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Attendance 

Course objectives 

Syllabus 
Textbooks, policies, class mailing list, etc. 

Assignment 1 

Overview of the “C” programming language 
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Intel Core i7 
 4 Processors (CPUs) per chip 
 14 nm feature size 
 4 GHz clock speed 
 2 billion transistors 
 1100 pins 
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What is “System Software” and how does it work? 

 • Compiling 

 • Assembly Language 

 • OS organization 

How is a program actually executed? 

 • Skills and knowledge of “C” programming 

How does the hardware get the job done? 

 • Computer Architecture 
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Course home page 
    cs.pdx.edu/~harry/cs201 

Course Schedule 
Homeworks 
Lecture Slides 
Information about instructor, TA, office hours 
Email mailing list (mailman):  

  PorterClassList 
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Accounts 
Instructions on course web page 

Activate your account in person at CAT front desk. 
    linux.cs.pdx.edu 

Linux systems in FAB 88-09 and FAB 88-10 
(Homework assignments will be tested here.) 

Login remotely or in person (Basement of EB) 
ssh user@linux.cs.pdx.edu 

!  ssh is included in the “putty” package 
   http://www.chiark.greenend.org.uk/~sgtatham/putty 

!  ssh  is included in “cygwin” 
   http://www.cygwin.com 
 Alternatively, you can develop your code via cygwin 
 Code will be graded on linuxlab so make sure it works on  

  linuxlab systems 
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 Randal E. Bryant and David R. O’Hallaron,  
“Computer Systems: A Programmer’s 

Perspective”, Third Edition, Prentice Hall 
2003. 

Brian Kernighan and Dennis Ritchie,  
“The C Programming Language, Second 

Edition”, Prentice Hall, 1988. 
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Getting help 
"  CS Tutors 
"  TA and instructor office hours 
"  On-line resources for gdb, make, etc. 

Policies 
"  You are responsible for everything that takes place in class 
"  Reading assignments will be posted with each lecture 
"  Homework assignments due at start of class on due date 

!  Follow submission instructions on home page carefully, 
especially for programming assignments. 

!  Late policy: 50% off, if not submitted before class time. 
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Academic integrity 
"  Automatic failing grade given 
"  Departmental guidelines available in CS office 

What is not cheating? 
"  Discussing the design for a program is OK. 
"  Helping each other orally (not in writing) is OK. 
"  Using anything out of the textbook or my slides is OK. 
"  Copying code “snippets”, templates for system calls, or 

declarations from a reference book or header files are OK 

What is cheating? 
"  Copying code verbatim without attribution 

!  Source-code plagiarism tools 

"  Copying someone’s answer or letting someone copy your answer. 
"  Mailing code to the class mailing list. 
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Grading 
Reading assignments 

Practice problems in the textbook – do them! 

Homework: 
" Programming assignments in C – email to grader 
" Written homework – hand in hardcopy 

Two exams 
! Midterm exam 
! Final comprehensive exam (covering entire term)‏ 
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Supporting Video Material 
" Accessible through website 
" To augment lectures 

  100% Attendance is required 

“Binary Numbers” 
“Assembly Language and Processor Architecture” 
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The specification is on course web site 
    cs.pdx.edu/~harry/cs201 

The Task: Write a small C program 
Will use several system calls 

rand, gettimeofday, printf, scanf, strlen, etc… 
Goal: Learn C 

   • Discover an algorithm 
   • Write clean, well-formatted code 
   • Write appropriate comments 

Grader will run and read your program 
Due in two weeks 

If you are unable to complete this program on time, you 
should consider dropping the course.
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Used prevalently 
"  Operating systems (e.g. Windows, Linux, OS X) 
"  Web servers 
"  Web browsers 
"  Mail servers 
"  DNS servers 
"  Video games 
"  Graphics card programming 

Why? 
"  Performance 
"  Portability 
"  Flexibility / Ability to do things 
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Compared to other high-level languages 
"  Maps almost directly into hardware instructions 
"  Code efficiency!!! 

