Section 1.3 Ordered Structures

Tuples

Have order and can have repetitions.
$(6,7,6)$ is a 3-tuple
() is the empty tuple

A 2-tuple is called a "pair" and a 3-tuple is called a "triple". We write $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$ to mean $x_{i}=y_{i}$ for $1 \leq i \leq n$.
Cartesian Product:

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

This definition extends naturally:
$A \times B \times C=\{(x, y, z) \mid x \in A$ and $y \in B$ and $z \in C\}$
Notation:

$$
\begin{aligned}
& A^{0}=\{()\} \\
& A^{1}=\{(x) \mid x \in A\} \\
& A^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \in A \text { and } x_{2} \in A\right\} \\
& A^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{i} \in A\right\}
\end{aligned}
$$

In-Class Quiz:

Does $(A \times B) \times C=A \times(B \times C)$?

Lists

Like tuples but there is no random access.
Example:
$<a, b, c, b>$ is a list with 4 elements
$<>$ is the empty list.
List operations: head, tail, cons
head $(\langle a, b, c, b\rangle)=a$
tail $(<a, b, c, b\rangle)=<b, c, b>$
cons (e, <a,b,c,b>) = <e, a,b,c,b>
The set of lists whose elements are in A is denoted by lists(A).
Lists can contain lists:
$<3,<a, b, c>, 4,<7,8>, e,<>, g>$

In-class Quiz:

For $L=\langle<a>, b,<c, d \gg$
Find head(L)
Find tail(L)

Strings

Like lists.
All elements come from an alphabet.
The elements are juxtaposed.
Example: alphabet is $A=\{a, b\}$.
Some strings: a, b, aa, ab, ba, bb, aaa, bbb, ...
The empty string is denoted by Λ (lambda).
Concatenation of two strings is their juxtaposition.
The concatenation of $\mathbf{a b}$ and $\mathbf{b a b}$ is $\mathbf{a b b} \mathbf{b}$.
This is true of any string s :
$\mathrm{s} \Lambda=\Lambda \mathrm{s}=\mathrm{s}$
If s is a string, s^{n} denotes the concatenation of s with itself n times. $s^{0}=\Lambda$.
Example:
$(\mathbf{a b})^{3}=\mathbf{a b a b a b}$

Languages

Given an alphabet A, a language is a set of strings over A. Notation:

If A is an alphabet, then the set of all strings over A is denoted A^{*}.
Some languages over A are:
$\varnothing,\{\Lambda\}, A, A^{*}$
Example:
Let alphabet be \{a,b\}
$\left\{a b^{n} a \mid n \in \mathbb{N}\right\}=\{a a, a b a, a b b a, a b b b a, \ldots\}$
Language Operations:
Let L and M be two languages.
The product of L and M, denoted $L M$, is
$L M=\{s t \mid s \in L$ and $t \in M\}$
Example:
Let $L=\{\mathbf{a}, \mathbf{b}\}$ and $M=\{\mathbf{c c}, \mathbf{e e}\}$. Then...
LM = \{ acc, aee, bcc, bee $\}$
$M L=\{$ cca, ccb, eea, eeb $\}$

In-class Quiz:

What are the products $L \varnothing$ and $L\{\Lambda\}$?

In-class Quiz:

Solve for L in the equation
$\{\Lambda, \mathbf{a}, \mathbf{b}\} L=\{\Lambda, \mathbf{a}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a b a}, \mathbf{b} \mathbf{b} \mathbf{\}}$
Notation:
$L^{0}=\{\Lambda\}$
$\mathrm{L}^{1}=\mathrm{L}$
$L^{2}=L L$
$L^{n}=\left\{s_{1} s_{2} \ldots s_{n} \mid s_{i} \in L\right\}$
The closure L^{*} is the set of all possible concatenations of strings in L. $L^{*}=L^{0} \cup L^{1} \cup \ldots \cup L^{n} \cup \ldots$

In-class quiz:

What are $\{\Lambda\}^{*}$ and \emptyset^{*} ?

