Section 4.1: Properties of Binary Relations

A "binary relation" R over some set A is a subset of $A \times A$. If $(x, y) \in R$ we sometimes write $x R y$.

Example: Let R be the binary relaion "less" ("<") over N.
$\{(0,1),(0,2), \ldots(1,2),(1,3), \ldots\}$
$(4,7) \in R$
Normally, we write: $4<7$
Additional Examples: Here are some binary relations over $A=\{0,1,2\}$ (nothing is related to anything)
$\mathrm{A} \times \mathrm{A} \quad$ (everything is related to everything)
$\mathrm{eq}=\{(0,0),(1,1),(2,2)\}$
less $=\{(0,1),(0,2),(1,2)\}$

Representing Relations with Digraphs (directed graphs)

Let $R=\{(a, b),(b, a),(b, c)\}$ over $A=\{a, b, c\}$
We can represent R with this graph:

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies y $R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R$ y and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:

Reflexive
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R$ y and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$

Symmetric:
All edges are 2-way:
Might as well use undirected edges!

Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R$ y and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$

Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R$ y and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$

Symmetric:
All edges are 2-way:
Might as well use undirected edges!

Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.

Transitive:
If you can get from x to y, then there is an edge directly from x to y !
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.

Transitive:
If you can get from x to y, then there is an edge directly from x to y !
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive

Irreflexive:
You won't see any edges like these!
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive
$x R \times$ for all $x \in A$
Every element is related to itself.
R is symmetric
$x R$ y implies $y R x$, for all $x, y \in A$
The relation is reversable.
R is transitive
$x R$ y and $y R z$ implies $x R z$, for all $x, y, z \in A$
Example:
$\mathrm{i}<7$ and $7<\mathrm{j}$ implies $\mathrm{i}<\mathrm{j}$.
R is irreflexive
$(x, x) \notin R$, for all $x \in A$
Elements aren't related to themselves.
R is antisymmetric
$x R y$ and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Example: $\mathrm{i} \leq 7$ and $7 \leq \mathrm{i}$ implies $\mathrm{i}=7$.

Properties of Binary Relations:

R is reflexive $\quad x R x$ for all $x \in A$
R is symmetric $\quad x R$ y implies $y R x$, for all $x, y \in A$
R is transitive $\quad x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
R is irreflexive $\quad(x, x) \notin R$, for all $x \in A$
R is antisymmetric $x R$ y and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Examples: Here are some binary relations over $A=\{0,1\}$.
Which of the properties hold?

Answers:

```
\emptyset
A\timesA
eq = {(0,0),(1,1)}
less = {(0,1)}
```


Properties of Binary Relations:

R is reflexive $\quad x R x$ for all $x \in A$
R is symmetric $\quad x R$ y implies $y R x$, for all $x, y \in A$
R is transitive $\quad x R y$ and $y R z$ implies $x R z$, for all $x, y, z \in A$
R is irreflexive $\quad(x, x) \notin R$, for all $x \in A$
R is antisymmetric $x R$ y and $y R x$ implies that $x=y$, for all $x, y, z \in A$
Examples: Here are some binary relations over $A=\{0,1\}$.
Which of the properties hold?

Answers:

\emptyset
$\mathrm{A} \times \mathrm{A}$
$\mathrm{eq}=\{(0,0),(1,1)\}$
less $=\{(0,1)\}$
symmetric,transitive,irreflexive, antisymmetric reflexive, symmetric, transitive
reflexive, symmetric, transitive, antisymmetric transitive, irreflexive, antisymmetric

Composition of Relations

If R and S are binary relations, then the composition of R and S is $R \circ S=\{(x, z) \mid x R y$ and $y S z$ for some $y\}$

Composition of Relations

If R and S are binary relations, then the composition of R and S is $R \circ S=\{(x, z) \mid x R y$ and $y S z$ for some $y\}$

Composition of Relations

If R and S are binary relations, then the composition of R and S is $R \circ S=\{(x, z) \mid x R y$ and $y S z$ for some $y\}$

Examples:

eq. less $=$?
$R \circ \emptyset=?$
isMotherOf \circ isFatherOf $=$?
isSonOf \circ isSiblingOf $=$?

