
1

10/20/07 14:38

Information Flow

James Hook

CS 591: Introduction to
Computer Security

10/20/07 14:38

Background

• Denning and Denning, Certification of
Programs for Secure Information Flow,
CACM 20(7), July 1977

• Presentation summarized in Bishop
Chapter 15

2

10/20/07 14:38

Program analysis

• What if we try to track information flow
within a program?

• We have access control for files,
processes and users
– what about variables?

10/20/07 14:38

Explicit flows

• x := 17
• l := h
• h := l

3

10/20/07 14:38

Implicit flows

• How can we write l:=h?
• Assume l and h are Booleans

– if h then l:= true else l:= false
– l := true; if not h then l:= false else skip
– l := false; while h do l:= true

10/20/07 14:38

Simple “while” language

– Sabelfeld and Myers Figures 2 and 3
• C ::= skip

| var := exp
| C1; C2
| if exp then C1 else C2
| while exp do C

4

10/20/07 14:38

Type system

• Judgment forms:
• Every variable in exp is at or below level

 |- exp: level

• Every assignment in C is at or above pc
 [pc] |- C

10/20/07 14:38

Inference Rules

5

10/20/07 14:38

What is a flow?

• A variable of confidential input does not
cause a variation of public output

10/20/07 14:38

Simple Program

• Multiplication by repeated addition

{a,b >= 0}
x := a;
r := 0;
while (x>0) do

x := x -1;
r := r + b

{r = a*b}

Direct Flows:

a -> x
b -> r

Indirect Flow:

x -> r

6

10/20/07 14:38

Exercise

1. h := not l
2. h := if l then false

else true
3. if l then h := false

 else h := true
4. h := true;

if l then h := false
 else skip

5. l := not h
6. l := if h then false

else true
7. if h then l := false

 else l := true
8. l := true;

if h then l := false
 else skip

10/20/07 14:38

Theoretical results

• Volpano, Irvine and Smith (JCS ‘96) showed
Soundness
– “If an expression e can be given a type τ in our

system, then Simple Security says … that only
variables at level τ or lower in e will have their
contents read when e is evaluated (no read up)….

– On the other hand, if a command c can be given a
type [τ] |- c then Confinement says … that no
variable below level τ is updated in c (no write
down).”

7

10/20/07 14:38

Information Flow Languages

• Two serious implementations of
information-flow languages
– Jif = Java + Information Flow

• Andrew Myers and others, Cornell
• http://www.cs.cornell.edu/jif/

– FlowCaml
• Vincent Simonet
• http://cristal.inria.fr/~simonet/soft/flowcaml/

10/20/07 14:38

FlowCaml

• An ML-style language with type
inference

• Windows executable flowcaml gives an
interactive type checker
– Note: It does not execute the programs,

batch compiler flowcamlc compiles them

8

10/20/07 14:38

Declaring values
let x = 1;;

let x1 : !alice int = 42;;

let x2 : !bob int = 53;;

10/20/07 14:38

Anonymous functions and lists
let succ = function x -> x + 1;;

let half = function x -> x lsr 1;;

let l1 = [1; 2; 3; 4];;

let l2 = [x1; x2];;

9

10/20/07 14:38

Defining functions
let rec length = function

 [] -> 0

 | _ :: tl -> 1 + length tl;;

let rec mem0 = function

 [] -> false

 | hd :: tl -> hd = 0 || mem0 tl

;;

10/20/07 14:38

Demo

10

10/20/07 14:38

Does it work?

• In practice it is not broadly adopted
– Technical issue is the complexity of

managing policy
– I suspect there are social issues as well …

the technical issues are not show stoppers

10/20/07 14:38

Recall

• Consider an example (in no particular
language)

• Assume H is high and L is Low

H = readHighDatabase()

L = readLowUserInput()

If f(H,L)
then printLow “Success”
else printLow “Fail”

11

10/20/07 14:38

But!!!

• Consider an example (in no particular language)

• We do this every day!

H = readHighDatabase(“passwd”)

L = readLowUserInput()

If checkPassword(H,L)
then printLow “Success”
else printLow “Fail”

10/20/07 14:38

Password checking paradox

• Why shouldn’t we allow someone to
write the password program?

• Why should we?

12

10/20/07 14:38

Policy

• The password paradox is solved by
explicit policy

• Similar issues arise with crypto
algorithms
– LoCypher = encrypt (HighClear, goodKey)

• Cf.
– LoCypher = encrypt (HighClear, badKey)

10/20/07 14:38

FlowCaml and Policy

• FlowCaml solves the policy problem by
dividing the program into two parts:
– Flow caml portion (.fml), with all flows

checked
– Regular caml portion with an annotated

interface
• The downgrading of encryption or

password validation queries is not done
within the flow-checked portion

13

10/20/07 14:38

Policy

• Zdancewic uses other techniques,
including explicit downgrade assertions
for confidentiality

• Basic philosophy: uniform enforcement
with explicit escape mechanism
– Focus analysis on the exceptions

10/20/07 14:38

Further reading
• Dorothy E. Denning and Peter J. Denning, Certification of Programs for

Secure Information Flow,
http://www.seas.upenn.edu/~cis670/Spring2003/p504-denning.pdf

• Dennis Volpano, Geoffrey Smith, and Cynthia Irvine, A Sound Type
System for Secure Flow Analysis,
http://www.cs.fiu.edu/~smithg/papers/jcs96.pdf

• Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers, Secure Program Partitioning,
http://www.cis.upenn.edu/~stevez/papers/ZZNM02.pdf

• Andrei Sabelfeld and Andrew C. Myers, Language-based Information-
Flow Security, http://www.cs.cornell.edu/andru/papers/jsac/sm-
jsac03.pdf

• Peng Li and Steve Zdancewic, Downgrading Policies and Relaxed
Noninterference, http://www.cis.upenn.edu/~stevez/papers/LZ05a.pdf