•  C Provides a minimal set of abstractions 
•  Other High-Level Languages make programming simpler at the 

expense of efficiency   

Compared to assembly programming 
"  Abstracts out hardware (i.e. registers, memory addresses)  

"  Possible to write portable code 
"  A “portable assembly language” 

"  Provides variables, functions, arrays, complex arithmetic 
and boolean expressions 
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Learn how programs map onto underlying hardware 
"  Allows programmers to write efficient code 

Perform platform-specific tasks 
"  Access and manipulate hardware-specific registers 
"  Interface with hardware devices 
"  Utilize latest CPU instructions 

Reverse-engineer unknown binary code 
"  Analyze security problems caused by CPU architecture 
"  Identify what viruses, spyware, rootkits, and other malware 

are doing 
"  Understand how cheating in on-line games work 
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One of many programming languages 
Imperative (procedural) programming language 

"  Computation consisting of statements that change program 
state 

"  Language makes explicit references to state (i.e. variables) 
"  Computation broken into modular components 

(“procedures” or “functions”) that can be called from any 
point 

Declarative programming languages 
"  Describes what something is like, rather than how to create it 
"  Implementation left to other components 
"  Examples: HTML, SQL 
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Simpler than C++, C#, Java 
No support for… 

!  Objects 
!  Memory management 
!  Array bounds checking 
!  Non-scalar operations 

Simple support for… 
!  Typing 
!  Structures 

Extended Functionality?  Just a collection of functions 
!  Functions are in “libraries” (libc, libpthread, libm) 

Low-level, direct access to machine memory specifics 

Easier to write bugs, harder to write programs, typically faster 
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Compilation is to machine code 
"  Same as C++ 
"  Compiled, assembled, linked via gcc 

Compared to interpreted languages… 
Perl / Python / Ruby …  

!  Commands interpreted by interpreter software 
!  Interpreter runs natively 

Java 
!  Compiles to virtual machine “byte codes” 
!  Byte codes interpreted by virtual machine software 
!  Virtual machine runs natively (and is written in C) 

  (Exception: “Just-In-Time” (JIT) compilation to machine code) 
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All programs must run on the CS Linux Lab machines 
 ssh user@linuxlab.cs.pdx.edu 

Architecture will be x86-64 
  IA-32  (32 bits) 

   i386 

  x86-64  (64 bits) 

   Intel-64, AMD64 

  IA-64  (64 bits) 

   “Itanium” 
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GNU gcc compiler 
 gcc –m64 –Wall hello.c –o hello
    –m64  =  compile for 64-bit machines 
    –Wall  =  print warnings as well as errors 

GNU gdb debugger 
Must use “-g” flag when compiling and remove –O flags 

   gcc –g hello.c
(Will add debug symbols; will not reorder instructions for 

optimized performance) 

"  ddd is a graphical front end to gdb 
"  “gdb -tui” is a graphical curses interface to gdb 



23 

Identifiers use letters, numbers, some special characters 
Examples:  

x   mySizeVar   x_43   _init

Must be declared before use 
"  Contrast to typical scripting languages 

(Perl, Python, PHP, JavaScript) 
"  C is statically typed 

Static Typing 
Compiler checks for type errors 
     x = 123 – “hello”; 

Dynamic Typing 
Less checking; Errors may occur at runtime 
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char – single byte integer  
8-bit characters 
Strings implemented as arrays of char and referenced via a 

pointer to the first char of the array 

short – short integer 
16-bit (2 bytes),  not used much 

int – integer, size varies by architecture 
Normally 32-bits (4 bytes) 
Qualifiers: ‘unsigned’, ‘short’, ‘long’ 

float – single precision floating point 
32-bit (4 bytes) 

double – double precision floating point 
64 bit (8 bytes) 
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16 bit integers 
 short int 

32 bit integers 
 int 

32 or 64 bits 
 long int 

64 bit integers 
 long long int 
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16 bit integers 
 short int 
 short  

32 bit integers 
 int 

32 or 64 bits 
 long int 
 long 

64 bit integers 
 long long int 
 long long 
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16 bit integers 
 short int 
 short  

32 bit integers 
 int 

32 or 64 bits 
 long int 
 long 

64 bit integers 
 long long int 
 long long 

Preferred 
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Integer literals 
1234

0xFE    0xab78 

Character constants 
'a' is the numeric value of character ‘a’ in the ASCII code 
(decimal=97, hex=0x61) 

   char letterA = 'a';
int asciiA = 'a';

String Literals 
"I am a string"

""    // This is the empty string.

