Structures
and
Pointers

Structures

A structure is a complex data type

m Defined by the programmer

m Keeps together pertinent information of an object

m Contains simple data types or other complex data types
m Similar to a class in C++ or Java, but without methods

Structures

Example from graphics: a point has two coordinates
struct point ({

double x; 123.456

X

double y; Y:154.90001

};
x and y are called members of struct point.

Since a structure is a data type, you can declare
variables:
struct point pl, p2;

What is the size of struct point? 16

Accessing structures

struct point {
double x;
double y;

};

struct point pl;

Use the “.” operator on structure objects to obtain members
pl.x = 10;
pl.y = 20;

Accessing structures via pointer
struct point *pp = &pl;
double d = (*pp) .x;

Use the “->" operator on structure pointers to obtain members
d = (*pp) .x;
d = pp—->x%;

Initializing structures like other variables:
struct point pl = {320, 200},
Equivalentto: pl.x = 320; pl.y = 200;

More structures

Structures can contain other structures as members:

struct rectangle ({

struct point ptl; ptl

struct point pt2;
};
What is the size of a struct rectangle? 32

Structures can be arguments of functions pt2
Passed by value like most other data types

Compare to arrays
int ptinrect(struct point p, struct rectangle r) {
return (p.x >= r.ptl.x) && (p.x < r.pt2.x)

&& (p.y >= r.ptl.y) && (p.y < r.pt2.y);,
}
What does this function return?

1 (=TRUE) when point p is in rectangle r, otherwise 0 (=FALSE)

Operations on structures

Legal operations
m Copy a structure (assignment equivalent to memcpy)
m Get its address
m Access its members

lllegal operations
m Compare content of structures in their entirety
m Must compare individual parts

Structure operator precedences
m “.” and “->" higher than other operators
m *p.xis the same as * (p.x)
m ++p->x is the same as ++ (p->x)

C typedef

C allows us to declare new datatypes using “typedef” keyword

The thing being named is then a data type, rather than a variable
typedef int Length;

Length sideA; // may be more intuitive than “int sideA;”

Often used when working with structs

struct Point {

double x;
double y;
} a; .
Equivalent
tYPegefbi truct Point { (but must not have multiple
ouble x, definitions of “struct Point™)
double y;
} MyPoint;

MyPoint a;

C typedef

typedef struct Point ({
double x;
double y;

} MyPoint;

struct Point a;
MyPoint a;

} equivalent

typedef MyPoint * PointPtr;

struct Point * p; .
MyPoint * p; equivalent
PointPtr p;

C typedef

Common to use the same name.

typedef struct Point ({
double x;
double y;

} Point;

struct Point a;
Point a;

} equivalent

C typedef

May need to declare names before defining names.

typedef struct tnode Treenode;
typedef Treenode * Treeptr;
struct tnode {

char *word;

int count;

Treeptr left;

Treeptr right;

}i

Treenode td;

10

Self-referential structures

A structure can contain members that are pointers to
the same struct (i.e. nodes in linked lists)

typedef struct listNode *NodePtr;
struct listNode {

char * word;

int count;

NodePtr next;

};

3112121129 T (2| 1]|®

/ / /)

Cébrown99 ” ‘6the99 “fOX,,

Self-referential structures

Declared via typedef structs and pointers

What does this code do?

typedef struct listNode *NodePtr;
typedef struct listNode {
char * word;

int count;
NodePtr next;
} Node;

static NodePtr head = NULL; // The head of a list

NodePtr p;
while (...) {
// Allocate a new node

p = (NodePtr) malloc(sizeof (Node)) ;
// Initialize it

p->word = ...;

p->count = ...;

// Add to front of the list
p->next = Head;

head = p;

12

Structures in assembly

Concept

m Contiguously-allocated region of memory

= Members may be of different types

m Accessed statically, code generated at compile-time

struct rec {
int 1i;
int a[3];
int *p;

iy

Memory Layout

i a P
0 4 16 24

Accessing Structure Member

void set i(struct rec *r, int val) {

r->i = val;

}

Assembly

%esi = val
$rdi =

movl %esi, (%rdi) # Mem[r]

N R

val

Example i |a p

0o 4 16
struct rec {
int 1i;
int a[3]; r + 4 + 4*indx
int *p;
};

int * find a (struct rec *r, int indx) ({
return &r->a[indx];

}

%rdi = r

%esi = indx
leal 0(,%esi,4), %rax # 4*indx
leal 4 (%rax,%rdi) ,%rax # r+4*indx+4

Practice Problem

struct prob ({
What are the offsets (in bytes) of the following int *p;
fields? struct {
int x;
P - int y;
S.X L } s;
S.y - struct prob *next;
next Y

How many total bytes does the structure require?