Composition of Relations

If R and S are binary relations, then the composition of R and S is $R \circ S=\{(x, z) \mid x R y$ and $y S z$ for some $y\}$

Examples:

eq. less $=$ less
$\{(x, z) \mid x=y$ and $y<x$, for some $y\}$
$R \circ \varnothing=\varnothing$
isMotherOf \circ isFatherOf $=$ isPaternalGrandmotherOf
$\{(x, z) \mid x$ isMotherOf y and y isFatherOf x, for some $y\}$
isSonOf \circ isSiblingOf $=$ isNephewOf
$\{(x, z) \mid x$ isSonOf y and y isSiblingOf x, for some $y\}$

Representing Relations with Digraphs (directed graphs)

Let $R=\{(a, b),(b, a),(b, c)\}$ over $A=\{a, b, c\}$
Let $R^{2}=R \circ R=$?

We can represent R graphically:

Representing Relations with Digraphs (directed graphs)

Let $R=\{(a, b),(b, a),(b, c)\}$ over $A=\{a, b, c\}$
Let $R^{2}=R \circ R$
Let $R^{3}=R \circ R \circ R=$?
We can represent R graphically:

Representing Relations with Digraphs (directed graphs)

Let $R=\{(a, b),(b, a),(b, c)\}$ over $A=\{a, b, c\}$
Let $R^{2}=R \circ R$
Let $R^{3}=R \circ R \circ R=R^{2} \circ R$.
We can represent R graphically:

In this example, R^{3} happens to be the same relation as R.

$$
R^{3}=R
$$

Note: By definition, $R^{0}=E q$, where x Eq y iff $x=y$.

Reflexive Closure

Given a relation R , we want to add to it just enough "edges" to make the resulting relation satisfy the reflexive property.

Reflexive Closure of R is $r(R)=R \cup E q$, where $E q$ is the equality relation.

Example:

$r(R)=R \cup E q=\{(a, b),(b, a),(b, c),(a, a),(b, b),(c, c)\}$

Symmetric Closure

Given a relation R, we want to add to it just enough "edges" to make the resulting relation satisfy the symmetric property.

Symmetric Closure of R is $s(R)=R \cup R^{c}$, where R^{c} is the converse relation. $R^{c}=\{(b, a) \mid a R b\}$

Example:

$s(R)=R \cup R^{c}=\{(a, b),(b, a),(b, c),(c, b)\}$

Transitive Closure

Given a relation R, we want to add to it just enough "edges" to make the resulting relation satisfy the transitivity property.

Transitive Closure of R is $t(R)=R \cup R^{2} \cup R^{3} \cup \ldots$
Note: If the number of nodes is finite...

$$
\text { If }|A|=n \text { then } t(R)=R \cup R^{2} \cup R^{3} \cup \ldots \cup R^{n}
$$

Example:

$t(R)=R \cup R^{2} \cup R^{3}=\{(a, b),(b, a),(b, c),(a, a),(b, b),(a, c)\}$

If there is a path from x to y, then add an edge directly from x to y.

In-Class Quiz:

Let $R=\{(x, x+1) \mid x \in Z\}$
What is $t(R)$? What is $\mathrm{rt}(\mathrm{R})$? What is $s t(R)$?

In-Class Quiz:

Let $R=\{(x, x+1) \mid x \in Z\}$
What is $t(R)$? < What is $\mathrm{rt}(\mathrm{R})$? What is $s t(R)$?

In-Class Quiz:

Let $R=\{(x, x+1) \mid x \in Z\}$
What is $t(R)$? < What is $r(R)$? \leq What is $s t(R)$?

