
Section 4.2 CS340-Discrete Structures Page 1 

Section 4.2: Equivalence Relations 

What is “equality”? 
What is “equivalence”? 

Equality is more basic, fundamental concept. 
 Every element in a set is equal only to itself. 
 The basic equality relation 
  {(x,x) | x ∈ S} 
 We tend to assume equality is implicitly understood and agreed upon. 

Broader Issues: 
 Is 2+2=4? 

  No: “2+2” has 3 characters, while “4” has 1 character 

  Yes: There is an underlying set, namely R and these 
   strings refer to the same object in R. 

 So 2+2 is “equivalent” to 4.   (Use algebra to show the equivalence.) 



Section 4.2 CS340-Discrete Structures Page 2 

We require three properties of any notion of equality: 

 Reflexive    x=x 
 Symmetric   If x=y then y=x 
 Transitive   If x=y and y=z then x=z 

Notation: 

 =  Equality 
 ~  Equivalence 

Any equivalence relation should behave 
   the same as we expect equality to behave. 

 Reflexive    x~x 
 Symmetric   If x~y then y~x 
 Transitive   If x~y and y~z then x~z 



Section 4.2 CS340-Discrete Structures Page 3 

Equivalence Relations 

A binary relation is an equivalence relation iff it has these 3 properties: 
 Reflexive    x~x 
 Symmetric   If x~y then y~x 
 Transitive   If x~y and y~z then x~z 

“RST” 
  Note: When taking the reflex.,sym. & trans. closures, write tsr(R) 

Examples: 
 Equality on any set 
 x ~ y iff |x| = |y| over the set of strngs {a,b,c}* 
 x ~ y iff x and y have the same birthday over the set of people 

Another Example: 
 Consider the set of all arithmetic expressions, such as: 
  4x+2 
 The relation e1~e2 holds iff e1 and e2 have the same value 
        (for any assignment to the variables) 
 So: 
  4x+2 ~ 2(2x+1) 



Section 4.2 CS340-Discrete Structures Page 4 

Quiz: Which of these relations are RST? 

 x R y iff x≤y or x>y over Z 
   
    
 x R y iff |x-y|≤2 over Z 
   
 x R y iff x and y are both even over Z 
   



Section 4.2 CS340-Discrete Structures Page 5 

Quiz: Which of these relations are RST? 

 x R y iff x≤y or x>y over Z 
  everything is related to everything else 
  reflexive, symmetric & transitive  equivalence. 
 x R y iff |x-y|≤2 over Z 
   
 x R y iff x and y are both even over Z 
   



Section 4.2 CS340-Discrete Structures Page 6 

Quiz: Which of these relations are RST? 

 x R y iff x≤y or x>y over Z 
  everything is related to everything else 
  reflexive, symmetric & transitive  equivalence. 
 x R y iff |x-y|≤2 over Z 
  3~5 and 5~7 but not 3~7  not transitive 
 x R y iff x and y are both even over Z 
   



Section 4.2 CS340-Discrete Structures Page 7 

Quiz: Which of these relations are RST? 

 x R y iff x≤y or x>y over Z 
  everything is related to everything else 
  reflexive, symmetric & transitive  equivalence. 
 x R y iff |x-y|≤2 over Z 
  3~5 and 5~7 but not 3~7  not transitive 
 x R y iff x and y are both even over Z 
  7 is not related to 7 --> not reflexive 



Section 4.2 

Equivalence Relations – RST 
 Reflexive 
 Symmetric 
 Transitive 

c k 

b d 

CS340-Discrete Structures Page 8 

j f 

h a 

e k 

g 

S 

m 



Section 4.2 

Equivalence Relations – RST 
 Reflexive 
 Symmetric 
 Transitive 

c k 

b d 

CS340-Discrete Structures Page 9 

j f 

h a 

e k 

g 

S 

m 



Section 4.2 

Equivalence Relations – RST 
 Reflexive 
 Symmetric 
 Transitive 

c k 

b d 

CS340-Discrete Structures Page 10 

j f 

h a 

e k 

g 

S 

m 



Section 4.2 

Equivalence Relations – RST 
 Reflexive 
 Symmetric 
 Transitive 

c k 

b d 

CS340-Discrete Structures Page 11 

j f 

h a 

e k 

g 

S 

m 



Section 4.2 

Equivalence Relations – RST 
 Reflexive 
 Symmetric 
 Transitive 

c k 

b d 

CS340-Discrete Structures Page 12 

j f 

h a 

S e k 

g 

m 

Equivalence Classes 



Section 4.2 CS340-Discrete Structures Page 13 

Partitions 

A partition of a set S is a collection of (nonempty) disjoint subsets whose 
union is S. 