Fill in the missing expressions:

void sp init(struct prob *sp)
{
Sp->s.X
Sp->p ’
sp->next

sp_init:
movl
movl
leaq
movq
movq
ret

12(%rdi), %eax
%$eax, 8 (%rdi)
8 (%rdi), %Srax
Srax, (%rdi)
$rdi, 16 (%rdi)

15

Practice Problem

What are the offsets (in bytes) of the following
fields?

p 0
s.X 8
s.y 12
next 16

struct prob {
int *p;
struct {
int x;
int y;
} s;

struct prob *next;

};

How many total bytes does the structure require?

24

Fill in the missing expressions:

void sp init(struct prob *sp)
{
Sp->S.X = Sp->s.y;
sp->p & (sp->s.x);
sp->next = sp;

sp_init:

movl 12 (%rdi),

movl %$eax, 8 (%rdi)

leaq 8 (%rdi) ,

movq $rax, (%rdi)
movq $rdi, 16(%rdi)

ret

Aligning Structures

Structures and their members should be aligned at
specific offsets in memory

Goal: Align data so that it does not cross alignment
boundaries and cache line boundaries

17

Alignment of structure members

Mostly matches the size of the data type

char is 1 byte
Can be aligned arbitrarily

short is 2 bytes
Member must be aligned on even addresses
(i.e. starting address of short must be divisible by 2)

int and float are 4 bytes
Member must be aligned to addresses divisible by 4

long, double and pointers are 8 bytes
Member must be aligned to addresses divisible by 8

18

Alignment Principles

Aligned Data
Primitive data type requires K bytes
Address must be multiple of K
Required on some machines; advised on x86-64

Motivation for Aligning Data

Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)
Inefficient to load or store datum that spans quad word boundaries
Virtual memory trickier when datum spans 2 pages

Compiler
Inserts gaps in structure to ensure correct alignment of fields

19

Specific Cases of Alignment (x86-64)

1 byte: char, ...
no restrictions on address

2 bytes: short, ...
lowest 1 bit of address must be 02

4 bytes: int, float, ...
lowest 2 bits of address must be 002

8 bytes: double, long, char *, ...
lowest 3 bits of address must be 0002

16 bytes: 1long double (GCC on Linux)
lowest 4 bits of address must be 00002

20

Alignment within Structures

Each member must satisfy its own alignment struct S1 {
requirement char c;
int i[2];
double v;
Overall structure must also satisfy an alignment } *p;

requirement “K”
m K = Largest alignment of any element
m Initial address must be multiple of K

m Structure length must be multiple of K
® For arrays of structures

Questions:
What is K for S1?
What is the size of S1?
Draw S1 and the alignment of elements within it

21

Satisfying Alignment with Structures

Within structure:

Must satisfy each element’s alignment requirement

Overall structure placement

Each structure has alignment requirement K

K = Largest alignment of any element
Initial address & structure length must be multiples of K

struct S1 {
char c;
int i[2];
double v;
} *p

Example:
K =8, due to double element
c i[0] i[1l] v
p+0 pt+4 p+8 pt+16 pt24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8 292

Meeting Overall Alignment
Requirement

For largest alignment requirement K

Overall structure must be multiple of K

struct S2 {
double v;
int i[2];
char c;

} *ps

i[0]

i[1]

p+0

p+8

pt+16 pt24

/

Multiple of K=8

23

Arrays of Structures

Overall structure length is multiple of K

struct S2 {

double v;
. . .] 1[2];
Satisfy alignment requirement e
for every element } a[10];
a[0] a[l] af[2] °© o
a+0 at+24 a+48 at+72
v i[0] i[1] c

a+24 a+32 a+40 a+48

Accessing Array Elements

Compute array offset 12*indx
sizeof (S3), including alignment spacers float v;

Element j is at offset 8 within structure |; .(107;

struct S3 {
short 1i;

short j;

Assembler gives offset a+8
Resolved during linking

a[0] .

a[indx] « o o

a+0 a+l2

a+l2*indx

i

v]

a+l2*indx

short get j(int indx)
{

return a[indx].j;

}

a+l2*indx+8

%$rdi = indx
leaqg $rdi,%$rdi,2) ,%rax # 3*indx
movzwl a+8(,%rax,4) ,b %eax

25

Saving Space

Put large data types first

struct S4 { struct S5 {
char c; int i;
int i; - char c;
char d; char 4d;

