
Section 1.4 CS340-Discrete Structures Page 1

Section 1.4: Graphs and Trees

A graph is a set of objects (called vertices or nodes) and edges
between pairs of nodes.

Vertices = {Ve, G, S, F, Br, Co, Eq, Pe, Bo,Pa, Ch, A, U}
Edges = { {Ve,G}, {Ve,Br}, … }

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 2

A path from vertex x0 to xn is a sequence of edges
 x0, x1, …, xn, where there is an edge from xi-1 to xi for 1≤i≤n.

The length of a path is the number of edges in it.

A cycle is a path that begins and ends at the same vertex
 and has no repeated edges.

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

A path from Pe to Br

Section 1.4 CS340-Discrete Structures Page 3

The sequence Co,Br,G,Ve,Co is a cycle.

The sequence S,F,S is not a cycle,
 since edge {S,F} occurs twice.

In-class quiz: What is the longest
 path from Bo to F
 with distinct edges and no cylces?

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 4

The sequence Co,Br,G,Ve,Co is a cycle.

The sequence S,F,S is not a cycle,
 since edge {S,F} occurs twice.

In-class quiz: What is the longest
 path from Bo to F
 with distinct edges and no cylces?

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 5

The sequence Co,Br,G,Ve,Co is a cycle.

The sequence S,F,S is not a cycle,
 since edge {S,F} occurs twice.

In-class quiz: What is the longest
 path from Bo to F
 with distinct edges and no cylces?

A graph is n-colorable if its vertices can
 be colored using n different colors
 such that adjacent vertices have
 different colors.

The chromatic number of a graph is the
 smallest such n.

In-class quiz: What is the chromatic color of this graph?
 i.e., how many colors does it take to color this graph?

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 6

The sequence Co,Br,G,Ve,Co is a cycle.

The sequence S,F,S is not a cycle,
 since edge {S,F} occurs twice.

In-class quiz: What is the longest
 path from Bo to F
 with distinct edges and no cylces?

A graph is n-colorable if its vertices can
 be colored using n different colors
 such that adjacent vertices have
 different colors.

The chromatic number of a graph is the
 smallest such n.

In-class quiz: What is the chromatic color of this graph?
 i.e., how many colors does it take to color this graph?

A planar graph can be drawn on a 2-D plane without edges crossing.
Theorem: All planar graphs can be colored with 4 (or fewer) colors.

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 7

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices
 without visiting any vertex more than once.
 (We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal
 • First visit v.
 • Then visit all vertices reachable
 from v with a path length of 1.
 • Then visit all vertices reachable
 from v with a path length of 2.
 (… not already visited earlier)
 • And so on.

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 8

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices
 without visiting any vertex more than once.
 (We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal
 • First visit v.
 • Then visit all vertices reachable
 from v with a path length of 1.
 • Then visit all vertices reachable
 from v with a path length of 2.
 (… not already visited earlier)
 • And so on.

Example: v=Bo

 Bo

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 9

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices
 without visiting any vertex more than once.
 (We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal
 • First visit v.
 • Then visit all vertices reachable
 from v with a path length of 1.
 • Then visit all vertices reachable
 from v with a path length of 2.
 (… not already visited earlier)
 • And so on.

Example: v=Bo

 Bo,Pe,Br,Pa,A,Ch

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 10

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices
 without visiting any vertex more than once.
 (We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal
 • First visit v.
 • Then visit all vertices reachable
 from v with a path length of 1.
 • Then visit all vertices reachable
 from v with a path length of 2.
 (… not already visited earlier)
 • And so on.

Example: v=Bo

 Bo,Pe,Br,Pa,A,Ch,U,Eq,Ve,S,G,F,Co

S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 11

In-Class Quiz: Find a breadth-first traversal starting with F.

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 12

In-Class Quiz: Find a breadth-first traversal starting with F.

One answer: F,H,D,G,B,A,E,C

In-Class Quiz: Find a breadth-first traversal starting with C.

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 13

In-Class Quiz: Find a breadth-first traversal starting with F.

One answer: F,H,D,G,B,A,E,C

In-Class Quiz: Find a breadth-first traversal starting with C.

One answer: C,A,E,D,F,B,H,G

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 14

Depth-First Traversal

Start with a vertex v and visit all reachable vertices.
Start by going as far as you can.
Then backup a little and go down another path as far as possible.
Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch
S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 15

Depth-First Traversal

Start with a vertex v and visit all reachable vertices.
Start by going as far as you can.
Then backup a little and go down another path as far as possible.
Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br
S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 16

Depth-First Traversal

Start with a vertex v and visit all reachable vertices.
Start by going as far as you can.
Then backup a little and go down another path as far as possible.
Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br,Eq
S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 17

Depth-First Traversal

Start with a vertex v and visit all reachable vertices.
Start by going as far as you can.
Then backup a little and go down another path as far as possible.
Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br,Eq,A,U
S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 18

Depth-First Traversal

Start with a vertex v and visit all reachable vertices.
Start by going as far as you can.
Then backup a little and go down another path as far as possible.
Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br,Eq,A,U,Pa,Bo
S

G

U

Br

Ve

Co

Eq

Ch

Pa Bo
Pe

F

A

Section 1.4 CS340-Discrete Structures Page 19

In-Class Quiz: Find a depth-first traversal starting a F.

