
1

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Intermediate Representation

Intermediate Representation

Target Code (e.g., SPARC “.s” file)

Executable (e.g., an a.out file)

Assembler / Linker

Final Code Generation

Optimization

Type Checking

Parser

Lexer

Front-End

Back-End

Intermediate Code Generation
Symbol

Table

Information

2

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Intermediate Representation

Intermediate Representation

Byte Codes

Virtual Machine (Interpreter)

Final Code Generation

Optimization

Type Checking

Parser

Lexer

Front-End

Back-End

Intermediate Code Generation
Symbol

Table

Information

Java Approach

3

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Intermediate Representation

Intermediate Representation

Machine Code

CPU

Final Code Generation

Optimization

Type Checking

Parser

Lexer

Front-End

Back-End

Intermediate Code Generation
Symbol

Table

Information

4

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Output to Assembly Code (vs. machine code)

Breaks code generation task into 2 phases

•!Compiler back-end

•!Assembler

 Easier to debug compiler output!

Slightly slower (?)

5

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Porting the Compiler?
Porting to a new target machine architecture.

Re-write the back-end

Intermediate Code

Target Code

Back-End

6

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Porting the Compiler?
Porting to a new target machine architecture.

Re-write the back-end

Specification-Driven Approaches

“Code Generator-Generators”

Intermediate Code

Target Code

Back-End

Intermediate Code

Target Code

Back-End

CPU Specification

 (e.g., set of rules)

7

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Requirements

•!Target code must be correct.

•!Target code should be efficient.

•!Back-end should run quickly.

Want optimal code sequences?

NP-Complete

Generate all correct code sequences

... and see which is best

Optimal?

The target program...

... executes faster

... takes less memory

8

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithms
Algorithm #1 ! Easiest; We’ll use for PCAT

Algorithm #2

Algorithm #3 ! Most complex

9

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithms
Algorithm #1 ! Easiest; We’ll use for PCAT

Algorithm #2

Algorithm #3 ! Most complex

Example Target Machine
2-Address Architecture

mov x,r0
add y,r0
mov r0,z

source destination

r0 := r0 + y

store back into memory

10

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithm #1
Statement-by-statement generation

Code for each IR instruction is

generated independently of all other IR instructions.

IR Code:

a := b + c
d := a + e

11

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithm #1
Statement-by-statement generation

Code for each IR instruction is

generated independently of all other IR instructions.

IR Code:

a := b + c
d := a + e

Target Code:

...
mov b,r0
add c,r0
mov r0,a
mov a,r0
add e,r0
mov r0,d
...

a := b + c

d := a + e

12

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithm #1
Statement-by-statement generation

Code for each IR instruction is

generated independently of all other IR instructions.

IR Code:

a := b + c
d := a + e

Target Code:

...
mov b,r0
add c,r0
mov r0,a
mov a,r0
add e,r0
mov r0,d
...

a := b + c

d := a + e

This instruction is
totally unnecessary!!!

13

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Algorithm #1
Statement-by-statement generation

Code for each IR instruction is

generated independently of all other IR instructions.

IR Code:

a := b + c
d := a + e

Target Code:

...
mov b,r0
add c,r0
mov r0,a
mov a,r0
add e,r0
mov r0,d
...

a := b + c

d := a + e

ALSO: Registers are not
used effectively.

14

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Machine Idioms
IR Code: x := x + 5

Target Code: mov x,r0
add 5,r0
mov r0,x

15

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Machine Idioms
IR Code: x := x + 5

Target Code: mov x,r0
add 5,r0
mov r0,x

IR Code: x := x + 1

Target Code: mov x,r0
add 1,r0
mov r0,x

16

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Machine Idioms
IR Code: x := x + 5

Target Code: mov x,r0
add 5,r0
mov r0,x

IR Code: x := x + 1

Target Code: mov x,r0
add 1,r0
mov r0,x

Target Code: mov x,r0
inc r0
mov r0,x

17

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Machine Idioms
IR Code: x := x + 5

Target Code: mov x,r0
add 5,r0
mov r0,x

IR Code: x := x + 1

Target Code: mov x,r0
add 1,r0
mov r0,x

Target Code: mov x,r0
inc r0
mov r0,x

Target Code: inc x

18

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Using Registers
Goal: Keep some variables in registers (instead of in memory)

Problem: Not enough registers!

Register Allocation Problem

Which variables will reside in registers?

[... at a given point in the program.]

Register Assignment Problem

Which register will we use for a variable?

[For a given variable, we may use a different register

 at different points in the program.]