In-Class Quiz:

Let $R=\{(x, x+1) \mid x \in Z\}$

What is $t(R)$? What is $\mathrm{rt}(\mathrm{R})$? What is $s t(R)$?
$<$

Adjacency Matrix

Idea: Use a matrix to represent a directed graph (or a relation).
Let $R=\{(a, b),(b, c),(c, d)\}$
Number the elements in the set: $1,2,3, \ldots$

Adjacency Matrix

Idea: Use a matrix to represent a directed graph (or a relation).

$$
\text { Let } R=\{(a, b),(b, c),(c, d)\}
$$

Number the elements in the set: $1,2,3, \ldots$

Adjacency Matrix

Idea: Use a matrix to represent a directed graph (or a relation).

$$
\text { Let } R=\{(a, b),(b, c),(c, d)\}
$$

Number the elements in the set: $1,2,3, \ldots$
Now we can write $R=\{(1,2),(2,3),(3,4)\}$
The matrix M will have a " 1 " in position $M_{i j}$ if i $R j$, and " 0 " otherwise.
$M=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4
$$

Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:


```
Warshall's Algorithm
for k:= 1 to n
    for i:= 1 to n
        for j:= 1 to n
            if }\mp@subsup{M}{ik}{}=\mp@subsup{M}{kj}{}=1\mathrm{ then
                M Mj := 1
            endIf
        endFor
    endFor
endFor
```


Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:

Warshall's Algorithm

Consider all ways to bypass node 1. Then forget about node 1.
Consider all ways to bypass node 2. and so on...


```
for k:= 1 to n
    for i:= 1 to n
        for j:= 1 to n
            if }\mp@subsup{M}{ik}{}=\mp@subsup{M}{kj}{}=1\mathrm{ then
        M Mj := 1
            endIf
        endFor
    endFor
endFor
```


Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:

Warshall's Algorithm

Consider all ways to bypass node 1. Then forget about node 1.
Consider all ways to bypass node 2. and so on...


```
for k:= 1 to n
    for i:= 1 to n
        for j:= 1 to n
            if }\mp@subsup{M}{ik}{}=\mp@subsup{M}{kj}{}=1\mathrm{ then
        M Mj := 1
            endIf
        endFor
    endFor
endFor
```


Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:

Warshall's Algorithm

Consider all ways to bypass node 1. Then forget about node 1.
Consider all ways to bypass node 2. and so on...


```
for k:= 1 to n
    for i:= 1 to n
        for j:= 1 to n
            if }\mp@subsup{M}{ik}{}=\mp@subsup{M}{kj}{}=1\mathrm{ then
        M Mj := 1
            endIf
        endFor
    endFor
endFor
```


Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:

Warshall's Algorithm

Consider all ways to bypass node 1. Then forget about node 1.
Consider all ways to bypass node 2. and so on...

Computing the Transitive Closure: Warshall's Algorithm

We can use this matrix to compute the $t(R)$, the transitive closure of R.
Idea: Every time we find this pattern:
...add this edge:

Warshall's Algorithm

Consider all ways to bypass node 1. Then forget about node 1.
Consider all ways to bypass node 2. and so on...

Example:

$$
k=1
$$

$$
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4
$$

$$
M=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

```
Warshall's Algorithm
for \(k:=1\) to \(n\)
    for \(i:=1\) to \(n\)
        for \(j:=1\) to \(n\)
            if \(M_{i k}=M_{k j}=1\) then
            \(M_{i j}:=1\)
        endIf
        endFor
    endFor
endFor
```


Example:

$$
k=2
$$

$$
M=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

```
Warshall's Algorithm
for \(k:=1\) to \(n\)
    for \(i:=1\) to \(n\)
        for \(j:=1\) to \(n\)
            if \(M_{i k}=M_{k j}=1\) then
            \(M_{\mathrm{ij}}:=1\)
        endIf
        endFor
    endFor
endFor
```


Example:

$$
k=3
$$

$$
M=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

```
Warshall's Algorithm
for \(k:=1\) to \(n\)
    for \(i:=1\) to \(n\)
        for \(j:=1\) to \(n\)
            if \(M_{i k}=M_{k j}=1\) then
            \(M_{i j}:=1\)
        endIf
        endFor
    endFor
endFor
```


