
10/20/07 14:35

Confinement

James Hook
(some slides adapted from

Bishop)

CS 491/591: Introduction to
Computer Security

10/20/07 14:35

Plan

• Confinement Problem (Lampson)
• Isolation

– Virtual Machines
– Sandboxes

• Covert Channels

10/20/07 14:35

The Confinement Problem

• Lampson, “A Note on the Confinement
Problem”, CACM, 1973.
This note explores the problem of confining a

program during its execution so that it
cannot transmit information to any other
program except its caller. A set of examples
attempts to stake out the boundaries of the
problem. Necessary conditions for a solution
are stated and informally justified.

10/20/07 14:35

Possible Leaks

0. If a service has memory, it can collect data,
wait for its owner to call it, then return the
data

1. The service may write into a permanent file
2. The service may create a temporary file
3. The service may send a message to a

process controlled by its owner [via ipc]
4. More subtly, the information may be

encoded in the bill rendered for the
service…

10/20/07 14:35

Possible Leaks (cont)

5. If the system has interlocks which
prevent files from being open for
writing and reading at the same time,
the service can leak data if it is merely
allowed to read files which can be
written by the owner.

10/20/07 14:35

Leak 5 (cont)
The interlocks allow a file to simulate a shared Boolean

variable which one program can set and the other
can’t

Given a procedure open (file, error) which does
goto error if the file is already open, the following
procedures will perform this simulation:
procedure settrue (file);
 begin loop1: open (file, loop1) end;
procedure setfalse (file);
 begin close (file) end;
Boolean procedure value (file);
 begin value : = true;
 open (file, loop2);
 value := false;
 close (file);

 loop2:
 end;

10/20/07 14:35

Leak 5 (cont)
Using these procedures and three files called data, sendclock, and

receiveclock, a service can send a stream of bits to another
concurrently running program. Referencing the files as though
they were variables of this rather odd kind, then, we can
describe the sequence of events for transmitting a single bit:

sender: data : = bit being sent;
sendclock : = true

receiver: wait for sendclock = true;
received bit : = data;
receive clock : = true;

sender: wait for receive clock = true;
sendclock : = false;

receiver: wait for sendclock = false;
receiveclock : = false;

sender: wait for receiveclock = false;

10/20/07 14:35

Leak 6

6. By varying its ratio of computing to
input/output or its paging rate, the service
can transmit information which a
concurrently running process can receive by
observing the performance of the system.
…

10/20/07 14:35

One solution

• Just say no!
• Total isolation: A confined program shall

make no calls on any other program
• Impractical

10/20/07 14:35

Confinement rule

• Transitivity: If a confined program calls
another program which is not trusted, the
called program must also be confined.

10/20/07 14:35

Classification of Channels:

• Storage
• Legitimate (such as the bill)
• Covert

– I.e. those not intended for information transfer at
all, such as the service program’s effect on the
system load

• In which category does Lampson place 5?

10/20/07 14:35

Mitigation

• Lampson proposes a mitigation strategy
for 5

• Confined read makes a copy (this can
be done lazily on a conflicting write)

10/20/07 14:35

Root Problem:

• Resource sharing enables covert
channels

• The more our operating systems and
hardware enable efficient resource
sharing the greater the risk of covert
channels

10/20/07 14:35

Lipner’s Comments

• 1975 paper discusses how confidentiality
models and access control address storage
and legitimate channels

• Identifies time as “A difficult problem”
– “While the storage and legitimate channels of

Lampson can be closed with a minimal impact on
system efficiency, closing the covert channel
seems to impose a direct and unreasonable
performance penalty.”

