
1

2

Attendance

Course objectives

Syllabus
Textbooks, policies, class mailing list, etc.

Assignment 1

Overview of the “C” programming language

3

4

Intel Core i7
 4 Processors (CPUs) per chip
 14 nm feature size
 4 GHz clock speed
 2 billion transistors
 1100 pins

5

What is “System Software” and how does it work?

 • Compiling

 • Assembly Language

 • OS organization

How is a program actually executed?

 • Skills and knowledge of “C” programming

How does the hardware get the job done?

 • Computer Architecture

6

Course home page
 cs.pdx.edu/~harry/cs201

Course Schedule
Homeworks
Lecture Slides
Information about instructor, TA, office hours
Email mailing list (mailman):

 PorterClassList

7

Accounts
Instructions on course web page

Activate your account in person at CAT front desk.
 linux.cs.pdx.edu

Linux systems in FAB 88-09 and FAB 88-10
(Homework assignments will be tested here.)

Login remotely or in person (Basement of EB)
ssh user@linux.cs.pdx.edu

!  ssh is included in the “putty” package
 http://www.chiark.greenend.org.uk/~sgtatham/putty

!  ssh is included in “cygwin”
 http://www.cygwin.com
 Alternatively, you can develop your code via cygwin
 Code will be graded on linuxlab so make sure it works on

 linuxlab systems

8

 Randal E. Bryant and David R. O’Hallaron,
“Computer Systems: A Programmer’s

Perspective”, Third Edition, Prentice Hall
2003.

Brian Kernighan and Dennis Ritchie,
“The C Programming Language, Second

Edition”, Prentice Hall, 1988.

9

Getting help
"  CS Tutors
"  TA and instructor office hours
"  On-line resources for gdb, make, etc.

Policies
"  You are responsible for everything that takes place in class
"  Reading assignments will be posted with each lecture
"  Homework assignments due at start of class on due date

!  Follow submission instructions on home page carefully,
especially for programming assignments.

!  Late policy: 50% off, if not submitted before class time.

10

Academic integrity
"  Automatic failing grade given
"  Departmental guidelines available in CS office

What is not cheating?
"  Discussing the design for a program is OK.
"  Helping each other orally (not in writing) is OK.
"  Using anything out of the textbook or my slides is OK.
"  Copying code “snippets”, templates for system calls, or

declarations from a reference book or header files are OK

What is cheating?
"  Copying code verbatim without attribution

!  Source-code plagiarism tools

"  Copying someone’s answer or letting someone copy your answer.
"  Mailing code to the class mailing list.

11

Grading
Reading assignments

Practice problems in the textbook – do them!

Homework:
" Programming assignments in C – email to grader
" Written homework – hand in hardcopy

Two exams
! Midterm exam
! Final comprehensive exam (covering entire term)‏

12

Supporting Video Material
" Accessible through website
" To augment lectures

 100% Attendance is required

“Binary Numbers”
“Assembly Language and Processor Architecture”

13

The specification is on course web site
 cs.pdx.edu/~harry/cs201

The Task: Write a small C program
Will use several system calls

rand, gettimeofday, printf, scanf, strlen, etc…
Goal: Learn C

 • Discover an algorithm
 • Write clean, well-formatted code
 • Write appropriate comments

Grader will run and read your program
Due in two weeks

If you are unable to complete this program on time, you
should consider dropping the course.

14

15

Used prevalently
"  Operating systems (e.g. Windows, Linux, OS X)
"  Web servers
"  Web browsers
"  Mail servers
"  DNS servers
"  Video games
"  Graphics card programming

Why?
"  Performance
"  Portability
"  Flexibility / Ability to do things

16

Compared to other high-level languages
"  Maps almost directly into hardware instructions
"  Code efficiency!!!

