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Section 1.4: Graphs and Trees 

A graph is a set of objects (called vertices or nodes) and edges 
between pairs of nodes. 

Vertices = {Ve, G, S, F, Br, Co, Eq, Pe, Bo,Pa, Ch, A, U} 
Edges = { {Ve,G}, {Ve,Br}, … } 
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A path from vertex x0 to xn is a sequence of edges 
 x0, x1, …, xn, where there is an edge from xi-1 to xi for 1≤i≤n. 

The length of a path is the number of edges in it. 

A cycle is a path that begins and ends at the same vertex 
 and has no repeated edges. 
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The sequence Co,Br,G,Ve,Co is a cycle. 

The sequence S,F,S is not a cycle, 
 since edge  {S,F} occurs twice. 

In-class quiz:  What is the longest 
 path from Bo to F 
 with distinct edges and no cylces? 
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The sequence Co,Br,G,Ve,Co is a cycle. 

The sequence S,F,S is not a cycle, 
 since edge  {S,F} occurs twice. 

In-class quiz:  What is the longest 
 path from Bo to F 
 with distinct edges and no cylces? 
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The sequence Co,Br,G,Ve,Co is a cycle. 

The sequence S,F,S is not a cycle, 
 since edge  {S,F} occurs twice. 

In-class quiz:  What is the longest 
 path from Bo to F 
 with distinct edges and no cylces? 

A graph is n-colorable if its vertices can 
 be colored using n different colors 
 such that adjacent vertices have 
 different colors. 

The chromatic number of a graph is the 
 smallest such n. 

In-class quiz: What is the chromatic color of this graph? 
 i.e., how many colors does it take to color this graph? 
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The sequence Co,Br,G,Ve,Co is a cycle. 

The sequence S,F,S is not a cycle, 
 since edge  {S,F} occurs twice. 

In-class quiz:  What is the longest 
 path from Bo to F 
 with distinct edges and no cylces? 

A graph is n-colorable if its vertices can 
 be colored using n different colors 
 such that adjacent vertices have 
 different colors. 

The chromatic number of a graph is the 
 smallest such n. 

In-class quiz: What is the chromatic color of this graph? 
 i.e., how many colors does it take to color this graph? 

A planar graph can be drawn on a 2-D plane without edges crossing. 
Theorem: All planar graphs can be colored with 4 (or fewer) colors. 
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Graph Traversals  

A graph traversal starts at some vertex v and visits all vertices 
 without visiting any vertex more than once. 
 (We assume connectedness: all vertices are reachable from v.) 

Breadth-First Traversal 
 • First visit v. 
 • Then visit all vertices reachable 
  from v with a path length of 1. 
 • Then visit all vertices reachable 
  from v with a path length of 2. 
  (… not already visited earlier) 
 • And so on. 
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Graph Traversals  

A graph traversal starts at some vertex v and visits all vertices 
 without visiting any vertex more than once. 
 (We assume connectedness: all vertices are reachable from v.) 

Breadth-First Traversal 
 • First visit v. 
 • Then visit all vertices reachable 
  from v with a path length of 1. 
 • Then visit all vertices reachable 
  from v with a path length of 2. 
  (… not already visited earlier) 
 • And so on. 

Example: v=Bo 
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Graph Traversals  

A graph traversal starts at some vertex v and visits all vertices 
 without visiting any vertex more than once. 
 (We assume connectedness: all vertices are reachable from v.) 

Breadth-First Traversal 
 • First visit v. 
 • Then visit all vertices reachable 
  from v with a path length of 1. 
 • Then visit all vertices reachable 
  from v with a path length of 2. 
  (… not already visited earlier) 
 • And so on. 

Example: v=Bo 
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Graph Traversals  

A graph traversal starts at some vertex v and visits all vertices 
 without visiting any vertex more than once. 
 (We assume connectedness: all vertices are reachable from v.) 

Breadth-First Traversal 
 • First visit v. 
 • Then visit all vertices reachable 
  from v with a path length of 1. 
 • Then visit all vertices reachable 
  from v with a path length of 2. 
  (… not already visited earlier) 
 • And so on. 

Example: v=Bo 

 Bo,Pe,Br,Pa,A,Ch,U,Eq,Ve,S,G,F,Co 
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In-Class Quiz: Find a breadth-first traversal starting with F. 
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In-Class Quiz: Find a breadth-first traversal starting with F. 

One answer: F,H,D,G,B,A,E,C 

In-Class Quiz: Find a breadth-first traversal starting with C. 
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In-Class Quiz: Find a breadth-first traversal starting with F. 

One answer: F,H,D,G,B,A,E,C 

In-Class Quiz: Find a breadth-first traversal starting with C. 

One answer: C,A,E,D,F,B,H,G 
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Depth-First Traversal 

Start with a vertex v and visit all reachable vertices. 
Start by going as far as you can. 
Then backup a little and go down another path as far as possible. 
Only backup as far as necessary, then try the next path. 

Example: Start at Ch. 
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Depth-First Traversal 

Start with a vertex v and visit all reachable vertices. 
Start by going as far as you can. 
Then backup a little and go down another path as far as possible. 
Only backup as far as necessary, then try the next path. 

