Name \_\_\_\_\_

Due: Beginning of Class Monday May 3, 2010.

Hand in hard copy. Staple all pages.

1. Find the partitioning induced by the following equivalence relation over the set N.

 $a \sim b$  iff  $a \mod 4 = b \mod 4$ .

**2.** Let  $x \sim y$  iff x and y are nonempty lists over  $\{a, b\}$  with the same tail.

**a.** The relation  $\sim$  is an equivalence relation because it is the kernel relation





**3.** Let  $f : \mathbf{N} \to \mathbf{N}$  be defined by  $f(n) = \lfloor (n/4) \rfloor$ . Describe the partition on  $\mathbf{N}$  induced by the kernel relation on f.

**4.** Consider a graph with this vertex set  $\{a, b, c, d\}$ . The graph has 5 edges which, when sorted by weight, are as follows:

 $\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, d\}.$ Use Kruskal's algorithm to find a minimal spanning tree T by showing the value of T and the corresponding equivalence classes at each step of the algorithm. **5.** Let  $D = \{2, 3, 6, 12, 24, 36\}$  and for any  $x, y \in D$  let x < y mean  $x \mid y$  (i.e., x divides y). Draw the poset diagram for the partial order on D.

6. Given the following poset diagram for the set {A, B, C, D, E, F, G, H, I}.



Find each of the following items, where  $S = \{C, D, F\}$ .

- a. The minimal elements of S: \_\_\_\_\_
- **b.** The maximal elements of S:

c. The lower bounds of S: \_\_\_\_\_

- **d.** The upper bounds of S: \_\_\_\_\_
- e. The least upper bound of S: \_\_\_\_\_
- **f.** The greatest lower bound of S:

7. Given the poset  $\langle \mathbf{N} \times \mathbf{N}, \langle \rangle$ , where  $(a, b) \langle (c, d)$  means  $a + b \langle c + d$ . Write down a descending chain of maximum length that starts with (3, 2).

**8.** Write an inductive proof that the following statement is true for all natural numbers n.

 $2 + 6 + 10 + \dots + (4n - 2) = 2n^2.$ 

**9.** Write out an inductive proof of the following equation for all  $n \in \mathbb{N}$ .  $3 + 5 + 7 + \dots + (2n + 3) = (n + 1)(n + 3).$