrm{id}} \cdot, \text { * }
\end{aligned}
$$

And take the closure... \}
0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathbf{F} \rightarrow(\mathbf{E})$
6. $F \rightarrow$ id

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{4}}()=\mathrm{CC}_{\underline{11}}\right.$

$$
\begin{aligned}
\mathrm{CC}_{11}=\{ & \\
& F(\cdot E), \\
& F \rightarrow(\cdot E),+ \\
& F \rightarrow(\cdot E), *
\end{aligned}
$$

And take the closure...

$$
\begin{aligned}
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T}, \text {) } \\
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+ \\
& \mathbf{E} \rightarrow \cdot \mathbf{T}, \text {) }
\end{aligned} \quad \quad \begin{gathered}
\mathrm{CC}_{11} \text { is similar to, but not } \\
\text { quite the same as } \mathrm{CC}_{0}
\end{gathered}
$$

$$
\mathbf{E} \rightarrow \cdot \mathbf{T},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F},)
$$

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F},+
$$

The \bullet is before $\mathbf{E}, \mathbf{T}, \mathbf{F}, \underline{\text { id }}$, and (...

$$
\mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathbf{F}, *
$$

$$
\mathbf{T} \rightarrow \cdot \mathbf{F},)
$$

Next, we'll compute...

$$
\mathbf{T} \rightarrow \cdot \mathbf{F},+
$$

$$
\mathrm{T} \rightarrow \cdot \mathbf{F}, *
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}),)
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}),+
$$

$$
\mathbf{F} \rightarrow \cdot(\mathbf{E}), *
$$

$$
\begin{array}{ll}
\operatorname{GOTO}\left(\mathrm{CC}_{11}, \mathrm{E}\right) & \Rightarrow \mathrm{CC}_{18} \\
\text { GOTO }\left(\mathrm{CC}_{11}, \mathrm{~T}\right) & \Rightarrow \mathrm{CC}_{9} \\
\text { GOTO }\left(\mathrm{CC}_{11}, \mathrm{~F}\right) & \Rightarrow \mathrm{CC}_{10} \\
\text { GOTO }\left(\mathrm{CC}_{11}, \underline{i d}\right) & \Rightarrow \mathrm{CC}_{12} \\
\text { GOTO }\left(\mathrm{CC}_{11},()\right. & \Rightarrow \mathrm{CC}_{11}
\end{array}
$$

$$
\mathrm{F} \rightarrow \cdot \underline{i d},)
$$

$$
F \rightarrow \cdot \overline{\mathrm{id}},+
$$

$$
\mathbf{F} \rightarrow \cdot \underline{\underline{\mathrm{id}}, *}\}
$$

$$
\begin{aligned}
& \text { 0. } \mathrm{S}^{\prime} \rightarrow \mathrm{E} \\
& \text { 1. } \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \\
& \text { 2. } \mathrm{E} \rightarrow \mathrm{~T} \\
& \text { 3. } \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
& \text { 4. } \mathrm{T} \rightarrow \mathrm{~F} \\
& \text { 5. } \mathrm{F} \rightarrow \text { (} \mathrm{E}) \\
& \text { 6. } F \rightarrow \text { id }
\end{aligned}
$$

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{11}}, \mathrm{E}\right)=\mathrm{CC}_{\underline{18}}$

$$
\begin{aligned}
\mathrm{CC}_{18}=\{ & \\
& \mathbf{F} \rightarrow(\mathbf{E} \bullet),) \\
& \mathbf{F} \rightarrow(\mathbf{E} \bullet),+ \\
& \mathbf{F} \rightarrow(\mathbf{E} \bullet), \star \\
& \mathbf{E} \rightarrow \mathbf{E} \cdot+\mathrm{T},) \\
& \mathbf{E} \rightarrow \mathbf{E} \bullet+\mathbf{T},+
\end{aligned}
$$

> 0. 1. $\mathrm{S}^{\prime} \rightarrow \mathrm{E}$ 1. 2. 3. 3. 4. 4. 5. 5. F \rightarrow T