19

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Assume

Multiply Instruction

mul y,r4

 Multiply Instruction

div y,r4

 SRDA: Shift Right Double Arithmetic

srda 32,r6

Must specify an even numbered register

r5 " y # [r4,r5]

Must specify an even numbered register

 [r4,r5] ÷ y $ [r4,r5]

1010110010 xxxxxxxxxx ssssssssss 1010110010
 r6 r7 r6 r7

20

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

IR Code:

t := a + b
t := t * c
t := t / d

Target Code:

mov a,r1
add b,r1
mul c,r0
div d,r0
mov r1,t

21

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

IR Code:

t := a + b
t := t * c
t := t / d

Target Code:

mov a,r1
add b,r1
mul c,r0
div d,r0
mov r1,t

IR Code:

t := a + b
t := t + c
t := t / d

Target Code:

mov a,r0
add b,r0
add c,r0
srda 32,r0
div d,r0
mov r1,t

22

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Conclusion:
Where you put the result of t:=a+b (either r0 or r1)
depends on how it will be used later!!!

[A “chicken-and-egg” problem]

IR Code:

t := a + b
t := t * c
t := t / d

Target Code:

mov a,r1
add b,r1
mul c,r0
div d,r0
mov r1,t

IR Code:

t := a + b
t := t + c
t := t / d

Target Code:

mov a,r0
add b,r0
add c,r0
srda 32,r0
div d,r0
mov r1,t

23

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Evaluation Order
The IR code establishes an order on the operations.

Simplest Approach

•!Don’t mess with re-ordering.

• Target code will perform all operations

in the same order as the IR code

Trickier Approach

•!Consider re-ordering operations

•!May produce better code

... Get operands into registers

just before they are needed

... May use registers more efficiently

24

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Moving Results Back to Memory

When to move results from registers back into memory?

After an operation, the result will be in a register.

Immediately

Move data back to memory just after it is computed.

May make more registers available for use elsewhere.

Wait as long as possible before moving it back.

Only move data back to memory “at the end”

or “when absolutely necessary”

May be able to avoid re-loading it later!

25

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

An Example Target Machine
A 2-address Architecture

op source,destination

Address Modes:

Absolute Memory Address

mov x,y
sub x,y

Register

mov r0,r1
sub r2,r3

Literal

mov 39,r1
sub 47,r2

Indirect Register

mov r0,[r1]
Indirect plus Index

mov r0,[r1+48]
Double Indirect

mov r0,[[r1+48]]

2 operands, at most

x # y

y–x # y

r3–r2 # r3

Data is included in the

instruction directly

Register contains an address.

 Moves data in to word

 pointed to by r1

Use r1+48 as an address.

Go to memory and fetch a second

 address, “p”.

“p” points to the word.

Op-Codes:

mov
add
sub
mul
...

26

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Evaluating A Potential Code Sequence

Each instruction has a “cost”

Cost = Execution Time

Execution Time is difficult to predict.

Pipelining, Branches, Delay Slots, etc.

Goal: Approximate the real cost

A “Cost Model”

27

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Evaluating A Potential Code Sequence

Each instruction has a “cost”

Cost = Execution Time

Execution Time is difficult to predict.

Pipelining, Branches, Delay Slots, etc.

Goal: Approximate the real cost

A “Cost Model”

Simplest Cost Model:

Code Length % Execution Time

Just count the instructions!

28

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

A Better Cost Model
Look at each instruction.

Compute a cost (in “units”).

Count the number of memory accesses.

Cost = 1 + Cost-of-operand-1 + Cost-of-operand-2 + Cost-of-result

Example: sub 97,r5 r5 – 97 # r5

Cost = 1 + 0 + 0 + 0 = 1

Example: sub 97,[r5] [r5] – 97 # [r5]

Cost = 1 + 1 + 0 + 1 = 3

Example: sub [r1],[[r5+48]] [[r5+48]] – [r1] # [[r5+48]]

Cost = 1 + 2 + 1 + 2 = 6

example cost

Absolute Memory Address x 1
 Register r0 0
 Literal 39 0
 Indirect Register [r1] 1
 Indirect plus Index [r1+48] 1
 Double Indirect [[r1+48]] 2

29

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Example
IR Code: x := y + z

Translation #1: mov y,x 3
add z,x 4

Cost = 7

30

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Example
IR Code: x := y + z

Translation #1: mov y,x 3
add z,x 4

Translation #2: mov y,r1 2
add z,r1 2
mov r1,x 2

Cost = 7

Cost = 6

Lesson #1:

 Use Registers

31

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Example
IR Code: x := y + z

Translation #1: mov y,x 3
add z,x 4

Translation #2: mov y,r1 2
add z,r1 2
mov r1,x 2

Translation #3:

Assume “y” is in r1 and “z” is in r2

Assume “y” will not be needed again

add r2,r1 1
mov r1,x 2

Cost = 7

Cost = 6

Cost = 3

Lesson #1:

 Use Registers

Lesson #2:

 Keep variables in registers

32

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Example
IR Code: x := y + z

Translation #1: mov y,x 3
add z,x 4

Translation #2: mov y,r1 2
add z,r1 2
mov r1,x 2

Translation #3:

Assume “y” is in r1 and “z” is in r2

Assume “y” will not be needed again

add r2,r1 1
mov r1,x 2

Translation #4:

Assume “y” is in r1 and “z” is in r2

Assume “y” will not be needed again.

Assume we can keep “x” in a register.

add r2,r1 1

Cost = 7

Cost = 6

Cost = 3

Cost = 1

Lesson #1:

 Use Registers

Lesson #2:

 Keep variables in registers

Lesson #3:

 Avoid or delay storing

 into memory.

33

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Code Generation Example
IR Code: x := y + z

Translation #1: mov y,x 3
add z,x 4

Translation #2: mov y,r1 2
add z,r1 2
mov r1,x 2

Translation #3:

Assume “y” is in r1 and “z” is in r2

Assume “y” will not be needed again

add r2,r1 1
mov r1,x 2

Translation #4:

Assume “y” is in r1 and “z” is in r2

Assume “y” will not be needed again.

Assume we can keep “x” in a register.

add r2,r1 1

Cost = 7

Cost = 6

Cost = 3

Cost = 1

Lesson #1:

 Use Registers

Lesson #2:

 Keep variables in registers

Lesson #3:

 Avoid or delay storing

 into memory.

Lesson #4: (not illustrated)

 Use different addressing

 modes effectively.

34

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Basic Blocks

Break IR code into blocks such that...

The block contains NO transfer-of-control instructions

... except as the last instruction

•!A sequence of consecutive statements.

• Control enters only at the beginning.

• Control leaves only at the end.

35

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Basic Blocks

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

•
•
•

36

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Basic Blocks

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

B1

B2

B3

B4

B5

•
•
•

37

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Control Flow Graph

t3 := t4 + 7
t5 := t3 - 8
if t5 < 9 goto B3

t6 := 1 t6 := 0

t7 := t6 + 3
t8 := y + z
x := t8 -4
y := t8 + x

z := w + x
t9 := z -
5 •

•
•

B1

B2 B3

B4

B5

38

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Algorithm to Partition Instructions

into Basic Blocks

Concept: “Leader”

The first instruction in a basic block

Idea:

Identify “leaders”

•!The first instruction of each routine is a leader.

•!Any statement that is the target of a branch / goto is a leader.

• Any statement that immediately follows

a branch / goto

a call instruction

 ... is a leader

A Basic Block consists of

A leader and all statements that follow it

... up to, but not including, the next leader

39

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Identify Leaders

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

•
•
•

40

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Identify Leaders

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

•
•
•

Targets of

 GOTOs

41

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Identify Leaders

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

•
•
•

Follows

a GOTO

42

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Identify Leaders

Label_43: t3 := t4 + 7

t5 := t3 - 8

if t5 < 9 goto Label_44

t6 := 1

goto Label_45

Label_44: t6 := 0

Label_45: t7 := t6 + 3

t8 := y + z

x := t8 -4

y := t8 + x

Label_46: z := w + x

t9 := z - 5

•
•
•

•
•
•

43

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Look at Each Basic Block in Isolation
Use (B)

The set of variables used (i.e., read) by the Basic Block

(... before being written / updated)

The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.

The “outputs” of the BB

x := y + v
z := x * y
v := z + 5
if w < v goto B9

B7
Use (B7) = ?

Def (B7) = ?

44

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Look at Each Basic Block in Isolation
Use (B)

The set of variables used (i.e., read) by the Basic Block

(... before being written / updated)

The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.

The “outputs” of the BB

x := y + v
z := x * y
v := z + 5
if w < v goto B9

B7
Use (B7) = y, v, w

Def (B7) = ?

45

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Look at Each Basic Block in Isolation
Use (B)

The set of variables used (i.e., read) by the Basic Block

(... before being written / updated)

The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.

The “outputs” of the BB

x := y + v
z := x * y
v := z + 5
if w < v goto B9

B7
Use (B7) = y, v, w

Def (B7) = x, z, v

46

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Look at Each Basic Block in Isolation
Use (B)

The set of variables used (i.e., read) by the Basic Block

(... before being written / updated)

The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.