Equivalence Classes 

If R is RST over A, then for each a∈A, the equivalence class of a is 
 denoted [a] and is defined as the set of things equivalent to a: 
  [a] = { x | x R a } 

Theorem 

Let A be a set… 
 • The equivalence classes of any RST 

 relation over A form a partition of A. 
 • Any partition of A yields an RST over A, 

 where the sets of the partition 
 act as the equivalence classes. S 

a 

[a] 



Section 4.2 CS340-Discrete Structures Page 14 

Partitions 

A partition of a set S is a collection of (nonempty) disjoint subsets whose 
union is S. 

Equivalence Classes 

If R is RST over A, then for each a∈A, the equivalence class of a is 
 denoted [a] and is defined as the set of things equivalent to a: 
  [a] = { x | x R a } 

Theorem 

Let A be a set… 
 • The equivalence classes of any RST 

 relation over A form a partition of A. 
 • Any partition of A yields an RST over A, 

 where the sets of the partition 
 act as the equivalence classes. 

You can use any member of an equivalence 
 class as its representative. 
  [a] = [b] 

S 

a 

[a] = [b] 

b 



Section 4.2 CS340-Discrete Structures Page 15 

Intersection Property 

If E and F are two equivalence relations over A 
 (i.e., E and F are RST)… 

then E ∩ F is also an equivalence relation 
 (i.e., is also RST). 

g 

c 
e 

b a 

h 

d 



Section 4.2 CS340-Discrete Structures Page 16 

Intersection Property 

If E and F are two equivalence relations over A 
 (i.e., E and F are RST)… 

then E ∩ F is also an equivalence relation 
 (i.e., is also RST). 

g 

c 
e 

b a 

a~b 
a~c 
a~d 
a~e 
b~c 
b~d 
b~e 
c~d 
c~e 
d~e 

g~h 

h 

d 
E 



Section 4.2 CS340-Discrete Structures Page 17 

Intersection Property 

If E and F are two equivalence relations over A 
 (i.e., E and F are RST)… 

then E ∩ F is also an equivalence relation 
 (i.e., is also RST). 

g 

c 
e 

b a 

a~b 
a~c 
a~d 
a~e 
b~c 
b~d 
b~e 
c~d 
c~e 
d~e 

g~h 

h 

a~b 

c~d 
c~e 
d~e 
c~g 
c~h 
d~g 
d~h 
e~g 
e~h 
g~h 

d 

F 



Section 4.2 CS340-Discrete Structures Page 18 

Intersection Property 

If E and F are two equivalence relations over A 
 (i.e., E and F are RST)… 

then E ∩ F is also an equivalence relation 
 (i.e., is also RST). 

g 

c 
e 

b a 

a~b 
a~c 
a~d 
a~e 
b~c 
b~d 
b~e 
c~d 
c~e 
d~e 

g~h 

h 

a~b 

c~d 
c~e 
d~e 
c~g 
c~h 
d~g 
d~h 
e~g 
e~h 
g~h 

d 
E 

F 



Section 4.2 CS340-Discrete Structures Page 19 

Intersection Property 

If E and F are two equivalence relations over A 
 (i.e., E and F are RST)… 

then E ∩ F is also an equivalence relation 
 (i.e., is also RST). 

g 

c 
e 

b a 

a~b 
a~c 
a~d 
a~e 
b~c 
b~d 
b~e 
c~d 
c~e 
d~e 

g~h 

h 

a~b 

c~d 
c~e 
d~e 
c~g 
c~h 
d~g 
d~h 
e~g 
e~h 
g~h 

d 
E 

F 



Section 4.2 CS340-Discrete Structures Page 20 

Example: 

“has same birthday as” is an equivalence relation 
 All people born on June 1 is an equivalence class 

“has the same first name” is an equivalence relation 
 All people named Fred is an equivalence class 

Let x~y iff  
 x and y have the same birthday and 
 x and y have the same first name 

This relation must be an equivalence relation. 
 It is the intersection of two equivalence relations. 

One class contains all people named Fred who were also born June 1. 



