Section 3.1: Inductively Defined Sets

To define a set S "inductively", we need to give 3 things:
Basis:
Specify one or more elements that are in S.
Induction Rule:
Give one or more rules telling how to construct a new element from an existing element in S.

Closure:

Specify that no other elements are in S.
(The closure is generally assumed implicitly.)
The basis elements and the induction rules are called constructors.
Example: Give an inductive definition of $S=\{3,7,11,15,19,23, \ldots\}$ Basis:
$3 \in S$
Induction:
If $x \in S$ then $x+4 \in S$
The constructors are " 3 " and the "add 4" operation.
Note: Without the closure part, lots of sets would satisfy this defn.
For example, Z works since $3 \in Z$ and $x+4 \in Z$.

Example: Find an inductive definition of $S=\{3,4,5,8,9,12,16,17,20,24,33, \ldots\}$

Solution: Notice that S can be written as a union of simpler sets:

$$
S=\{3,5,9,17,33, \ldots\} \cup\{4,8,12,16,20, \ldots\}
$$

Basis:

Induction:

Example: Here is an inductive definition. What does this set look like? Basis: $2 \in S$
Induction: $x \in S$ implies $x+3 \in S$ and $x-3 \in S$

Solution:

Example: Find an inductive definition of

$$
S=\{3,4,5,8,9,12,16,17,20,24,33, \ldots\}
$$

Solution: Notice that S can be written as a union of simpler sets:

$$
S=\{3,5,9,17,33, \ldots\} \cup\{4,8,12,16,20, \ldots\}
$$

Basis:

$$
3,4 \in S
$$

Induction:
If $x \in S$ then

$$
\text { If } x \text { is odd }
$$

$$
\text { then } 2 x-1 \in S
$$

$$
\text { else } x+4 \in S
$$

Example: Here is an inductive definition. What does this set look like?
Basis: $2 \in S$
Induction: $x \in S$ implies $x+3 \in S$ and $x-3 \in S$

Solution:

Example: Find an inductive definition of
$S=\{3,4,5,8,9,12,16,17,20,24,33, \ldots\}$
Solution: Notice that S can be written as a union of simpler sets:

$$
S=\{3,5,9,17,33, \ldots\} \cup\{4,8,12,16,20, \ldots\}
$$

Basis:

$$
3,4 \in S
$$

Induction:

```
    If }x\inS\mathrm{ then
        If }x\mathrm{ is odd
                then 2x-1 \inS
                else }x+4\inS\mathrm{ .
```

Example: Here is an inductive definition. What does this set look like?
Basis: $2 \in S$
Induction: $x \in S$ implies $x+3 \in S$ and $x-3 \in S$
Solution:
$S=\{2,5,8,11, \ldots\} \cup\{-1,-4,-7,-10, \ldots\}=\{\ldots,-10,-7,-4,-1,2,5,8,11 \ldots\}$

Example: Find an inductive definition for

$$
S=\{\Lambda, a c, \text { aacc }, \text { aaaccc }, \ldots\}=\left\{a^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

Basis:
Induction:

Example: Find an inductive definition for

$$
\begin{aligned}
& \quad S=\left\{a^{n+1} b c^{n} \mid n \in N\right\} \\
& \text { Basis: } \\
& \text { Induction: }
\end{aligned}
$$

Example: What set is defined by this inductive definition?
Basis: $a, b \in S$
Induction: $x \in S$ then $f(x) \in S$.
Solution:

Example: Find an inductive definition for

$$
S=\{\Lambda, a c, a a c c, \text { aaaccc }, \ldots\}=\left\{a^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

Basis: $\Lambda \in S$
Induction: If $x \in S$ then $a x c \in S$.

Example: Find an inductive definition for

$$
\begin{aligned}
& \quad S=\left\{a^{n+1} b c^{n} \mid n \in \mathbb{N}\right\} \\
& \text { Basis: } \\
& \text { Induction: }
\end{aligned}
$$

Example: What set is defined by this inductive definition?
Basis: $a, b \in S$
Induction: $x \in S$ then $f(x) \in S$.
Solution:

Example: Find an inductive definition for

$$
S=\{\Lambda, a c, a a c c, \text { aaaccc }, \ldots\}=\left\{a^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

Basis: $\Lambda \in S$
Induction: If $x \in S$ then $a x c \in S$.

Example: Find an inductive definition for

$$
\begin{aligned}
& S=\left\{a^{n+1} b c^{n} \mid n \in \mathbb{N}\right\} \\
& \text { Basis: ab } \in S \\
& \text { Induction: If } x \in S \text { then } a x c \in S .
\end{aligned}
$$

Example: What set is defined by this inductive definition?
Basis: $a, b \in S$
Induction: $x \in S$ then $f(x) \in S$.
Solution:

Example: Find an inductive definition for

$$
S=\{\Lambda, a c, a a c c, \text { aaaccc }, \ldots\}=\left\{a^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

Basis: $\Lambda \in S$
Induction: If $x \in S$ then $a x c \in S$.