And take the closure... \}

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathbf{C C}_{\underline{11}}, \mathrm{~T}\right)=\mathrm{CC}_{\underline{9}}$

$$
\begin{aligned}
& \mathrm{CC}_{9}=\{ \\
& \mathbf{E}\rightarrow \mathbf{T} \bullet,) \\
& \mathbf{E} \rightarrow \mathbf{T} \bullet,+ \\
& \mathbf{T}\rightarrow \mathbf{T} \bullet \star \mathbf{F},) \\
& \mathbf{T} \rightarrow \mathbf{T} \bullet \star \mathbf{F},+ \\
& \mathbf{T} \rightarrow \mathbf{T} \bullet \star \mathbf{F}, \star
\end{aligned}
$$

0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathbf{F} \rightarrow(\mathbf{E})$
6. $F \rightarrow$ id

And take the closure... \}

We have seen $\mathrm{CC}_{\boldsymbol{9}}$ before!

Syntax Analysis - Part 3

$\underline{\operatorname{GOTO}}\left(\mathrm{CC}_{\underline{11}}, \mathrm{~F}\right)=\mathrm{CC}_{\underline{10}}$

$$
\begin{aligned}
\mathrm{CC}_{10}=\{ & \\
\mathrm{T} & \rightarrow \mathbf{F} \bullet,) \\
\mathrm{T} & \rightarrow \mathbf{F} \bullet,+ \\
\mathbf{T} & \rightarrow \mathbf{F} \bullet, \star
\end{aligned}
$$

And take the closure... \}

We have seen $\mathrm{CC}_{\mathbf{1 0}}$ before!

© Harry H. Porter, 2005

Syntax Analysis - Part 3

Viable Prefixes

Consider a right-sentential form

$$
\mathrm{A} \rightarrow \mathrm{BCDE}
$$

A viable prefix is a prefix of a right sentential form that does not extend to the right end of the handle.
$\underbrace{\text { XXBCDEfff }}$
A Viable prefix

Syntax Analysis - Part 3

Viable Prefixes

Consider a right-sentential form

$$
\mathrm{A} \rightarrow \mathrm{BCDE}
$$

A viable prefix is a prefix of a right sentential form that does not extend to the right end of the handle.

$\underbrace{\text { XXBCDEfff }}$
 A Viable prefix

Given a viable prefix, we can always add terminals to get a right-sentential form!
Why?
Assume that $\underline{X X B C}$ is a viable prefix that we've shifted onto the stack.
Assume that we have some more terminals dddeeefff in the input.
If this string is legal, there must be rules that allow
$\mathrm{D} \Rightarrow^{*}$ ddd and $\mathrm{E} \Rightarrow^{*}$ eee
S ... $\Rightarrow_{\mathbf{R M}^{*}}{ }^{\text {XXBCDEfff }} \Rightarrow_{\mathbf{R M}}$ XXBCDeeefff $\Rightarrow_{\mathbf{R M}} \underline{\text { XXBCdddeeefff }}$
As long as we have a viable prefix, just keep shifting!

The Main Idea of LR Parsing

As long as what is on the stack is a viable prefix...

- The unseen terminals might be what is required to make

STACK II REMAINING-INPUT
into a right-sentential form.

- We are on course to finding a rightmost derivation.

The key ideas of LR parsing:
Construct a DFA to recognize viable prefixes!

Every path in the DFA
 (from start to any final or non-final state) describes a viable prefix.

Each state is a set of items.
If the DFA has an edge from the current state labeled with a terminal
And the edge label = the lookahead symbol
Do a shift: Add this terminal to the viable prefix.
When the dot is at the end of one of the items in a state...
If the next symbol = the lookahead symbol...
Do a reduction. $\mathrm{A} \rightarrow \mathrm{XYZ}$

Syntax Analysis - Part 3

Syntax Analysis - Part 3

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow(\mathbf{E})$
0. $\mathbf{S}^{\prime} \rightarrow \mathbf{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

The stack shows our path
through the DFA.
"How we got to state 21 "

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow$ (\mathbf{E})

$$
\begin{aligned}
& \text { 0. } S^{\prime} \rightarrow \mathbf{E} \\
& \text { 1. } \mathbf{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \text { 2. } \mathrm{E} \rightarrow \mathrm{~T} \\
& \text { 3. } \mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \\
& \text { 4. } T \rightarrow F \\
& \text { 5. } \mathrm{F} \rightarrow \text { (} \mathrm{E}) \\
& \text { 6. F } \rightarrow \text { id }
\end{aligned}
$$

Back up along our path... to where we were before we saw (E). Then take the F edge to get to state 10.