Section 4.2 CS340-Discrete Structures Page 21 

Kernel Relations 

Assume we have a function 
 f: A  B 

Define a relation on set A by letting 
 x ~ y iff f(x)=f(y) 

This is a “kernel relation”  and it will be RST: an equivalence relation! 

A  B 



Section 4.2 CS340-Discrete Structures Page 22 

Kernel Relations 

Assume we have a function 
 f: A  B 

Define a relation on set A by letting 
 x ~ y iff f(x)=f(y) 

This is a “kernel relation”  and it will be RST: an equivalence relation! 

A  B 



Section 4.2 CS340-Discrete Structures Page 23 

Kernel Relations 

Example: 
 Let x~y iff x mod n = y mod n, over any set of integers. 
  Then ~ is an equivalence relation because it is the 
  kernel relation of function f:SN defined by f(x) = x mod n. 

Example: 
 Let x~y iff x+y is even over Z. 
  Note that x+y is even 
   iff x and y are both even or both odd 
   iff x mod 2 = y mod 2. 
  Therefore ~ is an equivalence relation 
   because ~ is the kernel relation of 
   the function f:ZN defined by f(x) = x mod 2. 



Section 4.2 CS340-Discrete Structures Page 24 

Equivalence Classes 

Property: 
 For every pair a,b ∈ A we must have either: 
  [a] = [b] or 
  [a] ∩ [b] = Ø 

Example: 
 Suppose x~y iff x mod 3 = y mod 3, over the set N. 
  The equivalence classes are: 
   [0] = {0,3,6,…} = {3k | k ∈ N} 
   [1] = {1,4,7,…} = {3k+1 | k ∈ N} 
   [2] = {2,5,8,…} = {3k+2 | k ∈ N} 
 Notice that [0] = [3] = [6]. 
 Notice that [1] ∩ [2] = Ø. 

Example: 
 Suppose x~y iff x mod 2 = y mod 2, over the integers Z. 
  Then ~ is an equivalence relation with equivalence classes 
   [0]=evens, and [1]=odds. 
  Note that {[0],[1]} is a partition of Z. 



Section 4.2 CS340-Discrete Structures Page 25 

Equivalence Classes 

Example: 
 The set of real numbers R can be partitioned into the set of 
  half-open intervals {(n,n+1] | n∈Z}. 
   … (0,1], (1,2], (2,3], … 
 Then we have an RST ~ over R, 
  where x~y iff x,y ∈ (n,n+1], for some n∈Z. 

Quiz: 
 In the preceding example, what is another way to say x~y? 

Answer: 
 x~y iff x = y 



Section 4.2 CS340-Discrete Structures Page 26 

Refining Partitions 

If P and Q are partitions of a set S, then P is a “refinement” of Q if 
  every A ∈ P is a subset of some B ∈ Q. 

Q 



Section 4.2 CS340-Discrete Structures Page 27 

Refining Partitions 

If P and Q are partitions of a set S, then P is a “refinement” of Q if 
  every A ∈ P is a subset of some B ∈ Q. 

Q 

P 



Section 4.2 CS340-Discrete Structures Page 28 

Refining Partitions 

Example:  Let S = {a,b,c,d,e} and consider the following four partitions 
of S. 

 P1 = { {a,b,c,d,e} } 
 P2 = { {a,b}, {c,d,e} } 
 P3 = { {a}, {b}, {c}, {d,e} } 
 P4 = { {a}, {b}, {c}, {d}, {e} } 

Each Pi is a refinement of the previous one. 
We can talk about “courser” and “finer” refinements. 
P1 is the “coursest” and P4 is the “finest” refinement. 



Section 4.2 CS340-Discrete Structures Page 29 

Example:  Let ~3 and ~6 be the following equivalence relations over N: 

 x ~3 y iff x mod 3 = y mod 3 
  This relation has the following equivalence classes: 
   [0]3 = {0,3,6,9,12…} = {3k | k∈N} 
   [1]3 = {1,4,7,10,13…} = {3k+1 | k∈N} 
   [2]3 = {2,5,8,11,14…} = {3k+2 | k∈N} 

 x ~6 y iff x mod 6 = y mod 6 
  This relation has the following equivalence classes: 
   [0]6 = {0,6,12,…} = {6k | k∈N}   
   [1]6 = {1,7,13,…} = {6k+1 | k∈N}   
   [2]6 = {2,8,14,…} = {6k+2 | k∈N}   
   [3]6 = {3,9,15,…} = {6k+3 | k∈N}   
   [4]6 = {4,10,16,…} = {6k+4 | k∈N}   
   [5]6 = {5,11,17,…} = {6k+5 | k∈N}   



