Section 1.2: Sets

A set is a collection of things.
If S is a set and x is a member or element of S, we write $x \in S$
If x is not a member of S, we write $x \notin S$
The set with elements $x_{1}, x_{2}, \ldots x_{n}$ is
$\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
The empty set - A set with no elements
\{\} or \varnothing
A singleton set - has only one element. Example: \{a\}

Useful Sets:

$Z=\{\ldots,-2,-1,0,1,2, \ldots\}-$ the integers
$N=\{0,1,2, \ldots\}$ - the natural numbers, the non-negative integers
Q - the rational numbers. Includes numbers like $1 / 2$ and 34.56
R - the real number. Includes numbers like π and $\sqrt{ } 2$

Set Equality

Two sets A and B are equal iff they have the same elements.
$A=B$
Examples:
$\{a, b, c\}=\{c, b, a\} \quad$ order does not matter
$\{a, a, b, c\}=\{a, b, c\} \quad$ repetitions are ignored, no repetitions
Sets can also be described this way:
$\{x \mid P\}=$ the set of all elements that satisfy P
where P is a property.
Example:
The set of all odd natural numbers:

$$
\{1,3,5,7, \ldots\}=\{x \mid x=2 k+1 \text { for some } k \in N\}
$$

Subsets

Set A is a subset of B iff every element in A is also in B. $A \subseteq B$
Note, for any set S :
$S \subseteq S$
$\varnothing \subseteq S$
$\mathrm{N} \subseteq \mathrm{Z} \subseteq \mathrm{Q} \subseteq \mathrm{R}$

Power Sets:

The power set of a set S power(S)
is the set of all subsets of S.
Example:
$\operatorname{power}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$

Comparing Sets:

Let $A=\{2 k+7 \mid k \in Z\}$ and $B=\{4 k+3 \mid k \in Z\}$
Question: Is $A \subseteq B$?
Answer: No. For example, $9 \in A$ but $9 \notin B$.
Question: Is $\mathrm{B} \subseteq \mathrm{A}$?
Answer: Yes. Let $x \in B$. Then $x=4 k+3$ for some integer k.
We can write

$$
x=4 k+3=4 k-4+7=2(2 k-2)+7
$$

Since $2 k-2 \in Z$, it follows that $x \in A$. Therefore $B \subseteq A$. QED

Equality in terms of subsets:

$A=B \quad$ iff $A \subseteq B$ and $B \subseteq A$

Example: Let $\mathrm{A}=\{2 \mathrm{k}+5 \mid \mathrm{k} \in \mathrm{Z}\}$ and $\mathrm{B}=\{2 \mathrm{k}+3 \mid \mathrm{k} \in \mathrm{Z}\}$
Show that $A=B$.
Proof: First show $A \subseteq B$. Then show $B \subseteq A$.
To show $A \subseteq B$,
Let $x \in A$. So $x=2 k+5$ for some integer k.
We can write

$$
x=2 k+5=2 k+2+3=2(k+1)+3
$$

Since $k+1$ is an integer, if follows that $x \in B$. Therefore, $A \subseteq B$.
In-class quiz:
Show B $\subseteq A$.

Operations on Sets

Union

$A \cup B=\{x \mid x \in A$ or $x \in B\}$
Intersection

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

Difference

$A-B=\{x \mid x \in A$ and $x \notin B\}$

Symmetric Difference

$A \oplus B=\{x \mid x \in A$ or $x \in B$, but not both $\}$

$$
\begin{aligned}
& =(A-B) \cup(B-A) \\
& =(A \cup B)-(A \cap B)
\end{aligned}
$$

Universal Complement

Given a universe U and $A \subseteq U$, we can write $A^{\prime}=U-A$

Example: For each $\mathrm{n} \in \mathrm{N}$ let $\mathrm{D}_{\mathrm{n}}=\{\mathrm{x} \in \mathrm{N} \mid \mathrm{x}$ divides n$\}$ So D_{n} is the set of positive divisors of n.

Here are some expressions involving these sets:
$D_{0}=\{1,2,3, \ldots\}=N-\{0\}$
$D_{5}=\{1,5\}$
$D_{6}=\{1,2,3,6\}$
$D_{9}=\{1,3,9\}$
$D_{5} \cup D_{6}=\{1,2,3,5,6\}$
$D_{5} \cap D_{6}=\{1\}$
$D_{9}-D_{6}=\{9\}$
$D_{5} \oplus D_{6}=\{2,3,5,6\}$
Let N be the universe.

$$
\begin{aligned}
& D_{0}^{\prime}=N-D_{0}=\{0\} \\
& \{0\}^{\prime}=D_{0}
\end{aligned}
$$

In-class quiz:

Draw a Venn Diagram for three sets A, B, C with some areas shaded. Then find an expression to represent the shaded area.

Properties of Set Operations

Union and intersection are
commutative
$A \cup B=B \cup A$
$A \cap B=B \cap A$
associative
$(A \cup B) \cup C=A \cup(B \cup C)$
$(A \cap B) \cap C=A \cap(B \cap C)$
They distribute over each other

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Absorption

$$
A \cup(A \cap B)=A \cap(A \cup B)=A
$$

De Morgan's Law

$$
\begin{aligned}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Set Algebra

Given an expression over sets, you can rewrite it.

Counting Sets

The cardinality of a set S is denoted by |S|. If the sets are finite, you can use these rules:

Inclusion-Exclusion or Union Rule:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Difference Rule:

$$
|A-B|=|A|-|A \cap B|
$$

In-class Quiz:

Find a rule for the union of 3 sets.

In-Class Quiz:

Three programs use a collection of CPUs in the following way:
There are 100 CPUs, shared among the programs.
Each CPU may be used by $0,1,2$, or all 3 programs.
A, B, C represent the sets of CPUs used by each program.
$|A|=20,|B|=40,|C|=60,|A \cap B|=10,|A \cap C|=8,|B \cap C|=6$.
What value could $|A \cap B \cap C|$ have?

Answer:

$100 \geq|A \cup B \cup C|=20+40+60-10-8-6+|A \cap B \cap C|$
$|A \cap B \cap C| \leq 4$
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|C \cap D|+|A \cap B \cap C|$

Bags (also called Multisets)

Like sets but can contain repeated elements.

$$
[a, b, c, c, b]=[c, b, a, b, c]
$$

Order is unimportant.
Union is defined by taking the maximum number of occurencences.

$$
[a, b, c, c, c] \cup[a, a, a, c, d d]=[a, a, a, b, c, c, c, d, d]
$$

Intersection is defined by taking the minimum number of occurencences.

$$
[a, b, c, c, c] \cap[a, a, a, c, d d]=[a, c,]
$$

In-class Quiz:

Let

$$
\begin{aligned}
& A=[m, i, s, s, i, s, s, i, p, p, i] \\
& B=[s, i, p, p, i, n, g]
\end{aligned}
$$

What is $A \cup B$?
What is $A \cap B$?