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow(\mathbb{E})$
(T * (F Ends up in state 10, a final state.
If next token is + , $*$, or) then reduce by $\mathbf{T} \rightarrow \mathbf{F}$
0. $S^{\prime} \rightarrow \mathbf{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

Back up along our path... to where we were before we saw (E). Then take the F edge to get to state 10.

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow(\mathbb{E})$
(T * (F Ends up in state 10, a final state.
If next token is + , $*$, or) then reduce by $\mathbf{T} \rightarrow \mathbf{F}$
0. $S^{\prime} \rightarrow \mathbf{E}$

1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathrm{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $T \rightarrow F$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

Back up along our path... to where we were before we saw F.
Then take the T edge to get to state 9 .

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow(\mathbb{E})$
(T * (F Ends up in state 10, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{T} \rightarrow \mathbf{F}$
(T * (T Ends up in state 9, a final state.
If next token is $\boldsymbol{+}$, or) then reduce by $\mathbf{E} \rightarrow \mathbf{T}$

Back up along our path... to where we were before we saw F.
Then take the T edge to get to state 9 .

Example

Consider this viable prefix. Trace throught the DFA.
(T * ((E) Ends up in state 21, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{F} \rightarrow(\mathbb{E})$
(T * (F Ends up in state 10, a final state.
If next token is,$+ *$, or) then reduce by $\mathbf{T} \rightarrow \mathbf{F}$
(T * (T Ends up in state 9, a final state.
If next token is $\boldsymbol{+}$, or) then reduce by $\mathbf{E} \rightarrow \mathbf{T}$

\uparrow| 21 |
| :---: |
| I |
| 18 |
| E |
| 11 |
| 1 |
| 11 |
| 1 |
| 17 |
| \star |
| 9 |
| T |
| 4 |
| 1 |
| 0 |

There is an edge from state 9 labeled *. Take the * edge to get to state 17.

Now we've got this viable prefix: (T * (T *

Other Examples

Here are some viable prefixes.
Trace through the DFA for each of these!

```
(E + T * F
    Goes to state 20, a final state.
    If next token is $, +, or * then reduce by T}->\mathbf{T}*\mathbf{F
E + ( ( ( T * id
    Goes to state 12, a final state.
    If next token is +,*, or ) then reduce by F
(E + (E + ( E + ( E + (T * (T * (T * (T)*
    Goes to state 17, not a final state.
    We must get F, (, or id next
( E + ( T
    Goes to state 9
    If next token is (or + then reduce by E
    Else okay to see *
```

0. $S^{\prime} \rightarrow \mathbf{E}$
1. $\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$
2. $\mathbf{E} \rightarrow \mathbf{T}$
3. $\mathbf{T} \rightarrow \mathrm{T} * \mathrm{~F}$
4. $\mathbf{T} \rightarrow \mathrm{F}$
5. $\mathrm{F} \rightarrow(\mathrm{E})$
6. $F \rightarrow$ id

Syntax Analysis - Part 3

Algorithm to Construct ACTION and GOTO Tables

Input: Grammar G, augmented with $\mathbf{S}^{\prime} \rightarrow \mathbf{S}$
Output: ACTION and GOTO Tables
Construct "Canonical Collection of $L R(1)$ items" along with MOVE function.
$\mathbb{C} \mathbb{C}=\left\{\mathrm{CC}_{0}, \mathrm{CC}_{1}, \mathrm{CC}_{2}, \mathrm{CC}_{3}, \ldots \mathrm{CC}_{\mathrm{N}}\right\}$
There will be N states, one per set of items $\{0,1,2,3, \ldots N\}$
for each $C C_{i}$ do
for each item in $\mathrm{CC}_{\mathbf{i}}$ do
if the item has the form $\mathbf{A} \rightarrow \beta \cdot c \gamma, a$
and $\operatorname{MOVE}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{c}\right)=\mathrm{CC}_{\mathrm{j}}$ then set ACTION[i,c] to "Shift j"
elseIf the item has the form $A \rightarrow \beta$ •, a then
set ACTION[i,a] to "Reduce $\mathbf{A} \rightarrow \beta$ "
elseIf the item has the form $S^{\prime} \rightarrow S \bullet, \$$ then set ACTION[i,\$] to "Accept"
endFor
for each nonterminal A do
if $\operatorname{MOVE}\left(\mathrm{CC}_{\mathbf{i}}, \mathrm{A}\right)=\mathrm{CC}_{\mathbf{j}}$ then
set GOTO[i,A] to \mathbf{j}
endIf
endFor
endFor