Section 4.2 CS340-Discrete Structures Page 30 

Example:  Let ~3 and ~6 be the following equivalence relations over N: 

 x ~3 y iff x mod 3 = y mod 3 
  This relation has the following equivalence classes: 
   [0]3 = {0,3,6,9,12…} = {3k | k∈N} 
   [1]3 = {1,4,7,10,13…} = {3k+1 | k∈N} 
   [2]3 = {2,5,8,11,14…} = {3k+2 | k∈N} 

 x ~6 y iff x mod 6 = y mod 6 
  This relation has the following equivalence classes: 
   [0]6 = {0,6,12,…} = {6k | k∈N}  ⊆ [0]3 
   [1]6 = {1,7,13,…} = {6k+1 | k∈N}  ⊆ [1]3 
   [2]6 = {2,8,14,…} = {6k+2 | k∈N}  ⊆ [2]3 
   [3]6 = {3,9,15,…} = {6k+3 | k∈N}  ⊆ [0]3 
   [4]6 = {4,10,16,…} = {6k+4 | k∈N}  ⊆ [1]3 
   [5]6 = {5,11,17,…} = {6k+5 | k∈N}  ⊆ [2]3 

 The partition ~6 is a refinement of ~3. 



Section 4.2 CS340-Discrete Structures Page 31 

Quiz: 

 Consider the equivalence relations ~2 and ~3. 
 Is either a refinement of the other? 

Answer:   

 [0]2 = set of even numbers = {0, 2, 4, 6, 8, … } 
 [1]2 = set of odd numbers  = {1, 3, 5, 7, 9, … } 

 [0]3 = {0, 3, 6, 9, … } 
 [1]3 = {1, … } 
 [2]3 = {2, … } 

 There is no subset relation between [0]3 and either [0]2 or [1]2. 

 No. 



Section 4.2 CS340-Discrete Structures Page 32 

Theorem:  (The intersection property of RSTs) 

If E and F are RSTs over A, then the equivalence classes of 
 E ∩ F have the form 
  [x]E∩F = [x]E ∩ [x]F, where x∈A 



Section 4.2 CS340-Discrete Structures Page 33 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4     
     
       
 x ~2 y iff x/6 = y/6     
     
      

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 34 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4     
     
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6     
     
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 35 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 36 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [0]R = [0]1 ∩ [0]2 = {0,1,2,3} ∩ {0,1,2,3,4,5} = {0,1,2,3} 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 37 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [0]R = [0]1 ∩ [0]2 = {0,1,2,3} ∩ {0,1,2,3,4,5} = {0,1,2,3} 
 [4]R = [4]1 ∩ [4]2 = {4,5,6,7} ∩ {0,1,2,3,4,5} = {4,5} 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 38 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [0]R = [0]1 ∩ [0]2 = {0,1,2,3} ∩ {0,1,2,3,4,5} = {0,1,2,3} 
 [4]R = [4]1 ∩ [4]2 = {4,5,6,7} ∩ {0,1,2,3,4,5} = {4,5} 
 [6]R = [6]1 ∩ [6]2 = {4,5,6,7} ∩ {6,7,8,9,10,11} = {6,7} 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 39 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [0]R = [0]1 ∩ [0]2 = {0,1,2,3} ∩ {0,1,2,3,4,5} = {0,1,2,3} 
 [4]R = [4]1 ∩ [4]2 = {4,5,6,7} ∩ {0,1,2,3,4,5} = {4,5} 
 [6]R = [6]1 ∩ [6]2 = {4,5,6,7} ∩ {6,7,8,9,10,11} = {6,7} 
 [8]R = [8]1 ∩ [8]2 = {8,9,10,11} ∩ {6,7,8,9,10,11} = {8,9,10,11} 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 



Section 4.2 CS340-Discrete Structures Page 40 

Example: Let ~1 and ~2 be the following RSTs over N: 
 x ~1 y iff x/4 = y/4   The equivalence classes are: 
   [4n]1 = {4n,4n+1,4n+2,4n+3} 
     [0]1 = {0,1,2,3}     [4]1 = {4,5,6,7}     etc… 
 x ~2 y iff x/6 = y/6   The equivalence classes are: 
   [6n]2 = {6n,6n+1,6n+2,6n+3,6n+4,6n+5} 
    [0]2 = {0,1,2,3,4,5}    [6]2 = {6,7,8,9,10,11}    etc… 

Now define a new RST as R = ~1 ∩ ~2 
What do the equivalence classes of R look like? 