What’s the difference? 
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Used for static arrays 
! Symbol that points to a fixed location in memory 
    char amsg[ ] = "This is a string"; 
! Can change change characters in string  

amsg[3] = 'x'; 
! Can not reassign amsg to point elsewhere 

char p[ ] = "This is a different string"; 
amsg = p; 

T h i s   i s   a   s t r i n g \0

amsg 
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Variable declaration 
 int foo; 
 char *ptr; 
 float ff; 

Can include initialization 
 int foo = 34; 
 char *ptr = "fubar"; 
 float ff = 34.99; 

Arithmetic operators 
"  +, - , *, /, % 
"  Modulus operator (%) 
"  Arithmetic operators associate left to right 
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https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003/ 
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Comes in prefix and postfix flavors 
i++

++i

i--

--i

Makes a difference in evaluating complex statements 
"  A major source of bugs 
"  Prefix: increment happens before evaluation 
"  Postfix: increment happens after evaluation 

Important to understand: 

 When the actual increment/decrement occurs 
   Is “i++*2” the same as “++i*2” ? 
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datatype  size  values 
char   1  -128  …  127 

short   2  -32,768  …  32,767 

int   4  -2,147,483,648   …  2,147,483,647 

long long  8  -1018  …  +1018   

float   4  3.4 × 10±38    (7 digits) 

double  8  1.7 × 10±308   (15 digits long) 

    

 Exact details of size are “implementation dependent”!  
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You must declare variables ahead of time in C: 
  { 
    int i 
    for (i = 0; i < 10; i++) 
      … 

This is not okay in C: 
  { 
    for (int i = 0; i < 10; i++) 
      … 
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Error handling 

 There is no “throw/catch” mechanism 

Ways to deal with an error: 
"  Return a special code to indicate an error. 
"  Set a global variable. 
"  Install a signal handler. 

(We will learn about “signals” later) 
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Dynamic memory 
"  Managed languages such as Java perform memory 

management (i.e., garbage collection) for programmers. 
"  C requires the programmer to explicitly allocate and 

deallocate memory. 
"  No “new” construct to create objects. 

Memory can be allocated dynamically at run-time. 

    Allocate with malloc()  
    Deallocate with free() 

You supply the number of bytes you want. 
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#include <stdio.h> 
int main(int argc, char* argv[]) 
{ 
  /* print a message*/ 
  printf(”Hello, world!\n"); 
  return 0; 
} $ gcc –Wall hello.c –o hello 

$ ./hello  
Hello, world! 
$  
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#include <stdio.h> 
"  Include the contents of the file stdio.h 

! Case sensitive – lower case only 
"  No semicolon at the end of line 

int main(…) 
"  The OS calls this function when the program starts running. 

printf(format_string, arg1, …) 
"  Calls a function from libc library 
"  Prints out a string, specified by the format string and the 

arguments. 
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main has two arguments from the command line 
 int main(int argc, char* argv[]) 

argc 
Number of arguments (including program name)‏ 

argv 
Pointer to an array of string pointers  

argv[0]: = program name 
argv[1]: = first argument 
argv[argc-1]: last argument 

Example:  $ find . -print
argc  =  3
argv[0]  =  “find” 
argv[1]  =  “.” 
argv[2]  =  “-print” 
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#include <stdio.h> 

int main(int argc, char* argv[]) 

{ 

  int i; 

  printf("%d arguments\n", argc); 

  for(i = 0; i < argc; i++) 

    printf("  %d: %s\n", i, argv[i]); 

  return 0; 

} 
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#include <stdio.h> 

int main(int argc, char* argv[]) 

{ 

  int i; 

  printf("%d arguments\n", argc); 

  for(i = 0; i < argc; i++) 

    printf("  %d: %s\n", i, argv[i]); 

  return 0; 

} 
$ ./cmdline CS-201 is for SERIOUS programmers 
6 arguments 

  0: ./cmdline 
  1: CS-201 
  2: is 
  3: for 

  4: SERIOUS  
  5: programmers 
$  
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char foo[80]; 
An array of 80 characters 
   sizeof(foo) 
    =  ??? 
      
       

     
        
        
         

Array elements are stored contiguously in memory. 
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char foo[80]; 
An array of 80 characters 
   sizeof(foo) 
    = 80 × sizeof(char) 
    = 80 × 1 
     = 80 bytes 

     
        
        
         

Array elements are stored contiguously in memory. 
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char foo[80]; 
An array of 80 characters 
   sizeof(foo) 
    = 80 × sizeof(char) 
    = 80 × 1 
     = 80 bytes 

int bar[40]; 
An array of 40 integers 
   sizeof(bar) 
    =   
    =   
     =   

Array elements are stored contiguously in memory. 
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char foo[80]; 
An array of 80 characters 
   sizeof(foo) 
    = 80 × sizeof(char) 
    = 80 × 1 
     = 80 bytes 

int bar[40]; 
An array of 40 integers 
   sizeof(bar) 
    = 40 × sizeof(int) 
    = 40 × 4 
     = 160 bytes 

Array elements are stored contiguously in memory. 
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Pointers are variables that hold an address in memory. 

