Name \qquad
Due: Beginning of Class Monday May 3, 2010.
Hand in hard copy. Staple all pages.

1. Find the partitioning induced by the following equivalence relation over the set \mathbf{N}.

$$
a \sim b \quad \text { iff } a \bmod 4=b \bmod 4 .
$$

2. Let $x \sim y$ iff x and y are nonempty lists over $\{a, b\}$ with the same tail.
a. The relation \sim is an equivalence relation because it is the kernel relation
of
b. List the elements in each of the following equivalence classes.

$$
\begin{aligned}
& {[\langle a\rangle]=} \\
& {[\langle a, b\rangle]=} \\
& {[\langle a, a, b\rangle]=} \\
& \hline
\end{aligned}
$$

3. Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be defined by $f(n)=\lceil(n / 4)\rceil$. Describe the partition on \mathbf{N} induced by the kernel relation on f.
4. Consider a graph with this vertex set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. The graph has 5 edges which, when sorted by weight, are as follows:

$$
\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{~d}\},\{\mathrm{a}, \mathrm{~d}\} .
$$

Use Kruskal's algorithm to find a minimal spanning tree T by showing the value of T and the corresponding equivalence classes at each step of the algorithm.
5. Let $\mathrm{D}=\{2,3,6,12,24,36\}$ and for any $\mathrm{x}, \mathrm{y} \in \mathrm{D}$ let $\mathrm{x}<\mathrm{y}$ mean $\mathrm{x} \mid \mathrm{y}$ (i.e., x divides y). Draw the poset diagram for the partial order on D .
6. Given the following poset diagram for the set $\{A, B, C, D, E, F, G, H, I\}$.

Find each of the following items, where $\mathrm{S}=\{\mathrm{C}, \mathrm{D}, \mathrm{F}\}$.
a. The minimal elements of S : \qquad
b. The maximal elements of S : \qquad
c. The lower bounds of S: \qquad
d. The upper bounds of S : \qquad
e. The least upper bound of S : \qquad
f. The greatest lower bound of S : \qquad
7. Given the poset $\langle\mathbf{N} \times \mathbf{N},<\rangle$, where $(a, b)<(c, d)$ means $a+b<c+d$. Write down a descending chain of maximum length that starts with $(3,2)$.
8. Write an inductive proof that the following statement is true for all natural numbers n.

$$
2+6+10+\ldots+(4 n-2)=2 n^{2} .
$$

9. Write out an inductive proof of the following equation for all $n \in \mathrm{~N}$.

$$
3+5+7+\ldots+(2 n+3)=(n+1)(n+3) .
$$