The SLR Table Construction Algorithm

With SLR, we do not have the lookahead symbol.

```
LR(1) items:
    F}->(\cdotE),
    F }->(\cdot\textrm{E}),
    F}->(\cdotE),
```

Some information is lost.
Some states in $\mathbb{C C}$ collapse into one state.
There are fewer states in $\mathbb{C C}$
\Rightarrow Fewer rows in the resulting tables.

$$
\begin{aligned}
& \mathrm{CC}_{4}=\left\{\begin{aligned}
\mathrm{F} & \rightarrow(\cdot \mathrm{E}) \$ \\
\mathrm{~F} & \rightarrow(\cdot \mathrm{E}),+\mathrm{t}
\end{aligned}\right. \\
& \mathrm{F} \rightarrow(\cdot \mathrm{E}) \text {, * } \\
& \mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T} \text {,) } \\
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+ \\
& \mathbf{E} \rightarrow \text { vT,) } \\
& \mathbf{E} \rightarrow \cdot \mathbf{T},+ \\
& \mathrm{T} \rightarrow \cdot \mathbf{T} * \mathbf{F} \text {,) } \\
& \mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F},+ \\
& \mathrm{T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F} \text {, * } \\
& \mathrm{T} \rightarrow \cdot \mathrm{~F}, \text {) } \\
& \text { T } \rightarrow \cdot \mathrm{F},+ \\
& \mathrm{T} \rightarrow \cdot \mathrm{~F} \text {, * } \\
& \mathrm{F} \rightarrow \text { •(E),) } \\
& F \rightarrow \cdot(E),+ \\
& \mathrm{F} \rightarrow \text { • (} \mathrm{E}) \text {, * } \\
& \text { F } \rightarrow \text { id,) } \\
& \mathrm{F} \rightarrow \text { • id },+ \\
& \text { F } \rightarrow \text { id, * }\} \\
& \mathrm{CC}_{11}=\left\{\begin{aligned}
\mathrm{F} & \rightarrow(\cdot \mathrm{E},)^{\prime} \\
\mathrm{F} & \rightarrow(\cdot \mathrm{E}),+
\end{aligned}\right. \\
& \mathrm{F} \rightarrow(\cdot \mathbf{E}) \text {, } \\
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathrm{T} \text {,) } \\
& \mathbf{E} \rightarrow \cdot \mathbf{E}+\mathbf{T},+ \\
& \mathbf{E} \rightarrow \cdot \mathbf{T} \text {,) } \\
& \text { these combine } \\
& \text { into one state } \\
& \mathbf{E} \rightarrow \cdot \mathbf{T},+ \\
& \mathrm{T} \rightarrow \text { • } \mathrm{T} * \mathrm{~F} \text {,) } \\
& \underset{\mathrm{T}}{\mathrm{~T}} \rightarrow \cdot \mathrm{~T} * \mathbf{F},+ \\
& \begin{array}{l}
\mathrm{T} \rightarrow \bullet \mathbf{F},) \\
\mathbf{T} \rightarrow \bullet \cdot
\end{array} \\
& \begin{array}{l}
\mathrm{T} \rightarrow \bullet \mathbf{F},+ \\
\mathrm{T} \rightarrow \bullet \mathbf{F}, \\
\text { * }
\end{array} \\
& \mathbf{F} \rightarrow \text { • (} \mathbf{E} \text {),) } \\
& \mathbf{F} \rightarrow \bullet(\mathbf{E}),+ \\
& \mathbf{F} \rightarrow \cdot(\mathbf{E}), \text { * } \\
& \text { F } \rightarrow \text { id,) } \\
& \underset{F}{\mathbf{F} \rightarrow \bullet \text { id }}\} \\
& \begin{array}{l}
\mathrm{F} \rightarrow \cdot i d,) \\
\mathrm{F} \rightarrow \cdot \mathrm{id},+ \\
+
\end{array} \\
& \text { \} }
\end{aligned}
$$