 [0]R = [0]1 ∩ [0]2 = {0,1,2,3} ∩ {0,1,2,3,4,5} = {0,1,2,3} 
 [4]R = [4]1 ∩ [4]2 = {4,5,6,7} ∩ {0,1,2,3,4,5} = {4,5} 
 [6]R = [6]1 ∩ [6]2 = {4,5,6,7} ∩ {6,7,8,9,10,11} = {6,7} 
 [8]R = [8]1 ∩ [8]2 = {8,9,10,11} ∩ {6,7,8,9,10,11} = {8,9,10,11} 

 [12n]R = { 12n, 12n+1, 12n+2, 12n+3 } 
 [12n+4]R = { 12n+4, 12+5 } 
 [12n+6]R = { 12n+6, 12n+7 } 
 [12n+8]R = { 12n+8, 12n+9, 12n+10, 12n+11 } 

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 ••• 



Section 4.2 CS340-Discrete Structures Page 41 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 
   

a b 

c 



Section 4.2 CS340-Discrete Structures Page 42 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

  Add reflexive closure:    

a b 

c 



Section 4.2 CS340-Discrete Structures Page 43 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

  Add symmetric closure:   a b 

c 



Section 4.2 CS340-Discrete Structures Page 44 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

  Take transitive closure:   

a b 

c 



Section 4.2 CS340-Discrete Structures Page 45 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

a b 

c 

Is order important? Will str(R) work just as well?   



Section 4.2 CS340-Discrete Structures Page 46 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

a b 

c 

Is order important? Will str(R) work just as well?   



Section 4.2 CS340-Discrete Structures Page 47 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

  Add reflexive closure: 

a b 

c 

Is order important? Will str(R) work just as well?   



Section 4.2 CS340-Discrete Structures Page 48 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

  Take transitive closure: 
   (No change) 

a b 

c 

Is order important? Will str(R) work just as well?   



Section 4.2 CS340-Discrete Structures Page 49 

Generating Equivalence Relations 

The smallest equivalence relation containing binary relation R 
 (i.e., the “equivalence closure of R”) is 
  tsr(R) 

Example: Let R = {(a,b),(a,c)} be a relation over {a,b,c}. 
 Let’s turn it into an equivalence relation by computing tsr(R): 

   

  Take symmetric closure:     

a b 

c 

Is order important? Will str(R) work just as well? 

  NO!  



Section 4.2 CS340-Discrete Structures Page 50 

Equivalence and Meaning 

For sets where the elements have no “meaning”… 
 just use BASIC EQUALITY on S. 

For sets where the elements do have some “meaning”… 

We need another set of “values”, V, and a “meaning function”, m. 

   m: SV 

Now we can say that two elements in set S are equivalent/equal if they 
 mean the same thing. 
  x~y   iff   m(x)=m(y)     x=y   iff   m(x)=m(y) 

Example: 
 S = strings from {1,+}* that are well-formed expressions, e.g., 
   111+111  ,  111111  ,  1+1+1+1+1+1  ,  … 
 V = N 
       Define m as follows:  m(1k) = k, for k>0 
          m(e1+e2) = m(e1) + m(e2) 
  m(111+111) = 6 

 So our equivalence relation is the kernel relation of m. 
  111+111  ~  11+11+11 



Section 4.2 CS340-Discrete Structures Page 51 

Kruskal’s Algorithm 

To compute a minimal spanning tree. 

Overview: 
 Look at the set of all vertices in the graph. 
 Create a partitioning of the set. 
  Start with the finest possible partitioning. 
   Every node is in an equivalence set by itself. 
 Gradually merge partitions. 
  Until there is only one partition, containing all the nodes. 
 We are constructing the spanning tree by adding edges. 
 Two nodes x and y are in the same subset if 
  there is a path from x to y in the current spanning tree. 