The “outputs” of the BB

View the basic block as a function

< x, z, v > := f (y, v, w)

 Okay to transform the block!

(as long as it computes the same function)

x := y + v
z := x * y
v := z + 5
if w < v goto B9

B7
Use (B7) = y, v, w

Def (B7) = x, z, v

47

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Common Sub-Expression Elimination
A Basic Block:

x := b + c
y := a - d
d := b + c We compute “b+c” twice!

48

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Common Sub-Expression Elimination
Transform:

Into:

x := b + c
y := a - d
d := b + c

x := b + c
y := a - d
d := x

We compute “b+c” twice!

49

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Common Sub-Expression Elimination
Transform:

Into:

x := b + c
y := a - d
d := b + c
z := a - d

x := b + c
y := a - d
d := x
z := ?????

What about “a-d”...

 Do we need to recompute?

50

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Common Sub-Expression Elimination
Transform:

Into:

x := b + c
y := a - d
d := b + c
z := a - d

x := b + c
y := a - d
d := x
z := a - d

What about “a-d”...

 Do we need recompute?

Yes!

 “d” has been changed since “a-d” computed!

 Now, “a-d” may compute a different value!

51

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

x := b + c
d := e + f
a := x + y

x := b + c
a := x + y
d := e + f

52

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

x := b + c
d := e + f
a := x + y

x := b + c
a := x + y
d := e + f

a := x + y
x := b + c
d := e + f

53

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

But some changes would change the program!

x := b + c
d := e + f
a := x + y

x := b + c
a := x + y
d := e + f

a := x + y
x := b + c
d := e + f

Not Okay!

54

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

But some changes would change the program!

When can we exchange these two instructions?
 x :=v1...v2...
 y :=v3...v4...

x := b + c
d := e + f
a := x + y

x := b + c
a := x + y
d := e + f

a := x + y
x := b + c
d := e + f

Any variables (including
possibly “x” and “y”)

Not Okay!

55

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

But some changes would change the program!

When can we exchange these two instructions?
 x :=v1...v2...
 y :=v3...v4...

If and only if...

 v1 & y

 v2 & y

 v3 & x

 v4 & x

x := b + c
d := e + f
a := x + y

x := b + c
a := x + y
d := e + f

a := x + y
x := b + c
d := e + f

Any variables (including
possibly “x” and “y”)

Not Okay!

56

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Live Variables

“Is some variable x live at some point P in the

program?”

Could the value of “x” at point P ever be needed later in the

execution?

57

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Live Variables

“Is some variable x live at some point P in the

program?”

Could the value of “x” at point P ever be needed later in the

execution?

...
a := b + c
d := e * f
c := b - 5
...

Point P

“Point in a program”

A point in a program occurs between two statements.

58

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Live Variables

“Is some variable x live at some point P in the

program?”

Could the value of “x” at point P ever be needed later in the

execution?

Is it possible that the program will ever read from x

along a path from P?

[... before “x” is written / stored into]

...
a := b + c
d := e * f
c := b - 5
...

Point P

“Point in a program”

A point in a program occurs between two statements.

59

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

“Dead” Variables

A Variable is “Dead at point P”

= Not Live

Value will definitely never be used.

No need to compute it!

If value is in register, no need to store it!

60

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example

a := b + c

d := e * f

c := b - 5

At this point...
 Is b live?

61

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example

a := b + c

d := e * f

c := b - 5

At this point...
 Is b live? YES
 Is c live?

62

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example

a := b + c

d := e * f

c := b - 5

At this point...
 Is b live? YES
 Is c live? NO
 Is a live?

63

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example

a := b + c

d := e * f

c := b - 5

At this point...
 Is b live? YES
 Is c live? NO
 Is a live? Don’t Know
 Is g live?

64

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example

a := b + c

d := e * f

c := b - 5

At this point...
 Is b live? YES
 Is c live? NO
 Is a live? Don’t Know
 Is g live? Possibly!

65

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example
Must look at the whole “control flow graph” to determine liveness.

a := ...

if x < y goto ...

b := a + 5 a := 47

•
•
•

•
•
•

•
•
•

Is “a” live at the
end of this block?

66

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example
Must look at the whole “control flow graph” to determine liveness.

a := ...

if x < y goto ...

b := a + 5 a := 47

•
•
•

•
•
•

•
•
•

Is “a” live at the
end of this block?

Is “a”
live here?

Is “a”
live here?