Syntax Analysis - Part 3

The SLR Table Construction Algorithm

The CLOSURE function is basically the same, but simpler.
The GOTO function is basically the same, but simpler.
The Construction of the Canonical Collection is the same.
The Construction of the ACTION and GOTO tables is a little different.

```
elseIf the item has the form A}->\beta\cdot,\mp@code{a then
    set ACTION[i,a] to "Reduce A}->\beta\mathrm{ "
```

...


```
elseIf the item has the form A}->\beta\mathrm{ 0 then
    for all b in FOLLOW(A) do
    set ACTION[i,b] to "Reduce A}->\beta\mathrm{ "
    endFor
```

. . .

Sometimes SLR may try to put two actions in one table entry
...while the LR(1) tables would have more states, more rows, and no conflicts.

SLR: The CLOSURE Function

Given:
$\mathrm{I}=\mathrm{a}$ set of $\mathrm{LR}(0)$ items
Output:
CLOSURE(I) $=$ a new set of items
Algorithm:
result $=$ \{ \}
add all items in I to result
repeat
for every item $A \rightarrow \beta \cdot C \delta$ in result do for each rule $C \rightarrow \gamma$ in the grammar do add $\mathbf{C} \rightarrow \bullet \gamma$ to result
endFor
endFor
until we can't add anything more to result

Syntax Analysis - Part 3

SLR: The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...
function $\operatorname{GOTO}(I, X)$ returns a set of items In other words, move result $=$ \{\}
look at all items in I... if $\mathbf{A} \rightarrow \alpha \cdot \mathbf{X} \delta$ is in I then add $\mathbf{A} \rightarrow \alpha \mathbf{X} \cdot \delta$ to result result $=$ CLOSURE (result) the dot past the X in any items where it is in front of an X
...and take the CLOSURE of whatever items you get

Syntax Analysis - Part 3

SLR: Constructing the Canonical Collection

Each CC_{i} will be a set of items.
We will build up a collection of these.
= "The Canonical Collection of $\operatorname{LR}(0)$ items"
= a set of sets of items
$=\left\{\mathrm{CC}_{0}, \mathrm{CC}_{1}, \mathrm{CC}_{2}, \mathrm{CC}_{3}, \ldots \mathrm{CC}_{\mathrm{N}}\right\}$

Algorithm to construct $\mathbb{C} \mathbb{C}$, the Canonical Collection of LR(1) Items:

let $\mathrm{CC}_{\mathbf{0}}=\operatorname{CLOSURE}\left(\left\{\mathbf{S}^{\prime} \rightarrow \cdot \mathrm{S}, \$\right\}\right)$
add CC_{0} to $\mathbb{C} \mathbb{C}$
repeat
let CC_{i} be some set of items already in $\mathbb{C} \mathbb{C}$ for each X (that follows a in some item in CC_{i})... compute $\mathrm{CC}_{\mathrm{k}}=\mathrm{GOTO}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{X}\right)$ if CC_{k} is not already in $\mathbb{C} \mathbb{C}$ then add it
set $\operatorname{MOVE}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{X}\right)=\mathrm{CC}_{\mathrm{k}}$
endIf
endFor
until nothing more can be added to $\mathbb{C C}$