Example:

Examine the structure of an arbitrary string $x \in L^{*}(M L)^{*}$.
Approach: Use the definitions to write x in terms of strings in L and M.
Since $x \in L^{*}(M L)^{*}$, it follows that $x=u v$, where $u \in L^{*}$ and $v \in(M L)^{*}$. Since $u \in L^{*}$, either $u=\Lambda$ or $u=s_{1} \ldots s_{n}$ for some n where $s_{i} \in L$. Since $v \in(M L)^{*}$, either $v=\Lambda$ or $v=r_{1} t_{1} \ldots r_{k} t_{k}$ for some n where
$r_{i} \in M$ and $t_{i} \in L$.
So x must have one of four forms:
Λ
$S_{1} \ldots S_{n}$
$r_{1} t_{1} \ldots r_{k} t_{k}$
$s_{1} \ldots s_{n} r_{1} t_{1} \ldots r_{k} t_{k}$

Relations

A relation is a set of tuples.
If R is a relation and $\left(x_{1}, \ldots, x_{n}\right) \in R$, we write $R\left(x_{1}, \ldots, x_{n}\right)$.
We can usually represent a relation as a subset of some cartesian product.
Example:
Let $R=\left\{(0,0),(1,1),(4,2),(9,3), \ldots,\left(k^{2}, k\right), \ldots\right\}$
$=\left\{\left(k^{2}, k\right) \mid k \in N\right\}$
We might call R the "is square of" relation on N.
Notice that $\mathrm{R} \subseteq \mathrm{N} \times \mathrm{N}$.

Notation:

If R is binary, we can use infix to represent pairs in R. For example, from the previous example, we have $(9,3) \in R$
So we can write:

$$
R(9,3)
$$

9 R 3
9 is-square-of 3

Relational Databases

A relational database is a relation where the indexes of a tuple have associated names, called attributes.

Example:

Let Students $=\{(x, y, z) \mid x$ is a Name, y is a Major, and z is Credits)

Name	Major	Credits
JohnSmith	cs	70
FredBrown	math	85
JackGreen	math	120
SueJones	cs	130

Who are the students majoring in CS?
$\{x \mid(x$, "cs", z) \in Students $\}$
Note: we need a way to tell values apart from variables: ($x, c s, z$)?
How many math majors are upper division students?
$\mid\{x \mid(x$, "math", $z) \in$ Students and $z \geq 90\} \mid$
What is the major of JohnSmith?
\{ y | ("JohnSmith", y, z) \in Students $\}$
What is the Math departments database of names and credits?
$\{(x, y) \mid(x$, "math", $z) \in$ Students $\}$

Counting Tuples (or strings or lists)

Product Rules:

$$
\begin{aligned}
& |A \times B|=|A||B| \\
& \left|A^{n}\right|=|A|^{n}
\end{aligned}
$$

Example: If $A=\{a, b\}$ and $B=\{1,2,3\}$ then

$$
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

$$
\text { So }|A \times B|=|A||B|=2 \times 3=6
$$

Example:

Count the number of strings of length 8 over $A=\{a, b, c\}$ that begin with either \mathbf{a} or \mathbf{c} and have at least one \mathbf{b}.

Solution: Divide and conquer!

Split the problem up into easier problems and combine the results.
Let U be the universe $=$ the set of strings over A of length 8 that begin with either a or c.
Let B be the subset of U consisting of strings with no \mathbf{b} 's. The set we want to count is then $U-B$.

Calculate the cardinality of $\mathrm{U}-\mathrm{B}$.

$$
|\mathrm{U}-\mathrm{B}|=|\mathrm{U}|-|\mathrm{U} \cap \mathrm{~B}|
$$

$$
=|U|-|B| \text { since } B \text { is a subset of } U
$$

What is the cardinality of U ?

$$
\begin{aligned}
& U=\{a, c\} \times A^{7} \\
& \left|\{a, c\} \times A^{7}\right|=|\{a, c\}| \times\left|A^{7}\right|=|\{a, c\}| \times|A|^{7}=2(3)^{7}
\end{aligned}
$$

What is the cardinality of B, the set of strings not containing \mathbf{b} ?

$$
\left|\{a, c\}^{8}\right|=|\{a, c\}|^{8}=2^{8}
$$

So the answer is:

$$
\begin{aligned}
& |U-B|=|U|-|U \cap B| \\
& \quad=|U|-|B|=2(3)^{7}-2^{8}=4118
\end{aligned}
$$