Example:

$$
k=3
$$

$$
M=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

```
Warshall's Algorithm
for \(k:=1\) to \(n\)
    for \(i:=1\) to \(n\)
        for \(j:=1\) to \(n\)
            if \(M_{i k}=M_{k j}=1\) then
            \(M_{i j}:=1\)
        endIf
        endFor
    endFor
endFor
```


Example:

k=4 ...Done;
no more changes.

$$
M=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

```
Warshall's Algorithm
for \(k\) : \(=1\) to \(n\)
    for \(i:=1\) to \(n\)
        for \(j:=1\) to \(n\)
            if \(M_{i k}=M_{k j}=1\) then
            \(M_{i j}:=1\)
        endIf
        endFor
    endFor
endFor
```


Path Problems: Floyd's Algorithm

Consider a directed graph with weights on the edges.

Problems:

Find the cheapest path from x to y. Find the shortest path from x to y. (Just make all weights = 1!)

Path Problems: Floyd's Algorithm

Consider a directed graph with weights on the edges.

Idea:

Represent the graph with a matrix. Store the weights.
For non-existent edges, use a weight of ∞.
Then modify Warshall's Algorithm.

$$
M=\left[\begin{array}{llllll}
0 & 10 & 10 & \infty & 20 & 10 \\
\infty & 0 & \infty & 30 & \infty & \infty \\
\infty & \infty & 0 & 30 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 40 & 0 & \infty \\
\infty & \infty & \infty & \infty & 5 & 0
\end{array}\right]
$$

Path Problems: Floyd's Algorithm

Consider a directed graph with weights on the edges.
Floyd's Algorithm:

$$
\begin{aligned}
& \underline{\text { for } k}:=1 \text { to } n \\
& \underline{\text { for } i}:=1 \underline{\text { to }} n \\
& \quad \underline{\text { for } j}:=1 \underline{\text { to }} n \\
& \quad \text { if } M_{i k}+M_{k j}<M_{i j} \\
& M_{i j}:=M_{i k}+M_{k j}
\end{aligned}
$$

endIf
 endFor
 endFor
 endFor

$$
M=\left[\begin{array}{ccclll}
0 & 10 & 10 & \infty & 20 & 10 \\
\infty & 0 & \infty & 30 & \infty & \infty \\
\infty & \infty & 0 & 30 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 40 & 0 & \infty \\
\infty & \infty & \infty & \infty & 5 & 0
\end{array}\right]
$$

Path Problems: Floyd's Algorithm

Consider a directed graph with weights on the edges.
Floyd's Algorithm:

$$
\begin{aligned}
& \underline{\text { for } k:}:=1 \text { to } n \\
& \underline{\text { for } i}:=1 \text { to } n \\
& \quad \underline{\text { for }} \mathfrak{j}:=1 \text { to } n \\
& \quad M_{i k}+M_{k j}<M_{i j} \\
& M_{i j}:=M_{i k}+M_{k j}
\end{aligned}
$$

endIf
 endFor
 endFor
 endFor

$$
M=\left[\begin{array}{ccclll}
0 & 10 & 10 & 40 & 15 & 10 \\
\infty & 0 & \infty & 30 & \infty & \infty \\
\infty & \infty & 0 & 30 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 40 & 0 & \infty \\
\infty & \infty & \infty & 45 & 5 & 0
\end{array}\right]
$$

Path Problems: Floyd's Algorithm

How can we remember the best path? $P=n e x t$ node in best path!
Floyd's Algorithm:

```
for k := 1 to n
    for i:= 1 to n
        for j:= 1 to n
        if M}\mp@subsup{M}{ik}{}+\mp@subsup{M}{kj}{}<\mp@subsup{M}{ij}{
            P
            endIf
        endFor
    endFor
endFor
```

$\mathbf{M}=\left[\begin{array}{ccclcc}0 & 10 & 10 & 40 & 15 & 10 \\ \infty & 0 & \infty & 30 & \infty & \infty \\ \infty & \infty & 0 & 30 & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & 40 & 0 & \infty \\ \infty & \infty & \infty & 45 & 5 & 0\end{array}\right] \quad P=\left[\begin{array}{llllll}0 & 0 & 0 & 2 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0\end{array}\right]$