Syntax Analysis - Part 3

SLR: Algorithm to Construct ACTION and GOTO Tables

Input: Grammar G, augmented with $\mathbf{S}^{\prime} \rightarrow \mathbf{S}$
Output: ACTION and GOTO Tables
Construct "Canonical Collection of $L R(0)$ items" along with MOVE function.
$\mathbb{C} \mathbb{C}=\left\{\mathrm{CC}_{0}, \mathrm{CC}_{1}, \mathrm{CC}_{2}, \mathrm{CC}_{3}, \ldots \mathrm{CC}_{\mathrm{N}}\right\}$
for each CC_{i} do
for each item in CC_{i} do
if the item has the form $\mathrm{A} \rightarrow \beta \cdot \mathrm{c} \gamma$ and $\operatorname{MOVE}\left(\mathrm{CC}_{\mathrm{i}}, \mathrm{c}\right)=\mathrm{CC}_{\mathrm{j}}$ then set ACTION[i,c] to "Shift j"
elseIf the item has the form $\mathrm{A} \rightarrow \beta$, then
for all b in FOLLOW(A) do
set ACTION[i,b] to "Reduce $\mathbf{A} \rightarrow \beta^{\prime}$
endFor
elseIf the item has the form $S^{\prime} \rightarrow S$ then set ACTION[i,\$] to "Accept"
endFor
for each nonterminal A do
if $\operatorname{MOVE}\left(\mathrm{CC}_{\mathbf{i}}, \mathrm{A}\right)=\mathrm{CC}_{\mathbf{j}}$ then set GOTO[i,A] to \mathbf{j}
endIf
endFor
endFor

Syntax Analysis - Part 3

YAPP

Yet Another PCAT Parser

An SLR Parser Generator
INPUT:

- A Grammar
- A String to Parse

ACTION:

- Build the parsing tables using the SLR algorithm
- Parse the string

YAPP is written in PCAT!
cs.pdx.edu/~harry/compilers/yapp
≈ 2100 lines of PCAT code.
Can be compiled by your compiler!!!
Example Input:

- A Grammar for PCAT (109 rules)
- String = the YAPP program itself

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \operatorname{Expr}_{0} \cdot t=\operatorname{Expr}_{1} \cdot t+\text { Term.t }
$$

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \quad \operatorname{Expr}_{0} \cdot t=\operatorname{Expr}_{1} \cdot t+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \quad \operatorname{Expr}_{0} \cdot t=\operatorname{Expr}_{1} \cdot t+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \quad \operatorname{Expr}_{0} \cdot \mathrm{t}=\operatorname{Expr}_{1} \cdot \mathrm{t}+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

19
T
15
$+\quad$
8
E
4
1
0

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{\mathbf{0}} \rightarrow \operatorname{Expr}_{\mathbf{1}}+\text { Term } \quad \operatorname{Expr}_{0} \cdot \mathrm{t}=\operatorname{Expr}_{1} \cdot \mathrm{t}+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

$$
t=100 \quad t=23
$$

© Harry H. Porter, 2005

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \quad \operatorname{Expr}_{0} \cdot \mathrm{t}=\operatorname{Expr}_{1} \cdot \mathrm{t}+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

To reduce by Expr $\rightarrow \mathrm{Expr}+$ Term

- Perform the attibute computation
- Pop the stack
- Push the new non-terminal with its attribute.

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

$$
\operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \quad \operatorname{Expr}_{0} \cdot \mathrm{t}=\operatorname{Expr}_{1} \cdot \mathrm{t}+\text { Term.t } ;
$$

Synthesized Attributes:

The attributes are computed bottom-up in the parse tree.

To reduce by Expr $\rightarrow \mathrm{Expr}+$ Term

- Perform the attibute computation
- Pop the stack
- Push the new non-terminal with its attribute.

Syntax Analysis - Part 3

YACC

Yet Another Compiler Compiler
Unix tool to create an LALR parser.
Works with "Lex" tool: Calls yylex () to get next token.

Syntax Analysis - Part 3

An Example YACC Grammar

Syntax Analysis - Part 3

An Example YACC Grammar

Syntax Analysis - Part 3

How the \$ Notation in YACC Works

$$
\begin{aligned}
& \operatorname{Expr}_{0} \rightarrow \operatorname{Expr}_{1}+\text { Term } \operatorname{Expr}_{0} \cdot t=\operatorname{Expr}_{1} \cdot t+\text { Term.t; } \\
& \uparrow_{\$ \$=1} \uparrow_{\$ 1} \uparrow_{\$ 2} \uparrow_{\$ 3} \$ \$=\$ 1+\$ 3 \text {; }
\end{aligned}
$$