} *p; } *ps

Effect (K=4)

C i d

Practice problem

m What is the size of this structure?
24 bytes (w=6, c=12, j=2)

m Write assembly instructions to load
a.c[1] into %eax

Start with

movqg $a,%$rbx
movl 12 (%$rbx) ,b %$eax

1 2 3 4 5 6 7 8 9 10 11 12 13

struct P4 {
short w[3];
int cl[3];
short j;

} a;

14 15 16 17 18 19 20 21 22 23 24

27

Practice problem

For each of the following structures determine:

The offset of each field?
The total size of the structure?

The alignment requirement?
struct P1 {int i; char c¢; int j; char d;};
O, 4, 8, 12 : 16 bytes : 4

struct P2 {int i; char c¢; char d4d; int j;};
O, 4, 5, 8 : 12 bytes : 4

struct P3 {short w[3]; char c[3];};
O, 6 : 10 bytes : 2

struct P4 {short w[3]; char *c[3]:;}:;
O, 8 : 40 bytes : 8

28

Exercise

struct point {
double x;
double y

};

struct octagon {

// An array can be an element of a structure ...

struct point points[8];
} A[34];

struct octagon *r = A;
r += 8;
What is the size of a struct octagon? 16*8 =128

What is the difference between the address r and the address A?
128*8 = 1024

29

Structures can be nameless

A variable called x, whose type is this structure,
which has no name:
Can not declare other variables of same type
Can not pass in function parameters
struct {

char *key;
int v[22];

} x;

A data type called MyStruct, which is this structure,

which otherwise has no name
Can use type ‘MyStruct’ to declare additional variables
Can use type ‘MyStruct’ in function parameters
typedef struct {
char *key;
int v[22];
} MyStruct;

30

Structures can be assigned (i.e., copied)

struct MyStruct ({
char *key; Note: Arrays can not
int v[22]; be assigned, but as part

} ; of a structure they can.

typedef struct MyStruct MyStruct;
main() {

MyStruct x, y;

int 1;

// initialize x

x.key = "hello";

for (i=0; i<22; i++)

x.v[1i] = 1;

// structure assignment

y = x;

// print y

printf("y.key = %s, y.v[1l1l] = %d\n", y.key, y.v[11]);

Unions

A union is a variable that may hold objects of different types and sizes.

Like a structure, but with all the members on top of each other.

The size of the union is the maximum of the size of the individual

datatypes.

union Ul {
char c;
int i[2];
double v;
} *up;

i[0]

i[1]

up+0

up+4

up+8

32

Unions

union u_tag { struct s_tag {
int ival; int ival;
float fval; float fval;
char *sval; char *sval;
} u; } s;

u.ival = 14;
u.fval 31.3;
u.sval = (char *) malloc(strlen(string)+1l);

What's the size of u?
What exactly does u contain after these three lines of code?

Using Union to Access Bit Patterns

typedef union { float bit2float (unsigned u)
float £; {
unsigned u; bit float t arg;
} bit float t; arg.u = u;
return arg.f;
a }
f
0 4 unsigned float2bit(float f£f)
{
= Get direct access to bit bit float_t arg;
representation of float o tE S e
return arg.u;
m bit2float generates float with |,

given bit pattern
® NOT the same as (float) u

m float2bit generates bit pattern
from float

® NOT the same as (unsigned) £

Bit Fields

If you have multiple Boolean variables...
Bit fields can be packed together into a single byte or word.
Saves memory space
Used in device drivers

Example: The system call to open a file:
int fd = open(“filename”, O CREAT|O WRONLY|O TRUNC) ;

Second argument is an integer.
Uses bit fields to specify options.

m O _CREAT = create the file if it does not exist
m O WRONLY = open it write-only; no reading allowed
m O TRUNC =reduces its size to zero if it already exists

35

Implementing Bit Fields

You can use an integer and create bit fields using bitwise
operators:

m 32 bit-field flags in a single integer

Using #defines
#define A 0x01
#define B 0x02
#define C 0x04
#define D 0x08
m Note that they are powers of two corresponding to bit positions

Using an “enum”

m Constant declarations (i.e. like #define, but values are generated if
not specified by programmer)

enum { A = 01, B = 02, C

04, D

08 };

Example:
int flags;
flags |= A | B;

36

Bit field implementation via structs

Use bit width specification in combination with struct

Give names to 1-bit members

struct {
unsigned int is keyword : 1;
unsigned int is extern : 1;
unsigned int is static : 1;