The address “points to” another variable. 

Very powerful idea! 

x: 

int x;
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Pointers are variables that hold an address in memory. 

The address “points to” another variable. 

Very powerful idea! 

myPtrVar: 

x: 

int x;
int * myPtrVar;



52 

Pointers are variables that hold an address in memory. 

The address “points to” another variable. 

Very powerful idea! 

myPtrVar: 

x: 

int x;
int * myPtrVar;
myPtrVar = &x;
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f: 

float f;        /* data variable */ 
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f: 2300

float f;        /* data variable */ 

memory 
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 

memory 
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 

3408f_addr: 

memory 
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

3408f_addr: 

memory 
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

3408f_addr: 

memory 
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

3408f_addr: 

memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 

3408f_addr: 

memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 

3408f_addr: 

3.2

memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

3408f_addr: 

3.2

memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

3408

5670

f_addr: 

g: 

3.2

memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

3408

5670

f_addr: 

g: 

3.2

3.2
memory 

2300
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f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

f = 1.78;    /* but g is still 3.2 */ 

3408

5670

f_addr: 

g: 

3.2

3.2
memory 

2300



66 

f: 2300

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

f = 1.78;    /* but g is still 3.2 */ 

3408

5670

f_addr: 

g: 

1.78

3.2
memory 

2300
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f: 

float f;        /* data variable */ 

float *f_addr;   /* pointer variable */ 
f_addr = &f;   /* & = address operator */ 

*f_addr = 3.2;   /* indirection operator */ 
float g = *f_addr; /* indirection: g is now 3.2 */ 

f = 1.78;    /* but g is still 3.2 */ 

f_addr: 

g: 

1.78

3.2
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x = 123;

w = foo (x*y, z, -1);

printf (…);

int foo (int a, int b, int c) {

   …

   return (a+b+c);

}

The caller / calling code 

The callee / called function 

arguments (expressions) 

parameters (variables) 
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In C, all function arguments are passed “by value”. 

“pass by value” 
The called function is given a copy of the argument. 
The data is copied from “caller” into the function. 
Within the function, the parameter is a local variable. 

Note: 
The function can’t alter variables in the caller function! 
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What if you wish to modify an argument? 

“pass by reference” 
The called function is given a pointer to the argument. 
The data is not copied. 
Within the function, the original variable is modified. 

Call-by-reference requires language support. 
Call-by-reference is NOT SUPPORTED in “C” 

  … directly. 
 “C” has a mechanism that you can use: 

 Pointers! 
In C all arguments are passed using “call-by-value.” 
You can achieve call-by-reference, but you must program it. 
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Before: 
 x=3   y=4 

swap1(x,y);

After? 

 x=3   y=4 

  or 

 x=4   y=3 

void swap1(int a, int b) 
{ 
  int temp; 
  temp = a; 
  a = b; 
  b = temp; 
} 
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Before: 
 x=3   y=4 

swap1(x,y);

After? 

 x=3   y=4 

  or 

 x=4   y=3 

void swap1(int a, int b) 
{ 
  int temp; 
  temp = a; 
  a = b; 
  b = temp; 
} 
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void swap2(int *a, int *b) 
{ 
  int temp; 
  temp = *a; 
  *a = *b; 
  *b = temp; 
} 

Before: 
 x=3   y=4 

swap2(&x,&y);

After? 

 x=3   y=4 

  or 

 x=4   y=3 
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void swap2(int *a, int *b) 
{ 
  int temp; 
  temp = *a; 
  *a = *b; 
  *b = temp; 
} 

Before: 
 x=3   y=4 

swap2(&x,&y);

After? 

 x=3   y=4 

  or 

 x=4   y=3 
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Calls to functions normally resolved statically 

 (“Static” means done at compile-time.) 

void print_ints(int a, int b)  { 
  printf(“%d %d\n”,a,b); 
} 

int main(int argc, char* argv[]) { 
int i=3; 
int j=4; 
print_ints(i,j); 

} 
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Using function pointers, C can support late-binding of 
functions where calls are determined at run-time 

% ./funcp a 
Even 2 
% ./funcp a b 
Odd 3 

#include <stdio.h> 

void print_even(int i){ printf("Even %d\n",i);} 
void print_odd (int i){ printf("Odd %d\n",i); } 

int main(int argc, char **argv) { 

    void (*fp)(int); 

    if !(argc%2) 
      fp=print_even; 
    else 
      fp=print_odd; 

    fp(argc); 
} 


