Section 1.4: Graphs and Trees

A **graph** is a set of objects (called **vertices** or **nodes**) and **edges** between pairs of nodes.

A **path** from vertex x_0 to x_n is a sequence of edges $x_0, x_1, ..., x_n$, where there is an edge from x_{i-1} to x_i for $1 \le i \le n$.

The **length** of a path is the number of edges in it.

A path from **Pe** to **Br**

A **cycle** is a path that begins and ends at the same vertex and has no repeated edges.

The sequence **S**,**F**,**S** is not a cycle, since edge {**S**,**F**} occurs twice.

In-class quiz: What is the longest path from **Bo** to **F** with distinct edges and no cylces?

The sequence **S**,**F**,**S** is not a cycle, since edge {**S**,**F**} occurs twice.

In-class quiz: What is the longest path from **Bo** to **F** with distinct edges and no cylces?

The sequence **S**,**F**,**S** is not a cycle, since edge {**S**,**F**} occurs twice.

In-class quiz: What is the longest path from **Bo** to **F** with distinct edges and no cylces?

A graph is **n-colorable** if its vertices can be colored using n different colors such that adjacent vertices have different colors.

The **chromatic number** of a graph is the smallest such n.

In-class quiz: What is the chromatic color of this graph? i.e., how many colors does it take to color this graph?

The sequence **S**,**F**,**S** is not a cycle, since edge {**S**,**F**} occurs twice.

In-class quiz: What is the longest path from **Bo** to **F** with distinct edges and no cylces?

A graph is **n-colorable** if its vertices can be colored using n different colors such that adjacent vertices have different colors.

The **chromatic number** of a graph is the smallest such n.

In-class quiz: What is the chromatic color of this graph? i.e., how many colors does it take to color this graph?

A planar graph can be drawn on a 2-D plane without edges crossing. **Theorem:** All planar graphs can be colored with 4 (or fewer) colors.

A graph **traversal** starts at some vertex v and visits all vertices without visiting any vertex more than once.

(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2.
 - (... not already visited earlier)
- And so on.

A graph **traversal** starts at some vertex v and visits all vertices without visiting any vertex more than once.

(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2.
 - (... not already visited earlier)
- And so on.

Example: v=Bo

Во

A graph **traversal** starts at some vertex v and visits all vertices without visiting any vertex more than once.

(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2.
 - (... not already visited earlier)
- And so on.

Example: v=Bo

Bo,Pe,Br,Pa,A,Ch

A graph **traversal** starts at some vertex v and visits all vertices without visiting any vertex more than once.

(We assume connectedness: all vertices are reachable from v.)

Breadth-First Traversal

- First visit v.
- Then visit all vertices reachable from v with a path length of 1.
- Then visit all vertices reachable from v with a path length of 2.
 - (... not already visited earlier)
- And so on.

Example: v=Bo

Bo,Pe,Br,Pa,A,Ch,U,Eq,Ve,S,G,F,Co

In-Class Quiz: Find a breadth-first traversal starting with F.

In-Class Quiz: Find a breadth-first traversal starting with F.

One answer: F,H,D,G,B,A,E,C

In-Class Quiz: Find a breadth-first traversal starting with C.

In-Class Quiz: Find a breadth-first traversal starting with F.

One answer: F,H,D,G,B,A,E,C

In-Class Quiz: Find a breadth-first traversal starting with C.

One answer: C,A,E,D,F,B,H,G

Start with a vertex v and visit all reachable vertices. Start by going as far as you can. Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch

Start with a vertex v and visit all reachable vertices. Start by going as far as you can. Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.

U

Start with a vertex v and visit all reachable vertices. Start by going as far as you can. Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br,Eq

Start with a vertex v and visit all reachable vertices. Start by going as far as you can. Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.

Ch,Pe,Co,Ve,G,S,F,Br,Eq,A,U

Start with a vertex v and visit all reachable vertices. Start by going as far as you can. Then backup a little and go down another path as far as possible. Only backup as far as necessary, then try the next path.

Example: Start at Ch.

```
Ch,Pe,Co,Ve,G,S,F,Br,Eq,A,U,Pa,Bo
```


In-Class Quiz: Find a depth-first traversal starting a F.

In-Class Quiz: Find a depth-first traversal starting a F.

One Answer: F,H,G,D,B,A,C,E

In-Class Quiz: Find a depth-first traversal starting a E.

In-Class Quiz: Find a depth-first traversal starting a F.

One Answer: F,H,G,D,B,A,C,E

In-Class Quiz: Find a depth-first traversal starting a E.

One Answer: E,D,F,H,G,A,C,B

An algorithm to visit vertices in depth-first order

visit(v) – This function should be called when a vertex is first visited.

