Name

\qquad
Due: Beginning of Class Monday April 19, 2010.
Hand in hard copy. Staple all pages.

1. Write countable or uncountable to indicate the cardinality of each set.
a. Rational numbers \qquad
b. Positive real numbers \qquad
c. $\mathbf{N} \cup \mathbf{N}$ \qquad
d. power(\mathbf{N}) \qquad
e. $\mathbf{N} \times \mathbf{N} \times \mathbf{N}$ \qquad
f. $\{a, b\}^{*}$
2. Write an inductive definition for each set.
a. $S=\{a\}^{*} \times\{b\}^{*}$. Assume that the basis case is: $(\Lambda, \Lambda) \in S$.
b. $S=\{<1>,<3,1\rangle,<5,3,1\rangle,\langle 7,5,3,1\rangle, \ldots\}$.
3. Show each step in the calculation of $f(47)$, where f is defined by

$$
f(0)=0
$$

$f(n)=f(f \operatorname{loor}(n / 3))+n$
4. Write a recursive definition for the following function.

$$
f(n)=4+6+\ldots+(2 n+4), \text { where } n \in \mathbf{N} .
$$

6. Write a recursive definition for the procedure leaves, where for a binary tree T, let leaves (T) be a procedure to print out the leaves of T as they occur from left to right.
7. For each of the following relations, write down the properties that the relation satisfies from the list: reflexive, symmetric, transitive, irreflexive, antisymmetric.
a. isParentOf, over the set of people.
b. \neq, over the set \mathbf{N} of natural numbers.
c. isSubsetOf, over a collection of sets.
8. Given the following binary relations over $\{a, b, c, d\}$.

$$
\begin{aligned}
& R=\{(a, b),(b, c),(c, c),(d, c)\} \\
& S=\{(b, a),(c, b),(c, d)\}
\end{aligned}
$$

a. Find $R{ }^{\circ} S$
b. Find $S^{\circ} R$
9. Find the transitive closure of $R=\{(1,2),(3,1),(3,2),(2,4)\}$.
10. Given the following weighted graph.

a. Draw a matrix that can be used to look up the length of shortest paths between any two points.
b. Draw a path matrix that can be used to compute the shortest path between any two points.