Example: Start at Ch. 
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Depth-First Traversal 

Start with a vertex v and visit all reachable vertices. 
Start by going as far as you can. 
Then backup a little and go down another path as far as possible. 
Only backup as far as necessary, then try the next path. 

Example: Start at Ch. 
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Depth-First Traversal 

Start with a vertex v and visit all reachable vertices. 
Start by going as far as you can. 
Then backup a little and go down another path as far as possible. 
Only backup as far as necessary, then try the next path. 

Example: Start at Ch. 
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Depth-First Traversal 

Start with a vertex v and visit all reachable vertices. 
Start by going as far as you can. 
Then backup a little and go down another path as far as possible. 
Only backup as far as necessary, then try the next path. 

Example: Start at Ch. 

Ch,Pe,Co,Ve,G,S,F,Br,Eq,A,U,Pa,Bo 
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In-Class Quiz: Find a depth-first traversal starting a F. 
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In-Class Quiz: Find a depth-first traversal starting a F. 

One Answer: F,H,G,D,B,A,C,E 

In-Class Quiz: Find a depth-first traversal starting a E. 
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In-Class Quiz: Find a depth-first traversal starting a F. 

One Answer: F,H,G,D,B,A,C,E 

In-Class Quiz: Find a depth-first traversal starting a E. 

One Answer: E,D,F,H,G,A,C,B 
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An algorithm to visit vertices in depth-first order 

visit(v) – This function should be called when a vertex is first visited. 

The function being defined is “D”. 
 Recursive: D calls itself 

 D(v): 
  if v has not been visited then 
   visit(v) 
   for each edge from v to x 
    D(x) 
   endFor 
  endIf 
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Trees 

A tree is a special kind of graph 
 Connected – a path between any two nodes 
 No cycles 

Trees are drawn “upside down” 
Root – the node at the top; Every tree has exactly one root. 
Parent / Children – The parent is immediately above its children 
Leaves – Nodes without children 
Height (or depth) of the tree 

 – length of longest path from root to some leaf. 

Example: 
 Which node is the root? 
 What are the children of A? 
 Who is the parent of node G? 
 Which nodes are leaves? 
 What is the depth of this tree? 
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Subtrees 

Any node in a tree is the root of a subtree. 

Representing Trees with Lists 

One way to represent a tree is as a list whose head is the root of the tree 
anad whose tail is a list of subtrees.  Each subtree is represented the 
same way. 

<A, xxx, yyy, zzz> 
 where 
  xxx =  <B, <E>, <F>> 
  yyy = <C> 
  zzz = <D,<G, <H>, <I>>> 

<A,<B,<E>,<F>>,<C>,<D,<G,<H>,<I>>>> 
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Representing Expressions with Trees 

Any algebraic expression can be represented with a tree. 

Example: (x-y) + log(z+w) 

In-class quiz: Find a depth-first, left-to-right 
 traversal of this tree. 
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Representing Expressions with Trees 

Any algebraic expression can be represented with a tree. 

Example: (x-y) + log(z+w) 

In-class quiz: Find a depth-first, left-to-right 
 traversal of this tree. 

 + - x y log + z w 

This is the prefix form of the expression. 

Note: Parentheses are never needed 
 in a prefix-form expression. 
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Binary Trees 

Each vertex either… 
 is empty, denoted <> 
 has two subtees that are binary trees. 
  Left subtree, right subtree 

Alternately: nodes have ≤2 children. 

Representing binary trees with tuples 
 empty:  <> 
 non-empty:  <L,x,R> 
  where x is the subtree’s root, L and R are the two subtrees. 
 A node with no children (a leaf):   <<>,2,<>> 
 A node with two children: <<<>,2,<>>,3, <<>,5,<>>> 

A binary search tree represents ordered information. 
 The predecessors of x are in the left subtree of x. 
 The successors of x are in the right subtree of x. 

Example: This is a binary search tree for the first 6 prime numbers. 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 

A 
B 

C 
D 

E 
2 

2 

1 
1 

3 

3 

3 

W = { B } 
S = {  } 



Section 1.4 CS340-Discrete Structures Page 31 

Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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W = { B, D } 
S = { BD } 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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W = { B, D, C } 
S = { BD, CD } 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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W = { B, D, C, A } 
S = { BD, CD, AC } 
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Spanning Trees 

A spanning tree for a connected graph is a tree whose nodes are the 
nodes of the graph and whose edges are a subset of the edges of the 
graph. 

A weighted graph: Each edge has an associated value, its weight. 

A minimal spanning tree is a spanning tree that minimizes the weights 
on the edges in the tree. 

Prim’s Algorithm: 
 Let V be the set of vertices in the graph 
 Compute S = the set of edges in the 
  spanning tree 
 W = a variable, a set of vertices reached 

Initialize S := Ø 
Pick any v in V.  Set W := {v} 
while W≠V 

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile 
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W = { B, D, C, A, E} 
S = { BD, CD, AC, DE} 