Example: Find an inductive definition for

$$
S=\left\{a^{n+1} b c^{n} \mid n \in N\right\}
$$

Basis: $a b \in S$
Induction: If $x \in S$ then $a x c \in S$.

Example: What set is defined by this inductive definition?
Basis: $a, b \in S$
Induction: $x \in S$ then $f(x) \in S$.
Solution:

$$
\begin{aligned}
S & =\{a, f(a), f(f(a)), \ldots\} \cup\{b, f(b), f(f(b)), \ldots\} \\
& =\left\{f^{n}(a) \mid n \in \mathbb{N}\right\} \cup\left\{f^{n}(b) \mid n \in \mathbb{N}\right\} \\
& =\left\{f^{n}(x) \mid x \in\{a, b\} \text { and } n \in \mathbb{N}\right\}
\end{aligned}
$$

Example: Describe the set S defined inductively by:

Basis: <0> $\in S$

Induction: $x \in S$ implies cons $(1, x) \in S$.
Solution: $S=\{\langle 0\rangle,\langle 1,0\rangle,\langle 1,1,0\rangle,\langle 1,1,1,0\rangle, \ldots\}$

Giuseppe Piano's Definition of The Set of Natural Numbers, N:

Define the "successor" function, succ.

Basis: $0 \in \mathbb{N}$
Induction: If $x \in \mathbb{N}$ then $\operatorname{succ}(x) \in \mathbb{N}$.
Closure: There are no other elements in N .
$\mathrm{N}=\{0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))), \ldots\}$

List Functions:

head $(<a, b, c, d\rangle)=a$
taill $(<a, b, c, d>)=<b, c, d>$
cons ($a,<b, c, d>$) $=\langle a, b, c, d\rangle$

Notation:

cons (x, y) can be written with the infix operator ::
x: y

Examples:

$$
\begin{aligned}
& a::<b, c, d>=<a, b, c, d> \\
& a::(b::(c::<>))=<a, b, c> \\
& <a, b>::<c, d>=\ll a, b>, c, d>
\end{aligned}
$$

Most operators are left-associative:

$$
x \div y \div z=(x \div y) \div z
$$

Assume that :: is right-associative:
x : : y :: z = x :: (y :: z)
So:
a :: b :: c :: <> = <a,b,c>

Example: Find an inductive definition for $S=\{\langle \rangle,\langle a, b\rangle,\langle a, b, a, b\rangle, \ldots\}$
Solution:

Basis:

Inductive Step:

Example: Find an inductive defition for
$S=\{<>, \ll \gg, \lll \ggg, \ldots\}$
Solution:
Basis:
Inductive Step:

Example: Find an inductive definition for $S=\{\langle \rangle,\langle a, b\rangle,\langle a, b, a, b\rangle, \ldots\}$
Solution:

Basis: <> \in S.

Inductive Step: $x \in S$ implies $a:: b:: x \in S$.

Example: Find an inductive defition for
$S=\{<>, \ll \gg, \lll \ggg, \ldots\}$
Solution:
Basis:
Inductive Step:

Example: Find an inductive definition for $S=\{\langle \rangle,\langle a, b\rangle,\langle a, b, a, b\rangle, \ldots\}$
Solution:

Basis: <> \in S.

Inductive Step: $x \in S$ implies $a:: b:: x \in S$.

Example: Find an inductive defition for
$S=\{<>, \ll \gg, \lll \ggg, \ldots\}$
Solution:
Basis: <> \in S.
Inductive Step: $x \in S$ implies $x::<>\in S$.

Binary Trees

The set of binary trees B is defined as follows: (Assume A is an alphabet: the labels for the nodes.)

```
Basis: \(<>\in B\)
Induction: If \(L, R \in B\) and \(x \in A\) then \(\langle L, x, R\rangle \in B\).
```

Example: Here is a set S, which is a subset of B. What is in S ?
Basis: <<>, $a,<\gg \in S$
Induction: $T \in S$ implies $<T, a, \ll>, a,<\ggg \in S$.

Binary Trees

The set of binary trees B is defined as follows: (Assume A is an alphabet: the labels for the nodes.)


```
Basis: <> \in B
Induction: If L, R }\inB\mathrm{ and }x\inA\mathrm{ then }<L,x,R>\inB\mathrm{ .
```

Example: Here is a set S, which is a subset of B. What is in S ?
Basis: <<>,a,<>> $\in S$
Induction: $T \in S$ implies $<T, a, \ll>, a,<\ggg \in S$.