10/20/07 14:35

Resources

• Lampson, A note on the Confinement
Problem, CACM Vol 16, no. 10, October 1973.
– http://doi.acm.org/10.1145/362375.362389

• Lipner, A Comment on the Confinement
Problem, Proceedings of the 5th Symposium
on Operating Systems Principles, pp 192 -
196 (Nov. 1975)
– http://doi.acm.org/10.1145/800213.806537

10/20/07 14:35

Timing Channel: Kocher

• CRYPTO ‘96: Timing Attacks on
Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems

10/20/07 14:35

Kocher’s Attack

• This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;
for i := 0 to k–1 do begin

if zi = 1 then
x := (x * atmp) mod n;

atmp := (atmp * atmp) mod n;
end
result := x;

• Length of run time related to number of 1 bits in z

10/20/07 14:35

Isolation

• Virtual machines
– Emulate computer
– Process cannot access underlying computer

system, anything not part of that computer
system

• Sandboxing
– Does not emulate computer
– Alters interface between computer, process

10/20/07 14:35

Virtual Machine (VM)

• A program that simulates hardware of computer
system

• Virtual machine monitor (VMM) provides VM on which
conventional OS can run
– Each VM is one subject; VMM knows nothing about

processes running on each VM
– VMM mediates all interactions of VM with resources, other

VMS
– Satisfies rule of transitive closure

10/20/07 14:35

Example: IBM VM/370

System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

real hardware

virtual
hardware

DOS/VS MVS Virtual CP

Virtual
System/370

MVS

CMS CMS

CP

user processes user processes

user processes

user processes user processes

Adapted from Dietel, pp. 606–607

10/20/07 14:35

Example: KVM/370

• Security-enhanced version of IBM VM/370 VMM
• Goals

– Provide virtual machines for users
– Prevent VMs of different security classes from

communicating

• Provides minidisks; some VMs could share some
areas of disk
– Security policy controlled access to shared areas to limit

communications to those allowed by policy

10/20/07 14:35

DEC VAX VMM

• VMM is security kernel
– Can run Ultrix OS or VMS OS

• Invoked on trap to execute privileged instruction
– Only VMM can access hardware directly
– VM kernel, executive levels both mapped into physical

executive level

• VMM subjects: users, VMs
– Each VM has own disk areas, file systems
– Each subject, object has multilevel security, integrity labels

10/20/07 14:35

Sandbox

• Environment in which actions of process are
restricted according to security policy
– Can add extra security-checking mechanisms to

libraries, kernel
• Program to be executed is not altered

– Can modify program or process to be executed
• Similar to debuggers, profilers that add breakpoints
• Add code to do extra checks (memory access, etc.) as

program runs (software fault isolation)

10/20/07 14:35

Example: Limiting Execution

• Sidewinder
– Uses type enforcement to confine processes
– Sandbox built into kernel; site cannot alter it

• Java VM
– Restricts set of files that applet can access and hosts to

which applet can connect

• DTE, type enforcement mechanism for DTEL
– Kernel modifications enable system administrators to

configure sandboxes

10/20/07 14:35

Example: Trapping System
Calls

• Janus: execution environment
– Users restrict objects, modes of access

• Two components
– Framework does run-time checking
– Modules determine which accesses allowed

• Configuration file controls modules
loaded, constraints to be enforced

10/20/07 14:35

Janus Configuration File
basic module
basic

— Load basic module
define subprocess environment variables
putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

— Define environmental variables for process
deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*

— Deny all file accesses except to those under /usr
allow subprocess to read files in library directories
needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*

— Allow reading of files in these directories (all dynamic load libraries are here)
needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

— Allow reading, execution of subprograms in these directories

10/20/07 14:35

Janus Implementation

• System calls to be monitored defined in modules
• On system call, Janus framework invoked

– Validates system call with those specific parameters are
allowed

– If not, sets process environment to indicate call failed
– If okay, framework gives control back to process; on return,

framework invoked to update state

• Example: reading MIME mail
– Embed “delete file” in Postscript attachment
– Set Janus to disallow Postscript engine access to files

10/20/07 14:35

Additional Resources

• R. Wahbe, S. Lucco, T. Anderson, and S.
Graham, Efficient Software-based Fault
Isolation,
http://www.cs.cornell.edu/home/jgm/cs711sp
02/sfi.ps.gz

