
1

 Computer
Systems

Organization

2

Outline

3

A software view

User
Interface

4

How it works

5

The gcc compilation system

6

The gcc compilation system

Pre-processor (cpp)

hello.c (source code)

hello.i (modified source)

hello.s (assembly code)

hello.o (object file)

hello (executable)

Compiler (cc)

Assembler (as)

Linker (ld)

7

The Preprocessor: cpp
First step: gcc compiler driver invokes cpp

Output is expanded C source
cpp does text substitution

! Converts the C source file to another C source file
! Expands

#define
#include
#if…

! Output is another C source file

8

The Preprocessor: cpp

9

Macros

Whitespace forbidden

Whitespace required

10

Macros - Why the parens?
Whitespace required

Whitespace forbidden

11

Macros – Just Textual Substitution

Perfectly Okay

No syntax error, after all!

12

Conditional Compilation

13

Compiler

Assembler

14

Linker

Linker (ld)

there.o

hello

hello.o

Libraries
libc.a

The executable file

15

The gcc compilation system

Pre-processor (cpp)

hello.c (source code)

hello.i (modified source)

hello.s (assembly code)

hello.o (object file)

hello (executable)

Compiler (cc)

Assembler (as)

Linker (ld)

16

GCC variations

default	 is	 a.out

17

GCC variations
default	 is	 hello.i

default	 is	 hello.s

default	 is	 hello.o

default	 is	 a.out

18

GCC variations
default	 is	 hello.i

default	 is	 hello.s

default	 is	 hello.o

default	 is	 a.out

19

GCC variations

20

The Virtual Address Space

000000000

FFFFFFFF

21

The Virtual Address Space

Program Code

000000000

FFFFFFFF

22

The Virtual Address Space

Program Code

Constants

000000000

FFFFFFFF

23

The Virtual Address Space

Program Code

Constants

Data

000000000

FFFFFFFF

24

The Virtual Address Space

Program Code

Constants

Data

Stack

000000000

FFFFFFFF

25

The Virtual Address Space

Program Code

Constants

Data

Stack

Heap

000000000

FFFFFFFF

26

The Virtual Address Space

Program Code

Constants

Data

Stack

Heap

Memory Maped
Pages

000000000

FFFFFFFF

27

The Virtual Address Space

 Read-Only

 Read-Write

000000000

FFFFFFFF

.text segment

.data segment

Program Code

Constants

Data

Stack

Heap

Memory Maped
Pages

28

The Executable File

 Read-Only

 Read-Write

.text segment

.data segment

 Header

 Additional Info

000000000

FFFFFFFF

29

Why Link?

30

The linking process (ld)

31

 .text

.data

 .text

 .data

Header

The Linking Process

 Additional Info

 Header

 Additional Info

 Header

 Additional Info

main.o

foo.o

Executable File

 .text

.data

 .text

 .data

 .text

 .data

32

 .text

.data

 .text

 .data

Header

Resolving External References

 Additional Info

 Header

 Additional Info

 Header

 Additional Info

main.o

foo.o

Executable File

 .text

.data

 .text

 .data

 .text

 .data

33
unused

read-only segment
(.init, .text, .rodata)

read/write segment
(.data, .bss)

run-time heap
(managed by malloc)

memory mapped region for
shared library functions

stack

Memory used by the
kernel for this process

Example Virtual Address Space

0x00000000

%rsp (stack pointer)

invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

loaded from the
executable file

0xffffffff

shared by other
processes

34

Libraries and Linking

35

Three Kinds of Object Files (Modules)
Relocatable object file (.o file)

Contains code and data in a form that can be combined with
other relocatable object files to form executable object file.

Each .o file is produced from exactly one source (.c) file

Executable object file (a.out file)
Contains code and data in a form that can be copied directly

into memory and then executed.

Shared object file (.so file)
Special type of relocatable object file that can be loaded into

memory and linked dynamically, at either load time or run-
time.

Called Dynamic Link Libraries (DLLs) by Windows

36

The Complete Picture

libc.so functions called by
main.c and foo.c are loaded,
linked, and (potentially) shared
among processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

main.c

main.o

Translators
(cc1, as)

foo.c

foo.o

libc.so

Linker (ld)

myprog

Loader / Dynamic Linker
(ld-linux.so)

Fully linked executable
 (in memory)

Partially linked executable
 (on disk)

myprog’

libwhatever.a

libm.so

37

The Operating System

38

Operating system functions

39

Operating system functions

40

Unix file system

41

Unix file systems

42

Process abstraction

43

How does a program get executed?

44

Loading Executable Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

45

Where are programs loaded in memory?

46

Where are programs loaded, cont’d

47

Where are programs loaded, cont’d

48

Modern linking and loading

49

The memory hierarchy

50

Memory heirarchy motivation

51

The memory heirarchy

Remote Secondary Storage

Local Secondary Storage

Main Memory

Level 2 Cache
(off chip)

Level 1 Cache
On Chip

Registers
L0

L1

L2

L3

L4

L5

Smaller
Faster
More Expensive

Larger
Slower
Cheaper

52

USB
Controller

Graphics
Controller

Disk
Controller

Hardware organization

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

53

USB
Controller

Graphics
Controller

Disk
Controller

Summary using hello.c

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

1. Shell process running, waiting for input

54

USB
Controller

Graphics
Controller

Disk
Controller

Summary using hello.c

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

2. User types ./hello

3. Command read into registers
4. Before sent to main memory before being read by
shell process

55

USB
Controller

Graphics
Controller

Disk
Controller

Summary using hello.c

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

5. Shell process creates new process through
OS and initiates DMA of hello executable from
disk to main memory

56

USB
Controller

Graphics
Controller

Disk
Controller

Summary using hello.c

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

6. CPU executes hello code from
main memory

57

USB
Controller

Graphics
Controller

Disk
Controller

Summary using hello.c

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

7. CPU copies string “hello, world\n”
from main memory to display

