Section 1.4: Graphs and Trees

A graph is a set of objects (called vertices or nodes) and edges between pairs of nodes.

Vertices $=\{\mathrm{Ve}, \mathrm{G}, \mathrm{S}, \mathrm{F}, \mathrm{Br}, \mathrm{Co}, \mathrm{Eq}, \mathrm{Pe}, \mathrm{Bo}, \mathrm{Pa}, \mathrm{Ch}, \mathrm{A}, \mathrm{U}\}$ Edges $=\{\{\mathrm{Ve}, \mathrm{G}\},\{\mathrm{Ve}, \mathrm{Br}\}, \ldots\}$

A path from vertex x_{0} to x_{n} is a sequence of edges
$x_{0}, x_{1}, \ldots, x_{n}$, where there is an edge from x_{i-1} to x_{i} for $1 \leq i \leq n$.
The length of a path is the number of edges in it.

A path from Pe to $\mathbf{B r}$

A cycle is a path that begins and ends at the same vertex and has no repeated edges.

The sequence $\mathbf{C o}, \mathbf{B r}, \mathbf{G}, \mathbf{V e}, \mathbf{C o}$ is a cycle.
The sequence $\mathbf{S}, \mathbf{F}, \mathbf{S}$ is not a cycle, since edge $\{\mathbf{S}, \mathbf{F}\}$ occurs twice.

In-class quiz: What is the longest path from Bo to \mathbf{F} with distinct edges and no cylces?

The sequence $\mathbf{C o}, \mathbf{B r}, \mathbf{G}, \mathbf{V e}, \mathbf{C o}$ is a cycle.
The sequence $\mathbf{S}, \mathbf{F}, \mathbf{S}$ is not a cycle, since edge $\{\mathbf{S}, \mathbf{F}\}$ occurs twice.

In-class quiz: What is the longest path from Bo to \mathbf{F} with distinct edges and no cylces?

The sequence $\mathbf{C o}, \mathbf{B r}, \mathbf{G}, \mathbf{V e}, \mathbf{C o}$ is a cycle.
The sequence $\mathbf{S}, \mathbf{F}, \mathbf{S}$ is not a cycle, since edge $\{\mathbf{S}, \mathbf{F}\}$ occurs twice.

In-class quiz: What is the longest path from Bo to \mathbf{F} with distinct edges and no cylces?

A graph is \mathbf{n}-colorable if its vertices can be colored using n different colors such that adjacent vertices have different colors.
The chromatic number of a graph is the
 smallest such n.

In-class quiz: What is the chromatic color of this graph?
i.e., how many colors does it take to color this graph?

The sequence $\mathbf{C o}, \mathbf{B r}, \mathbf{G}, \mathbf{V e}, \mathbf{C o}$ is a cycle.
The sequence $\mathbf{S}, \mathbf{F}, \mathbf{S}$ is not a cycle, since edge $\{\mathbf{S}, \mathbf{F}\}$ occurs twice.

In-class quiz: What is the longest path from Bo to \mathbf{F} with distinct edges and no cylces?

A graph is \mathbf{n}-colorable if its vertices can be colored using n different colors such that adjacent vertices have different colors.
The chromatic number of a graph is the
 smallest such n.

In-class quiz: What is the chromatic color of this graph?
i.e., how many colors does it take to color this graph?

A planar graph can be drawn on a 2-D plane without edges crossing. Theorem: All planar graphs can be colored with 4 (or fewer) colors.

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices without visiting any vertex more than once.
(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2. (... not already visited earlier)
- And so on.

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices without visiting any vertex more than once.
(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2. (... not already visited earlier)
- And so on.

Example: v=Bo
Bo

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices without visiting any vertex more than once.
(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2. (... not already visited earlier)
- And so on.

Example: v=Bo
$\mathrm{Bo}, \mathrm{Pe}, \mathrm{Br}, \mathrm{Pa}, \mathrm{A}, \mathrm{Ch}$

Graph Traversals

A graph traversal starts at some vertex v and visits all vertices without visiting any vertex more than once.
(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2. (... not already visited earlier)
- And so on.

Example: v=Bo
$\mathrm{Bo}, \mathrm{Pe}, \mathrm{Br}, \mathrm{Pa}, \mathrm{A}, \mathrm{Ch}, \mathrm{U}, \mathrm{Eq}, \mathrm{Ve}, \mathrm{S}, \mathrm{G}, \mathrm{F}, \mathrm{Co}$

In-Class Quiz: Find a breadth-first traversal starting with F.

In-Class Quiz: Find a breadth-first traversal starting with F.

One answer: F, H, D, G, B, A, E, C

In-Class Quiz: Find a breadth-first traversal starting with C.

In-Class Quiz: Find a breadth-first traversal starting with F .
One answer: F, H, D, G, B, A, E, C

In-Class Quiz: Find a breadth-first traversal starting with C.

One answer: C, A, E, D, F, B, H, G

Depth-First Traversal

Start with a vertex v and visit all reachable vertices. Start by going as far as you can.
Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.
Ch

Depth-First Traversal

Start with a vertex v and visit all reachable vertices. Start by going as far as you can.
Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.
Ch, Pe, Co, Ve,G,S,F,Br

Depth-First Traversal

Start with a vertex v and visit all reachable vertices. Start by going as far as you can.
Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.
Ch, $\mathrm{Pe}, \mathrm{Co}, \mathrm{Ve}, \mathrm{G}, \mathrm{S}, \mathrm{F}, \mathrm{Br}, \mathrm{Eq}$

Depth-First Traversal

Start with a vertex v and visit all reachable vertices. Start by going as far as you can.
Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.
Ch, $\mathrm{Pe}, \mathrm{Co}, \mathrm{Ve}, \mathrm{G}, \mathrm{S}, \mathrm{F}, \mathrm{Br}, \mathrm{Eq}, \mathrm{A}, \mathrm{U}$

Depth-First Traversal

Start with a vertex v and visit all reachable vertices. Start by going as far as you can.
Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.
Ch, Pe, Co, Ve,G,S,F,Br,Eq,A,U,Pa,Bo

In-Class Quiz: Find a depth-first traversal starting a .