• Christopher Small, MiSFIT: A Tool for
Constructing Safe Extensible C++ Systems,
http://www.dogfish.org/chris/papers/misfit/m
isfit-ieee.ps

10/20/07 14:35

Going Deep on Virtualization

• Background (following Bishop Chapter
29)

• Virtualization and Intel architectures

10/20/07 14:35

Overview

• Virtual Machine Structure
• Virtual Machine Monitor

– Privilege
– Physical Resources
– Paging

10/20/07 14:35

What Is It?

• Virtual machine monitor (VMM) virtualizes system
resources
– Runs directly on hardware
– Provides interface to give each program running on it the

illusion that it is the only process on the system and is
running directly on hardware

– Provides illusion of contiguous memory beginning at address
0, a CPU, and secondary storage to each program

10/20/07 14:35

Example: IBM VM/370

System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

real hardware

virtual
hardware

DOS/VS MVS Virtual CP

Virtual
System/370

MVS

CMS CMS

CP

user processes user processes

user processes

user processes user processes

Adapted from Dietel, pp. 606–607

10/20/07 14:35

Privileged Instructions

1. VMM running operating system o, which is running
process p
– p tries to read—privileged operation traps to hardware

2. VMM invoked, determines trap occurred in o
– VMM updates state of o to make it look like hardware

invoked o directly, so o tries to read, causing trap

3. VMM does read
– Updates o to make it seem like o did read
– Transfers control to o

10/20/07 14:35

Privileged Instructions

4. o tries to switch context to p, causing
trap

5. VMM updates virtual machine of o to
make it appear o did context switch
successfully

– Transfers control to o, which (as o
apparently did a context switch to p) has
the effect of returning control to p

10/20/07 14:35

Privileged Instructions

p

o

VMM

hard
ware

issue read system call

read context switch to p

invoked by hardware trap read finished

return from read call

10/20/07 14:35

Privilege and VMs

• Sensitive instruction discloses or alters
state of processor privilege

• Sensitive data structure contains
information about state of processor
privilege

10/20/07 14:35

When Is VM Possible?

• Can virtualize an architecture when:
1. All sensitive instructions cause traps

when executed by processes at lower
levels of privilege

2. All references to sensitive data
structures cause traps when executed
by processes at lower levels of privilege

10/20/07 14:35

Example: VAX System

• 4 levels of privilege (user, supervisor, executive,
kernel)
– CHMK changes privilege to kernel level; sensitive instruction

• Causes trap except when executed in kernel mode; meets rule
1

– Page tables have copy of Processor Status Longword (PSL),
containing privilege level; sensitive data structure

• If user level processes prevented from altering page tables,
trying to do so will cause a trap; this meets rule 2

10/20/07 14:35

Multiple Levels of Privilege

• Hardware supports n levels of privilege
– VM must also support n levels
– VM monitor runs at highest level, so n–1

levels of privilege left!

• Solution: virtualize levels of privilege
– Called ring compression

10/20/07 14:35

Example: VAX VMM System

• VMM at kernel level
• VMM maps virtual kernel and executive level to (real)

executive mode
– Called VM kernel level, VM executive level
– Virtual machine bit added to PSL

• If set, current process running on VM
– Special register, VMPSL, records PSL of currently running VM
– All sensitive instructions that could reveal level of privilege

get this information from VMPSL or trap to the VMM, which
then emulates the instruction