};
Data structure with three members, each one bit wide
What is the size of the struct? 4 bytes

37

Pointers to Functions

Pointers

Central to C (but not other languages)

Gives programmer access to underlying data details
(via physical address)

Allows great flexibility; You can write very efficient code

Major concepts so far
m Every pointer has a type
m Every pointer has a value (which is a memory address)
m Pointers created via the “&” operator
m Dereferenced with the “*” operator
m Arrays and pointers are closely related

Next up...
Pointers can also point to functions

39

Function pointers

Pointers can point to locations of data

Pointers can also point to code locations

Function pointers

You can store and pass references to code

Each has an associated type
® The type the function returns

Some uses

= Dynamic “late-binding” of functions
® Dynamically “set” a random number generator

® Replace large switch statements for implementing dynamic event
handlers

» Example: dynamically setting behavior of GUI buttons

m Emulating “virtual functions” and polymorphism from OOP
e gsort() with user-supplied callback function for comparison

» man gsort
® Operating on lists of elements

» multiplication, addition, min/max, etc.

40

Function pointers

Example declaration

int (*func) (char *);
® func is a pointer to a function taking a char * argument,
returning an int
® How is this different from

int *func(char *) ?

Using a pointer to a function:

int foo(char *); // foo: function returning an int

int (*bar) (char *); // bar: pointer to a fn returning an int
bar = foo; // Now the pointer is initialized

x = bar(p); // Call the function

41

Function Pointer Example

#include <stdio.h> main:
void print_even (int i) { printf ("Even %d\n%,i); } subg $8,3%rsp
void print_odd (int i) { printf ("Odd %d\n”,i); } testb §1,%dil
jne .L60
int main(int argc, char **argv) { movl $print_even, %eax
void (*fp) (int); jmp .L59
int i = argc; .L60:
movl Sprint_odd, $eax
if (1(argc%2)) - .L59:
fp=print_even; call *3rax
else addq $8, %rsp
fp=print_odd; ret
fp(i);
}

[

$ a.out a
Even 2
)

$ a.out a b
odd 3

42

typedefs with function pointers

Same as with other data types

int (*func) (char *);

The named thing, func, is a pointer to a function returning an int.

typedef int (*func) (char *);

The named thing, func, is a data type:
a pointer to function returning an int.

43

A Dispatch Table using Func. Ptrs.

// For each command, we should execute the correponding operation

int doEcho (char*) {...}
int doExit(char*) {...}
int doHelp (char*) {...}
int setPrompt (char*) {...}

// Define type of pointers to operations
typedef int (*FuncPtr) (char¥*);

typedef struct ({

char¥* name;
FuncPtr op to do;
} func t;

// Set up dispatch table
func_t func_table[]

{

// £ind the function and dispatch it
for (1 0; i < cntFuncs; i++) {
if (strcmp(command, func_ table[i] .name)==0) {
done func table[i] .op to_ do(argument) ;
break;

}
}

if (1 cntFuncs)
printf ("invalid command\n") ;

{ "echo", doEcho 1},
{ "exit", doExit },
{ "quit", doExit },
{ "help", doHelp 1},
{ "prompt", setPrompt },

};

// Determine the number of entries in the table

#define cntFuncs (sizeof (func_table) / sizeof (func_table[0]))

44

Complicated Declarations

C’s use of () and * makes declarations involving
pointers and functions extremely difficult
Helpful rules

® * has lower precedence than ()
Work from the inside-out

Consult K&R Chapter 5.12 for complicated

declarations
dc1 program to parse a declaration

45

C pointer declarations

int

int

int

int

int

int

*P
*p[13]
*(p[13])
**p

*£()

(*£) ()

p is a pointer to int
p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

f is a function returning a pointer to int

f is a pointer to a function returning int

46

Practice

What kind of things are these?

int *func(char*) ; function that takes char” as arg and
returns an int*

int (*func) (char*) ; pointer to a fn taking char* as arg
and returns an int

int (*daytab) [13]; pointerto an array[13] of ints

int *daytab[13]; array[13] of int*

47

C pointer declarations

Read these from the “inside” out.

int (*(*£()) [13]) () fis afunction returning ptr to an array[13]
of pointers to functions returning int

int (*(*x[3]) ()) [5] xis an array[3] of pointers to functions
returning pointers to array[5] of ints

char (*(*x())[]1) (); xis afunction returning a pointer to
an array of pointers to functions
returning char

48