•  C Provides a minimal set of abstractions
•  Other High-Level Languages make programming simpler at the

expense of efficiency

Compared to assembly programming
"  Abstracts out hardware (i.e. registers, memory addresses)

"  Possible to write portable code
"  A “portable assembly language”

"  Provides variables, functions, arrays, complex arithmetic
and boolean expressions

17

Learn how programs map onto underlying hardware
"  Allows programmers to write efficient code

Perform platform-specific tasks
"  Access and manipulate hardware-specific registers
"  Interface with hardware devices
"  Utilize latest CPU instructions

Reverse-engineer unknown binary code
"  Analyze security problems caused by CPU architecture
"  Identify what viruses, spyware, rootkits, and other malware

are doing
"  Understand how cheating in on-line games work

18

One of many programming languages
Imperative (procedural) programming language

"  Computation consisting of statements that change program
state

"  Language makes explicit references to state (i.e. variables)
"  Computation broken into modular components

(“procedures” or “functions”) that can be called from any
point

Declarative programming languages
"  Describes what something is like, rather than how to create it
"  Implementation left to other components
"  Examples: HTML, SQL

19

Simpler than C++, C#, Java
No support for…

!  Objects
!  Memory management
!  Array bounds checking
!  Non-scalar operations

Simple support for…
!  Typing
!  Structures

Extended Functionality? Just a collection of functions
!  Functions are in “libraries” (libc, libpthread, libm)

Low-level, direct access to machine memory specifics

Easier to write bugs, harder to write programs, typically faster

20

Compilation is to machine code
"  Same as C++
"  Compiled, assembled, linked via gcc

Compared to interpreted languages…
Perl / Python / Ruby …

!  Commands interpreted by interpreter software
!  Interpreter runs natively

Java
!  Compiles to virtual machine “byte codes”
!  Byte codes interpreted by virtual machine software
!  Virtual machine runs natively (and is written in C)

 (Exception: “Just-In-Time” (JIT) compilation to machine code)

21

All programs must run on the CS Linux Lab machines
 ssh user@linuxlab.cs.pdx.edu

Architecture will be x86-64
 IA-32 (32 bits)

 i386

 x86-64 (64 bits)

 Intel-64, AMD64

 IA-64 (64 bits)

 “Itanium”

22

GNU gcc compiler
 gcc –m64 –Wall hello.c –o hello
 –m64 = compile for 64-bit machines
 –Wall = print warnings as well as errors

GNU gdb debugger
Must use “-g” flag when compiling and remove –O flags

 gcc –g hello.c
(Will add debug symbols; will not reorder instructions for

optimized performance)

"  ddd is a graphical front end to gdb
"  “gdb -tui” is a graphical curses interface to gdb

23

Identifiers use letters, numbers, some special characters
Examples:

x mySizeVar x_43 _init

Must be declared before use
"  Contrast to typical scripting languages

(Perl, Python, PHP, JavaScript)
"  C is statically typed

Static Typing
Compiler checks for type errors
 x = 123 – “hello”;

Dynamic Typing
Less checking; Errors may occur at runtime

24

char – single byte integer
8-bit characters
Strings implemented as arrays of char and referenced via a

pointer to the first char of the array

short – short integer
16-bit (2 bytes), not used much

int – integer, size varies by architecture
Normally 32-bits (4 bytes)
Qualifiers: ‘unsigned’, ‘short’, ‘long’

float – single precision floating point
32-bit (4 bytes)

double – double precision floating point
64 bit (8 bytes)

25

16 bit integers
 short int

32 bit integers
 int

32 or 64 bits
 long int

64 bit integers
 long long int

26

16 bit integers
 short int
 short

32 bit integers
 int

32 or 64 bits
 long int
 long

64 bit integers
 long long int
 long long

27

16 bit integers
 short int
 short

32 bit integers
 int

32 or 64 bits
 long int
 long

64 bit integers
 long long int
 long long

Preferred

28

Integer literals
1234

0xFE 0xab78

Character constants
'a' is the numeric value of character ‘a’ in the ASCII code
(decimal=97, hex=0x61)

 char letterA = 'a';
int asciiA = 'a';

String Literals
"I am a string"

"" // This is the empty string.

What’s the difference?