Binary Trees

The set of binary trees B is defined as follows: (Assume A is an alphabet: the labels for the nodes.)

Basis: $<>\in B$
Induction: If $L, R \in B$ and $x \in A$ then $\langle L, x, R\rangle \in B$.
Example: Here is a set S, which is a subset of B. What is in S ?
Basis: <<>,a,<>> $\in S$
Induction: $T \in S$ implies $<T, a, \ll>, a,<\ggg \in S$.

Problem: Find an inductive definition of the set S of trees like this:

Problem: Find an inductive definition of the set S of trees like this:

Basis: <<>, a, <>> $\in S$
Induction: $<L, a, R>\in S$ implies
$\ll L, a,<\gg, a, \ll>, a, R \gg \in S$

Problem: Find an inductive definition of the set S of trees like this:

Basis: <<>, a, <>> $\in S$
Induction: $<L, a, R\rangle \in S$ implies

$$
\ll L, a,<\gg, a, \ll>, a, R \gg \in S
$$

Define function left, right: Trees \rightarrow Trees as
left $(<L, a, R>)=L$
and
right $(<L, a, R>)=R$
Revised Inductive Step: $T \in S$ implies
$\ll \operatorname{left}(T), a,<\gg, a, \ll>, a, r i g h t(T) \gg \in S$

Example: Find an inductive definition for the set $S=\{a\}^{*} \times N$. Solution:

Basis:

 Induction:Example: Find an inductive definition for the set $\mathrm{S}=\{\mathrm{a}\}^{*} \times \mathrm{N}$. Solution:

Basis: $(\Lambda, 0) \in S$
Induction: $(\mathrm{s}, \mathrm{n}) \in \mathrm{S}$ implies $(\mathrm{as}, \mathrm{n}) \in \mathrm{S}$ and $(\mathrm{s}, \mathrm{n}+1) \in \mathrm{S}$.

Example: Find an inductive definition for the set
$S=\{(x,-y) \mid x, y \in \mathbb{N}$ and $x \geq y\}$
Let's try to understand S by writing out some tuples:

Here is a graphical
representation of S :

Basis:
Induction:

Example: Find an inductive definition for the set
$S=\{(x,-y) \mid x, y \in \mathbb{N}$ and $x \geq y\}$
Let's try to understand S by writing out some tuples:
$(0,0),(1,0),(1,-1),(2,0),(2,-1),(2,-2)$, and so on
Here is a graphical representation of S :

Basis:
Induction:

Example: Find an inductive definition for the set $S=\{(x,-y) \mid x, y \in \mathbb{N}$ and $x \geq y\}$
Let's try to understand S by writing out some tuples:
$(0,0),(1,0),(1,-1),(2,0),(2,-1),(2,-2)$, and so on
Here is a graphical representation of S :

Basis: $(0,0) \in S$
Induction: $(x, y) \in S$
implies $(x+1, y) \in S$
and $(x+1, y-1) \in S$

Notice that the inductive step will construct some points two ways.
$(1,-1) \rightarrow(2,-1)$
$(1,0) \rightarrow(2,-1)$

Example: Find an inductive definition for the set
$S=\{(x,-y) \mid x, y \in \mathbb{N}$ and $x \geq y\}$
Let's try to understand S by writing out some tuples:
$(0,0),(1,0),(1,-1),(2,0),(2,-1),(2,-2)$, and so on
Here is a graphical representation of S :

Basis: $(0,0) \in S$
Induction: $(x, y) \in S$
implies $(x+1, y) \in S$ and $(x+1, y-1) \in S$

Notice that the inductive step will construct some points two ways.

$$
(1,-1) \rightarrow(2,-1)
$$

$(1,0) \rightarrow(2,-1)$
In-Class Quiz: Try to find a solution that does not construct repeated points.

Example: Find an inductive definition for the set
$S=\{(x,-y) \mid x, y \in \mathbb{N}$ and $x \geq y\}$
Let's try to understand S by writing out some tuples:
$(0,0),(1,0),(1,-1),(2,0),(2,-1),(2,-2)$, and so on
Here is a graphical representation of S :

Basis: $(0,0) \in S$
Induction: $(x, y) \in S$
implies $(x+1, y) \in S$ and $(x+1, y-1) \in S$

Notice that the inductive step will construct some points two ways.
$(1,-1) \rightarrow(2,-1)$
$(1,0) \rightarrow(2,-1)$
In-Class Quiz: Try to find a solution that does not construct repeated points.
Approach: Construct the diagonal. Then construct horizontal lines.
Basis: $(0,0) \in S$
Induction: $(x,-x) \in S$ implies $(x+1,-(x+1)) \in S$ $(x, y) \in S$ implies $(x+1, y) \in S$