10/20/07 14:35

Alternate Approach

• Divide users into different classes
• Control access to system by limiting

access of each class

10/20/07 14:35

Example: IBM VM/370

• Each control program command
associated with user privilege classes
– “G” (general user) class can start a VM
– “A” (primary system operator) class can

control accounting, VM availability, other
system resources

– “Any” class can gain or surrender access to
VM

10/20/07 14:35

Physical Resources and VMs

• Distributes resources among VMs as
appropriate
– Each VM appears to have reduced amount

of resources from real system
– Example: VMM to create 10 VMs means

real disk split into 10 minidisks
• Minidisks may have different sizes
• VMM does mapping between minidisk

addresses, real disk addresses

10/20/07 14:35

Example: Disk I/O

• VM’s OS tries to write to disk
– I/O instruction privileged, traps to VMM

• VMM checks request, services it
– Translates addresses involved
– Verifies I/O references disk space allocated to that VM
– Services request

• VMM returns control to VM when appropriate
– If I/O synchronous, when service complete
– If I/O asynchronous, when service begun

10/20/07 14:35

Paging and VMs

• Like ordinary disk I/O, but 2 problems
– Some pages may be available only at

highest level of privilege
• VM must remap level of privilege of these pages

– Performance issues
• VMM paging its own pages is transparent to

VMs
• VM paging is handled by VMM; if VM’s OS does

lots of paging, this may introduce significant
delays

10/20/07 14:35

Example: VAX/VMS

• On VAX/VMS, only kernel level processes can
read some pages
– What happens if process at VM kernel level needs

to read such a page?
• Fails, as VM kernel level is at real executive level

– VMM reduces level of page to executive, then it
works

• Note: security risk!
– In practice, OK, as VMS allows executive level processes to

change to kernel level

10/20/07 14:35

Example: IBM VM/370

• Supports several different operating systems
– OS/MFT, OS/MVT designed to access disk storage

• If jobs being run under those systems depend on timings,
delay caused by VM may affect success of job

– If system supports virtual paging (like MVS), either MVS or
VMM may cause paging

• The VMM paging may introduce overhead (delays) that cause
programs to fail that would not were the programs run directly
on the hardware

10/20/07 14:35

Virtualization Returns

• Intel’s Vanderpool architecture brings
Virtual Machines back to the
mainstream

• Intel Virtualization Paper
– ftp://download.intel.com/technology/comp

uting/vptech/vt-ieee-computer-final.pdf

10/20/07 14:35

Applications of Virtualization

• Workload isolation
• Workload consolidation
• Workload migration

10/20/07 14:35

Isolation

10/20/07 14:35

Consolidation

10/20/07 14:35

Migration

10/20/07 14:35

Virtualizing Intel architectures
• As is, Intel architectures do not meet the two

requirements:
– Nonfaulting access to privileged state

• IA-32 has registers that describe and manipulate the “global
descriptor table”

• These registers can only be set in ring 0
• They can be queried in any ring without generating a fault

– This violates rule 2 (all references to sensitive data traps)
• Software products to virtualize Intel hardware had to

get around this.
– Vmware and Virtual PC dynamically rewrite binary code!
– Xen requires source changes (paravirtualization)

10/20/07 14:35

Intel solutions

• VT-x, virtualization for IA-32
• VT-i, virtualization for Itanium

• Changed architecture to meet the
criteria

10/20/07 14:35

Ring aliasing and ring
compression

• Solution is to allow guest to run at
intended privilege level by augmenting
privilege levels.

• See Figure 2(d).

10/20/07 14:35

Nonvirtuallized and 0/1/3

• (a) is typical of x86 operating systems
• (b) and (c) give two strategies for virtualization in software

10/20/07 14:35

0/3/3 and VT-x

10/20/07 14:35

Nonfaulting access to
privileged state

• Two kinds of changes
– Make access fault to the VM
– Allow nonfaulting access, but to state

under the control of the VMM

10/20/07 14:35

• Intel Virtualization Paper
– ftp://download.intel.com/technology/comp

uting/vptech/vt-ieee-computer-final.pdf

10/20/07 14:35

Dark Side

• Malware and Virtual Machines
– SubVirt: Implementing malware with

virtual machines,
– King, Chen, Wang, Verbowski, Wang,

Lorch

– Describes the construction of a “virtual-
machine based rootkit” and potential
defenses.