29

Used for static arrays
! Symbol that points to a fixed location in memory
 char amsg[] = "This is a string";
! Can change change characters in string

amsg[3] = 'x';
! Can not reassign amsg to point elsewhere

char p[] = "This is a different string";
amsg = p;

T h i s i s a s t r i n g \0

amsg

30

Variable declaration
 int foo;
 char *ptr;
 float ff;

Can include initialization
 int foo = 34;
 char *ptr = "fubar";
 float ff = 34.99;

Arithmetic operators
"  +, - , *, /, %
"  Modulus operator (%)
"  Arithmetic operators associate left to right

31

32

https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003/

33

Comes in prefix and postfix flavors
i++

++i

i--

--i

Makes a difference in evaluating complex statements
"  A major source of bugs
"  Prefix: increment happens before evaluation
"  Postfix: increment happens after evaluation

Important to understand:

 When the actual increment/decrement occurs
 Is “i++*2” the same as “++i*2” ?

34

35

datatype size values
char 1 -128 … 127

short 2 -32,768 … 32,767

int 4 -2,147,483,648 … 2,147,483,647

long long 8 -1018 … +1018

float 4 3.4 × 10±38 (7 digits)

double 8 1.7 × 10±308 (15 digits long)

 Exact details of size are “implementation dependent”!

36

You must declare variables ahead of time in C:
 {
 int i
 for (i = 0; i < 10; i++)
 …

This is not okay in C:
 {
 for (int i = 0; i < 10; i++)
 …

37

38

Error handling

 There is no “throw/catch” mechanism

Ways to deal with an error:
"  Return a special code to indicate an error.
"  Set a global variable.
"  Install a signal handler.

(We will learn about “signals” later)

39

Dynamic memory
"  Managed languages such as Java perform memory

management (i.e., garbage collection) for programmers.
"  C requires the programmer to explicitly allocate and

deallocate memory.
"  No “new” construct to create objects.

Memory can be allocated dynamically at run-time.

 Allocate with malloc()
 Deallocate with free()

You supply the number of bytes you want.

40

#include <stdio.h>
int main(int argc, char* argv[])
{
 /* print a message*/
 printf(”Hello, world!\n");
 return 0;
} $ gcc –Wall hello.c –o hello

$./hello
Hello, world!
$

41

#include <stdio.h>
"  Include the contents of the file stdio.h

! Case sensitive – lower case only
"  No semicolon at the end of line

int main(…)
"  The OS calls this function when the program starts running.

printf(format_string, arg1, …)
"  Calls a function from libc library
"  Prints out a string, specified by the format string and the

arguments.

42

main has two arguments from the command line
 int main(int argc, char* argv[])

argc
Number of arguments (including program name)‏

argv
Pointer to an array of string pointers

argv[0]: = program name
argv[1]: = first argument
argv[argc-1]: last argument

Example: $ find . -print
argc = 3
argv[0] = “find”
argv[1] = “.”
argv[2] = “-print”

43

#include <stdio.h>

int main(int argc, char* argv[])

{

 int i;

 printf("%d arguments\n", argc);

 for(i = 0; i < argc; i++)

 printf(" %d: %s\n", i, argv[i]);

 return 0;

}

44

#include <stdio.h>

int main(int argc, char* argv[])

{

 int i;

 printf("%d arguments\n", argc);

 for(i = 0; i < argc; i++)

 printf(" %d: %s\n", i, argv[i]);

 return 0;

}
$./cmdline CS-201 is for SERIOUS programmers
6 arguments

 0: ./cmdline
 1: CS-201
 2: is
 3: for

 4: SERIOUS
 5: programmers
$

45

char foo[80];
An array of 80 characters
 sizeof(foo)
 = ???

Array elements are stored contiguously in memory.

46

char foo[80];
An array of 80 characters
 sizeof(foo)
 = 80 × sizeof(char)
 = 80 × 1
 = 80 bytes

Array elements are stored contiguously in memory.

47

char foo[80];
An array of 80 characters
 sizeof(foo)
 = 80 × sizeof(char)
 = 80 × 1
 = 80 bytes

int bar[40];
An array of 40 integers
 sizeof(bar)
 =
 =
 =

Array elements are stored contiguously in memory.