In-Class Quiz: Find a depth-first traversal starting a F.
One Answer: $\mathrm{F}, \mathrm{H}, \mathrm{G}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{C}, \mathrm{E}$
In-Class Quiz: Find a depth-first traversal starting a E .

In-Class Quiz: Find a depth-first traversal starting a F.
One Answer: F,H,G,D,B,A,C,E
In-Class Quiz: Find a depth-first traversal starting a E.
One Answer: E,D,F,H,G,A,C,B

An algorithm to visit vertices in depth-first order

visit(v) - This function should be called when a vertex is first visited.
The function being defined is " D ".
Recursive: D calls itself

$$
D(v):
$$

if v has not been visited then visit(v)
for each edge from v to x $D(x)$
endFor
endIf

Trees

A tree is a special kind of graph
Connected - a path between any two nodes
No cycles
Trees are drawn "upside down"
Root - the node at the top; Every tree has exactly one root.
Parent / Children - The parent is immediately above its children
Leaves - Nodes without children
Height (or depth) of the tree

- length of longest path from root to some leaf.

Example:

Which node is the root? What are the children of A ?
Who is the parent of node G?
Which nodes are leaves?
What is the depth of this tree?

Subtrees

Any node in a tree is the root of a subtree.

Representing Trees with Lists

One way to represent a tree is as a list whose head is the root of the tree anad whose tail is a list of subtrees. Each subtree is represented the same way.
<A, xxx, yyy, zzz> where
$x x x=<B,<E>,<F \gg$ yyy $=<\mathrm{C}>$
$z z z=\langle D,<G,<H\rangle,<I \ggg$
$<\mathrm{A},<\mathrm{B},<\mathrm{E}\rangle,<\mathrm{F}\rangle>,<\mathrm{C}\rangle,<\mathrm{D},<\mathrm{G},<\mathrm{H}\rangle,<\mathrm{I}\rangle \ggg$

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.
Example: $(x-y)+\log (z+w)$
In-class quiz: Find a depth-first, left-to-right traversal of this tree.

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.
Example: $(x-y)+\log (z+w)$
In-class quiz: Find a depth-first, left-to-right traversal of this tree.
$+-x y \log +z w$
This is the prefix form of the expression.
Note: Parentheses are never needed
 in a prefix-form expression.

Binary Trees

Each vertex either...
is empty, denoted <>
has two subtees that are binary trees. Left subtree, right subtree

Alternately: nodes have ≤ 2 children.
Representing binary trees with tuples
 empty: <>
non-empty: <L,x,R>
where x is the subtree's root, L and R are the two subtrees.
A node with no children (a leaf): $\ll>, 2,<\gg$
A node with two children: $\lll>, 2,<\gg, 3, \ll>, 5,<\ggg$
A binary search tree represents ordered information.
The predecessors of x are in the left subtree of x.
The successors of x are in the right subtree of x.
Example: This is a binary search tree for the first 6 prime numbers.

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph
Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
S:=S \cup\{\{x, y\}\}
$$

$$
W:=W \cup\{y\}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
S:=S \cup\{\{x, y\}\}
$$

$$
W:=W \cup\{y\}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
\begin{array}{lr}
S:=S \cup\{\{x, y\}\} & \\
W:=W \cup\{y\} & W=\{\mathbf{B}\} \\
\text { While } & S=\{ \}
\end{array}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
\begin{array}{ll}
S:=S \cup\{\{x, y\}\} & \\
W:=W \cup\{y\} & W=\{\mathbf{B}, \mathbf{D}\} \\
\text { While } & S=\{\mathbf{B D}\}
\end{array}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
\begin{array}{ll}
S:=S \cup\{\{x, y\}\} & \\
W:=W \cup\{y\} & W=\{\mathbf{B}, \mathbf{D}, \mathbf{C}\} \\
\text { While } & S=\{\mathbf{B D}, \mathbf{C D}\}
\end{array}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $\mathrm{W}:=\{\mathrm{v}\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
\begin{array}{ll}
S:=S \cup\{\{x, y\}\} & \\
W:=W \cup\{y\} & W=\{\mathbf{B}, \mathbf{D}, \mathbf{C}, \mathbf{A}\} \\
\text { While } & S=\{\mathbf{B D}, \mathbf{C D}, \mathbf{A C}\}
\end{array}
$$

endWhile

Spanning Trees

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.
A weighted graph: Each edge has an associated value, its weight.
A minimal spanning tree is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm:

Let V be the set of vertices in the graph Compute $S=$ the set of edges in the spanning tree
W = a variable, a set of vertices reached Initialize $S:=\varnothing$
Pick any v in V. Set $W:=\{v\}$

while $W \neq V$
Find a minimum weight edge $\{x, y\}$, where $x \in W$ and $y \in V-W$

$$
\begin{array}{ll}
S:=S \cup\{\{x, y\}\} & \\
W:=W \cup\{y\} & W=\{\mathbf{B}, \mathbf{D}, \mathbf{C}, \mathbf{A}, \mathbf{E}\} \\
\text { While } & S=\{\mathbf{B D}, \mathbf{C D}, \mathbf{A C}, \mathbf{D E}\}
\end{array}
$$

endWhile