The function being defined is "D". Recursive: D calls itself

Trees

A tree is a special kind of graph

Connected – a path between any two nodes

No cycles

Trees are drawn "upside down"

Root – the node at the top; Every tree has exactly one root.

Parent / Children – The parent is immediately above its children

Leaves – Nodes without children

Height (or depth) of the tree

- length of longest path from root to some leaf.

Example:

Which node is the root? What are the children of A? Who is the parent of node G? Which nodes are leaves? What is the depth of this tree?

Subtrees

Any node in a tree is the root of a subtree.

Representing Trees with Lists

One way to represent a tree is as a list whose head is the root of the tree anad whose tail is a list of subtrees. Each subtree is represented the same way.

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.

Example: $(x-y) + \log(z+w)$

In-class quiz: Find a depth-first, left-to-right traversal of this tree.

Representing Expressions with Trees

Any algebraic expression can be represented with a tree.

Example: (x-y) + log(z+w)
In-class quiz: Find a depth-first, left-to-right traversal of this tree.
+ - x y log + z w
This is the prefix form of the expression.
Note: Parentheses are never needed

in a prefix-form expression.

Binary Trees

Each vertex either... is empty, denoted <> has two subtees that are binary trees. Left subtree, right subtree

Alternately: nodes have ≤ 2 children.

5 Representing binary trees with tuples empty: <> non-empty: <L,x,R> where x is the subtree's root, L and R are the two subtrees. A node with no children (a leaf): <<>,2,<>>

7

11

A node with two children: <<<>,2,<>>,3, <<>,5,<>>>

A **binary search tree** represents ordered information. The predecessors of x are in the left subtree of x. The successors of x are in the right subtree of x.

Example: This is a binary search tree for the first 6 prime numbers.

CS340-Discrete Structures

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm: Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize S := Ø Pick any v in V. Set W := $\{v\}$ while $W \neq V$ Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V - W$ S := S $\cup \{\{x,y\}\}$ W := W $\cup \{y\}$ endWhile

Β

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

Prim's Algorithm: Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize S := Ø Pick any v in V. Set W := $\{v\}$ while W \neq V Find a minimum weight edge $\{x,y\}$, where x \in W and y \in V-W S := S \cup $\{\{x,y\}\}$ W := W \cup $\{y\}$ endWhile

B

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

3 **Prim's Algorithm:** Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize $S := \emptyset$ 3 Pick any v in V. Set $W := \{v\}$ <u>while</u> W≠V Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V \in W$ $S := S \cup \{\{x,y\}\}$ $\mathsf{W} := \mathsf{W} \cup \{\mathsf{y}\}$ $W = \{ B \}$ endWhile S = { }

CS340-Discrete Structures

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

3 **Prim's Algorithm:** Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize $S := \emptyset$ 3 Pick any v in V. Set $W := \{v\}$ <u>while</u> W≠V Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V \in W$ $S := S \cup \{\{x,y\}\}$ $\mathsf{W} := \mathsf{W} \cup \{\mathsf{y}\}$ $W = \{ B, D \}$ endWhile S = { **BD** }

CS340-Discrete Structures

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

3 **Prim's Algorithm:** Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize $S := \emptyset$ 3 Pick any v in V. Set $W := \{v\}$ <u>while</u> W≠V Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V \in W$ $S := S \cup \{\{x,y\}\}$ $\mathsf{W} := \mathsf{W} \cup \{\mathsf{y}\}$ $W = \{ B, D, C \}$ endWhile S = { **BD**, **CD** }

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

3 **Prim's Algorithm:** Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize $S := \emptyset$ 3 Pick any v in V. Set $W := \{v\}$ <u>while</u> W≠V Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V \in W$ $S := S \cup \{\{x,y\}\}$ $\mathsf{W} := \mathsf{W} \cup \{\mathsf{y}\}$ W = { **B**, **D**, **C**, **A** } endWhile S = { **BD**, **CD**, **AC** }

A spanning tree for a connected graph is a tree whose nodes are the nodes of the graph and whose edges are a subset of the edges of the graph.

A **weighted graph**: Each edge has an associated value, its weight.

A **minimal spanning tree** is a spanning tree that minimizes the weights on the edges in the tree.

3 **Prim's Algorithm:** Let V be the set of vertices in the graph Compute S = the set of edges in the spanning tree W = a variable, a set of vertices reached Initialize $S := \emptyset$ 3 Pick any v in V. Set $W := \{v\}$ <u>while</u> W≠V Find a minimum weight edge $\{x,y\}$, where $x \in W$ and $y \in V \in W$ $S := S \cup \{\{x,y\}\}$ $\mathsf{W} := \mathsf{W} \cup \{\mathsf{y}\}$ $W = \{ B, D, C, A, E \}$ endWhile S = { **BD**, **CD**, **AC**, **DE**}