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 20

In-Class Quiz: Find a depth-first traversal starting a F.

One Answer: F,H,G,D,B,A,C,E

In-Class Quiz: Find a depth-first traversal starting a E.

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 21

In-Class Quiz: Find a depth-first traversal starting a F.

One Answer: F,H,G,D,B,A,C,E

In-Class Quiz: Find a depth-first traversal starting a E.

One Answer: E,D,F,H,G,A,C,B

A

D

C

E
G

F

H

B

Section 1.4 CS340-Discrete Structures Page 22

An algorithm to visit vertices in depth-first order

visit(v) – This function should be called when a vertex is first visited.

The function being defined is “D”.
 Recursive: D calls itself

 D(v):
 if v has not been visited then
 visit(v)
 for each edge from v to x
 D(x)
 endFor
 endIf

Section 1.4 CS340-Discrete Structures Page 23

Trees

A tree is a special kind of graph
 Connected – a path between any two nodes
 No cycles

Trees are drawn “upside down”
Root – the node at the top; Every tree has exactly one root.
Parent / Children – The parent is immediately above its children
Leaves – Nodes without children
Height (or depth) of the tree

 – length of longest path from root to some leaf.

Example:
 Which node is the root?
 What are the children of A?
 Who is the parent of node G?
 Which nodes are leaves?
 What is the depth of this tree?

A

D C

E G F

H

B

I

Section 1.4 CS340-Discrete Structures Page 24

Subtrees

Any node in a tree is the root of a subtree.

Representing Trees with Lists

One way to represent a tree is as a list whose head is the root of the tree
anad whose tail is a list of subtrees. Each subtree is represented the
same way.

<A, xxx, yyy, zzz>
 where
 xxx = <B, <E>, <F>>
 yyy = <C>
 zzz = <D,<G, <H>, <I>>>

<A,<B,<E>,<F>>,<C>,<D,<G,<H>,<I>>>>

A

D C

E G F

H

B

I

Section 1.4 CS340-Discrete Structures Page 25

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.

Example: (x-y) + log(z+w)

In-class quiz: Find a depth-first, left-to-right
 traversal of this tree.

+

log

x + y

z

-

w

Section 1.4 CS340-Discrete Structures Page 26

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.

Example: (x-y) + log(z+w)

In-class quiz: Find a depth-first, left-to-right
 traversal of this tree.

 + - x y log + z w

This is the prefix form of the expression.

Note: Parentheses are never needed
 in a prefix-form expression.

+

log

x + y

z

-

w

Section 1.4 CS340-Discrete Structures Page 27

Binary Trees

Each vertex either…
 is empty, denoted <>
 has two subtees that are binary trees.
 Left subtree, right subtree

Alternately: nodes have ≤2 children.

Representing binary trees with tuples
 empty: <>
 non-empty: <L,x,R>
 where x is the subtree’s root, L and R are the two subtrees.
 A node with no children (a leaf): <<>,2,<>>
 A node with two children: <<<>,2,<>>,3, <<>,5,<>>>

A binary search tree represents ordered information.
 The predecessors of x are in the left subtree of x.
 The successors of x are in the right subtree of x.

Example: This is a binary search tree for the first 6 prime numbers.

7

11

2 13 5

3

<> <> <> <> <> <>

<>

Section 1.4 CS340-Discrete Structures Page 28

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E

Section 1.4 CS340-Discrete Structures Page 29

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

Section 1.4 CS340-Discrete Structures Page 30

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

W = { B }
S = { }

Section 1.4 CS340-Discrete Structures Page 31

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

W = { B, D }
S = { BD }

Section 1.4 CS340-Discrete Structures Page 32

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

W = { B, D, C }
S = { BD, CD }

Section 1.4 CS340-Discrete Structures Page 33

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

W = { B, D, C, A }
S = { BD, CD, AC }

Section 1.4 CS340-Discrete Structures Page 34

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the
nodes of the graph and whose edges are a subset of the edges of the
graph.

A weighted graph: Each edge has an associated value, its weight.

A minimal spanning tree is a spanning tree that minimizes the weights
on the edges in the tree.

Prim’s Algorithm:
 Let V be the set of vertices in the graph
 Compute S = the set of edges in the
 spanning tree
 W = a variable, a set of vertices reached

Initialize S := Ø
Pick any v in V. Set W := {v}
while W≠V

 Find a minimum weight edge {x,y}, where x∈W and y∈V-W 
S := S ∪ {{x,y}} 
W := W ∪ {y} 

endWhile

A
B

C
D

E
2

2

1
1

3

3

3

W = { B, D, C, A, E}
S = { BD, CD, AC, DE}