Section 4.2 CS340-Discrete Structures Page 52 

Kruskal’s Algorithm 

Order the edges by weight and put them into a list, L. 
T will be the set of egdes representing the spanning tree. 
T := Ø. 
Create the initial (finest) partitioning. 
[v] := {v} for each vertex v in the graph. 
while there are two or more equivalence classes do 

 {x,y} := head(L) 
 L := tail(L) 
 if [x] ≠ [y] then 
  T := T ∪ {{x,y}} 
  Merge the sets [x] and [y] 
    i.e., replace [x] and [y] by [x] ∪ [y] 
 endIf 

endWhile  



Section 4.2 CS340-Discrete Structures Page 53 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 

          



Section 4.2 CS340-Discrete Structures Page 54 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 

          



Section 4.2 CS340-Discrete Structures Page 55 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 
 ∪ {{b,c}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 
 {a,b,c}    {d}  {e}  {f}  {g} 

          



Section 4.2 CS340-Discrete Structures Page 56 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 
 ∪ {{b,c}} 
 ∪ {{d,f}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 
 {a,b,c}    {d}  {e}  {f}  {g} 
 {a,b,c}    {d,f}  {e}   {g} 

          



Section 4.2 CS340-Discrete Structures Page 57 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 
 ∪ {{b,c}} 
 ∪ {{d,f}} 
 ∪ {{e,f}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 
 {a,b,c}    {d}  {e}  {f}  {g} 
 {a,b,c}    {d,f}  {e}   {g} 
 {a,b,c}    {d,e,f}   {g} 
          



Section 4.2 CS340-Discrete Structures Page 58 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 
 ∪ {{b,c}} 
 ∪ {{d,f}} 
 ∪ {{e,f}} 
 ∪ {{a,d}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 
 {a,b,c}    {d}  {e}  {f}  {g} 
 {a,b,c}    {d,f}  {e}   {g} 
 {a,b,c}    {d,e,f}   {g} 
 {a,b,c,d,e,f}       {g} 



Section 4.2 CS340-Discrete Structures Page 59 

Kruskal’s Algorithm 

List L = 
 {a,b} {b,c} {d,f} {e,f} {a,d} 
  {c,e} {f,g} {b,g} {c,d} {b,e} 

a 

b 

c 

d 

e 

f 

g 

2 

2 
3 

2 

1 
1 

2 
1 

1 
3 

T (Set of edges): 
T = {} 

 ∪ {{a,b}} 
 ∪ {{b,c}} 
 ∪ {{d,f}} 
 ∪ {{e,f}} 
 ∪ {{a,d}} 
 ∪ {{f,g}} 

Equivalence Classes: 
 {a}  {b}  {c} {d}  {e}  {f}  {g} 
 {a,b}   {c} {d}  {e}  {f}  {g} 
 {a,b,c}    {d}  {e}  {f}  {g} 
 {a,b,c}    {d,f}  {e}   {g} 
 {a,b,c}    {d,e,f}   {g} 
 {a,b,c,d,e,f}       {g} 
 {a,b,c,d,e,f,g} 



Section 4.2 CS340-Discrete Structures Page 60 

Problem: Given an bunch of explicit equivalences 

  1~8   4~5   9~2   4~10   3~7   6~3   4~9     (the “generators”) 
      
 build up the full equivalence relation, by constructing a partioning. 

Approach: Start with a collection of singleton sets 

 {1}   {2}   {3}   {4}   {5}   {6}   {7}   {8}   {9}   {10} 

Process the generators one at a time. 
Merge the partitions. 

 1~8   merge {1} and {8} to produce {1,8} 

Result: 

 1~8   4~5   9~2   4~10   3~7   6~3   4~9 

 {  {1,8}  ,  {2,4,5,9,10}  ,  {3,6,7}  } 



Section 4.2 CS340-Discrete Structures Page 61 

How to represent sets of nodes? 
 As trees! 

Each node may have a parent. 

 {2,9}    {4,5,10}     We don’t care which node 
           happens to be the root. 

Are two nodes in the same set? 
 Follow the parent links to the roots… 
  Are they the same root? 

How to merge two sets?  Make one root the parent of another. 

Representation: Store “parent pointers” 

9 

2 

5 

4 10 

9 

2 

5 

4 10 9 

2 

5 

4 10 
∪    

   node:  1  2  3  4  5  6  7  8  9  10 
   parent:  8  9  6  5  0  0  6  0  0   5 5 X 