67

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example
Must look at the whole “control flow graph” to determine liveness.

a := ...

if x < y goto ...

b := a + 5 a := 47

•
•
•

•
•
•

•
•
•

Is “a” live at the
end of this block?

Is “a”
live here?
 YES

Is “a”
live here?

68

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example
Must look at the whole “control flow graph” to determine liveness.

a := ...

if x < y goto ...

b := a + 5 a := 47

•
•
•

•
•
•

•
•
•

Is “a” live at the
end of this block?

Is “a”
live here?
 YES

Is “a”
live here?
 NO

69

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Liveness Example
Must look at the whole “control flow graph” to determine liveness.

a := ...

if x < y goto ...

b := a + 5 a := 47

•
•
•

•
•
•

•
•
•

Is “a” live at the
end of this block?
 YES

Is “a”
live here?
 YES

Is “a”
live here?
 NO

70

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Live Variable Analysis

A Rather Complex Algorithm

Input:

The Control Flow Graph

Use(Bi)

Def(Bi)

Output:

Live(Bi) = a list of all variables live at the end of Bi

Live Variable Analysis missing?

Assume all variables are live at the end of

each basic block.

for all Bi

71

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Temporaries
Assumption:

Each temporary is used in only one basic block

(True of temps for expression evaluation)

Conclusion:

Temps are never live at the end of a basic block.

If Live-Variable-Analysis is missing...

this assumption can at least identify many dead variables.

 ...
t5 := xxxx + xxxx
 ...
xxxx := t5 + xxxx
 ...

More precisely:
 No temp will ever
 be in Use(Bi) for any BB

72

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Dead Code
“Dead Code” (first meaning)

Any code that cannot be reached.

(Will never be executed.)
 x := y + z
 goto Label_45
 a := b + c
 d := e * f
Label_45:
 z := x - a

Dead Code (unreachable)

73

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Dead Code
“Dead Code” (first meaning)

Any code that cannot be reached.

(Will never be executed.)
 x := y + z
 goto Label_45
 a := b + c
 d := e * f
Label_45:
 z := x - a

“Dead Code” (second meaning)

A statement which computes a dead variable.

 Example:
 b := x * y
 a := b + c
 ...

Dead Code (unreachable)

If “a” is not live here...

 Then eliminate this statement!!!

74

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Temporaries

If you can identify a variable which is

not in Use(Bi) for any basic block

(e.g., a temporary used only in this basic block)

Then you may...

•!Rename the variable

• Keep the variable in a register instead of in memory

•!Eliminate it entirely (during some optimization)

Must be careful that the variable

is not used in other routines

(i.e., accessed as a non-local from another routine)

75

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Algebraic Transformations
Watch for special cases.

Replace with equivalent instructions

... that execute with a lower cost.

Examples
x := y + 0 $ x := y

x := y * 1 $ x := y

x := y ** 2 $ x := y * y

x := y + 1 $ x := incr(y)

x := y - 1 $ x := decr(y)
...etc...

May do some transformations during “Peephole Optimization.”

Other transformations may be Target Architecture Dependent

 (use your “cost model” to determine when to transform)

76

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Control Flow Graphs

Definitions:

•!Initial Block

• Predecessor Blocks

•!Successor Blocks

B1

B2

B3 B4

B5

Predecessors

Successors

77

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Representing Basic Blocks (Ideas)

 x := y + z

 w := v + z

 a := b + c

 if x<b goto

 u := v + w

 d := e - f

 a := ...

 b := ...

•
•
•

•
•
•

leader
numberOfInst
successor1
successor2

4

2

7

NULL

78

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Representing Basic Blocks (Ideas)

successor
instructions

if x<y goto

IR
 I

n
st

ru
ct

io
n

s

Branch instructions now point to Basic Blocks

 (...not to IR instructions, as before)

79

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

What is a “LOOP”?

A cycle in the flow graph.

Can go from B back to B.

A path from B to B.

All blocks on any path from B to B.

80

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Note: This loop has multiple entries!

•!Very un-natural

•!Rare in assembly language programs

•!Impossible in many programming languages

goto Lab45;
...
while (x<y) {
 ...
 Lab45:
 ...
}

81

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006

Natural Loops
Each loop has a unique entry (its “Header Block”)

To reach any block in the loop (from outside the loop)

you must first go through the header block

Result from “structured programming” constructs

while, for, do-until, if, ...

Concepts:

“loop nesting”

“inner / outer loops”

...

...
while(...) {
 ...
 ...
 while(...) {
 ...
 ...
 }
 ...
 ...
}
...

1

2

Inner Loop