48

char foo[80];
An array of 80 characters
 sizeof(foo)
 = 80 × sizeof(char)
 = 80 × 1
 = 80 bytes

int bar[40];
An array of 40 integers
 sizeof(bar)
 = 40 × sizeof(int)
 = 40 × 4
 = 160 bytes

Array elements are stored contiguously in memory.

49

50

Pointers are variables that hold an address in memory.

The address “points to” another variable.

Very powerful idea!

x:

int x;

51

Pointers are variables that hold an address in memory.

The address “points to” another variable.

Very powerful idea!

myPtrVar:

x:

int x;
int * myPtrVar;

52

Pointers are variables that hold an address in memory.

The address “points to” another variable.

Very powerful idea!

myPtrVar:

x:

int x;
int * myPtrVar;
myPtrVar = &x;

53

f:

float f; /* data variable */

54

f: 2300

float f; /* data variable */

memory

55

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */

memory

56

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */

3408f_addr:

memory

57

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

3408f_addr:

memory

58

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

3408f_addr:

memory

59

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

3408f_addr:

memory

2300

60

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */

3408f_addr:

memory

2300

61

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */

3408f_addr:

3.2

memory

2300

62

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

3408f_addr:

3.2

memory

2300

63

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

3408

5670

f_addr:

g:

3.2

memory

2300

64

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

3408

5670

f_addr:

g:

3.2

3.2
memory

2300

65

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

f = 1.78; /* but g is still 3.2 */

3408

5670

f_addr:

g:

3.2

3.2
memory

2300

66

f: 2300

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

f = 1.78; /* but g is still 3.2 */

3408

5670

f_addr:

g:

1.78

3.2
memory

2300

67

f:

float f; /* data variable */

float *f_addr; /* pointer variable */
f_addr = &f; /* & = address operator */

f_addr = 3.2; / indirection operator */
float g = *f_addr; /* indirection: g is now 3.2 */

f = 1.78; /* but g is still 3.2 */

f_addr:

g:

1.78

3.2

68

x = 123;

w = foo (x*y, z, -1);

printf (…);

int foo (int a, int b, int c) {

 …

 return (a+b+c);

}

The caller / calling code

The callee / called function

arguments (expressions)

parameters (variables)

69

In C, all function arguments are passed “by value”.

“pass by value”
The called function is given a copy of the argument.
The data is copied from “caller” into the function.
Within the function, the parameter is a local variable.

Note:
The function can’t alter variables in the caller function!

70

What if you wish to modify an argument?

“pass by reference”
The called function is given a pointer to the argument.
The data is not copied.
Within the function, the original variable is modified.

Call-by-reference requires language support.
Call-by-reference is NOT SUPPORTED in “C”

 … directly.
 “C” has a mechanism that you can use:

 Pointers!
In C all arguments are passed using “call-by-value.”
You can achieve call-by-reference, but you must program it.

71

Before:
 x=3 y=4

swap1(x,y);

After?

 x=3 y=4

 or

 x=4 y=3

void swap1(int a, int b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

72

Before:
 x=3 y=4

swap1(x,y);

After?

 x=3 y=4

 or

 x=4 y=3

void swap1(int a, int b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

73

void swap2(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

Before:
 x=3 y=4

swap2(&x,&y);

After?

 x=3 y=4

 or

 x=4 y=3

74

void swap2(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

Before:
 x=3 y=4

swap2(&x,&y);

After?

 x=3 y=4

 or

 x=4 y=3

75

76

Calls to functions normally resolved statically

 (“Static” means done at compile-time.)

void print_ints(int a, int b) {
 printf(“%d %d\n”,a,b);
}

int main(int argc, char* argv[]) {
int i=3;
int j=4;
print_ints(i,j);

}

77

Using function pointers, C can support late-binding of
functions where calls are determined at run-time

% ./funcp a
Even 2
% ./funcp a b
Odd 3

#include <stdio.h>

void print_even(int i){ printf("Even %d\n",i);}
void print_odd (int i){ printf("Odd %d\n",i); }

int main(int argc, char **argv) {

 void (*fp)(int);

 if !(argc%2)
 fp=print_even;
 else
 fp=print_odd;

 fp(argc);
}

