IP Security

Network Mgmt/Sec.

1

Outline

intro

- bulk encryption
- sessions and dynamic key mgmt.
- config examples

but first: L3 threat brainstorm

- firewalls/routers great MITM attack
- lack of knowledge about how/what firewall actually does
- DOS attacks known against Cisco boxes
 worries about buffer overflow/rootkits
- VPN may mean poisoned box outside can attack inside
- IP src address spoofing
- tunnels imply proposed/known plaintext attacks

traditional worry about "src routing" is a MITM
 Jim Bigkleyy
 3

IP level security/bibliography

- Stallings Cryptography and Network Security, Prentice Hall
- RFC 2401, "Security Architecture for the Internet Protocol", Kent/Atkinson, 1998
- RFC 2402, "IP Authentication Header", Kent/Atkinson, 1998
- RFC 2406, "IP Encapsulating Security Payload (ESP)", Kent/Atkinson, 1998
- RFC 2407, "The Internet IP Security Domain of Interpretation for ISAKMP", Piper, 1998.

we are not done yet ...

- RFC 2408, "Internet Security Association and Key Management Protocol" (ISAKMP), Maughan and others, 1998
- RFC 2409, "The Internet Key Exchange(IKE)", Harkins, Carrel, 1998
- RFC 2412, "The OAKLEY Key Determination Protocol", Orman, 1998
- RFC 2411, "IP Security Document Roadmap", Thayer, others, 1998
- per crypto "transform" documents for AH/ESP, e.g., md5/sha/des, etc.

network layer

 various research attempts to bind security in ABOVE IP header

IP <security header> <TCP>

- e.g., swipe, U.S. govt. ISO work, Sun SKIP, etc.

- might apply to routes or to end to end transport
- current IETF work called IPSEC IP security
- must apply to IPv6, and can apply to IPv4
 NOT IPV6 SPECIFIC !!!!

network layer pros/cons

pros:

- can be end to end or at least multi-link unlike link layer
- could be hw/sw supported (hw support for encryption)
- can shield unmodified host apps giving them crypto (nets/hosts/and possibly users)
- can extend secure enclave across insecure areas
- cons:
 - harder to do as may be INSIDE O.S.
 - if not end to end, subject to certain kinds of attacks'

» proposed plaintext attack Jim Binkley

one big pro

- ◆ IETF ... and open, NOT enterprise-oriented
- Many national and international security experts and well-known IETF engineers have had their noses in it
- and argued about it for a long time

– a looong time ... :->

ipsec big picture

- ♦ AH/ESP new IP layer protocols (50/51) with either
 - 1. an IP datagram encapsulated in them (tunnel mode)
 - -2. TCP/UDP and the rest above them (transport mode)
- every packet may have AH/ESP applied to them
- AH for authentication; ESP for encryption (although ESP can have a combined authentication in it now)

 this is bulk/per-packet encryption/authentication Jim Binkley

big picture

- key management may be manual (look up keys at boot say and load in kernel, ip must somehow bind keys to AH/ESP actions as packets go through it)
 - e.g., access-list as in current Cisco IOS/OpenBSD
 - or different mechanism/routes in PSU/FreeBSD
- or dynamic, sessions and session-keys negotiated using ISAKMP/OAKLEY protocols
 - session-keys and attributes dynamically bound to AH/ESP packets

big picture, cont.

- exact crypto algorithms can change over time
- new ones introduced / old ones retired
- e.g., AH may use hmac-md5/sha
- esp may use DES/3-DES, etc.
- OAKLEY can be DH authenticated by some public key protocol (e.g., RSA)

11

- but a new session-key protocol might be Jim Binklinytroduced too

exactly how keys are stored ...

- is not part of the picture
- ISAKMP/OAKLEY could tie to DH public keys and RSA/DSS keys
 - which might be stored in nvram/local files/CA system/kerberos-like KDC, DNS, whatever
 - it's an implementation "detail"
 - true for manual keys used with just AH/ESP for that matter (how loaded is TBD ...)

IPSEC players

- tunnel-mode means one outgoing IP packet is encapsulated in another IP packet with typically (but not necessarily) a different IP dst (a router)
 - can be router to router
 - router to host or host to router (dialup ...)

host to host

end to end may be tunnel or transport
 Jim Binkley

AH

ip hdr	AH header	TCP or UDP or IP datagram
-----------	-----------	------------------------------

ESP

ip hdr	ESP header		TCP/UDP or IP datagram	esp next proto
	esp		tcp/data	trailer
encrypted parts				

AH header breakdown (v2)

next hdr lengt	th reserved			
Security Parameters Index (SPI)				
Sequence Number				
hash from one-way function (variable)				

ESP header breakdown

SPI (SPY vs. SPY?)

Sequence Number

payload data (variable)

padding 0.255 bytes + pad len + next hdr

optional authentication bits (variable)

Jim Binkley note: IV may appear at front of payload

note two versions of IPSEC

- old (or v1) and new (v2)
- old associated with original RFCS, 1825 and up which have been replaced
- v1 AH and ESP lack replay fields
- ESP did not have authentication built-in
- transforms permitted non hmac-md5

anti-replay

- initial sequence # is 0.
- dest tries to make sure packets are within replay window
- if overflow, SA should be reestablished (problematic for static SA ...)
- essentially window is large as IP pkts may be out of order (default size == 64 pkts)

if pkt is outside window, discard and log
 Jim Binkley

IPSEC router/router architecture

Virtual Private Network

all pkts from net 1 to net 2 subject to authentication/confidentiality (and vice versa)

tunnel-mode process

- router A takes packet from IP node ip src =
 1.1.1.1 to ip dst 2.2.2.2
- ◆ A is 1.1.1.2 and B is 2.2.2.1
- A adds new IP header and required AH and/or ESP headers encapsulating entire datagram
- new outer IP hdr, ip src = 1.1.1.2, dst = 2.2.2.1
- A sends packet across IP <IPSEC> IP tunnel to B as destination

note outer IP and IPSEC bound together, inner
 Jim Bidktagram including its ip hdr encrypted 22

B gets packets

- B verifies contents acc to AH/ESP, decrypts in latter case
- strips outer IP and associated IPSEC headers
- routes packet (remaining datagram) which may or may not have interior IPSEC/application security to final local net destination

major note:

- routing is 2 one-way streams
- therefore we have have setup in reverse for packets from B to A
 - and their interior networks/hosts

end to end IPSEC

SA and SPI

- SA security association: classically one way (as is routing):
 - (ip dst, AH or ESP, SPI) is recv. side index
- SPI is opaque number that is mapped to a particular algorithm and keys (DES or IDEA say)
- SPI security parameter index
- AH/ESP by themselves assume keys are placed in kernel manually or via ISAKMP/OAKLEY

• when packet arrives, IP must use SA as key to Jim Bifindyappropriate crypto algorithms and keys 2

SAD - security ass. database

- logical database in o.s. that SA is mapped to called SAD
- includes following parameters:
 - sequence # counter:
 - sequence counter overflow: should sequence overflow cause log entry and prevent retransmission
 - anti-replay window info

SAD., cont.

- SAD db. cont:
 - AH keys/lifetimes/related parameters
 - ESP keys/lifetimes/related parameters
 - lifetime of SA, time or byte count after which
 SA should be renegotiated or terminated
 - IPSEC protocol mode: tunnel/transport or mumble
 - PATH MTU: what can we send sans fragmentation

SA selector

- can logically state that at higher level we can have policy attribute database
- contains possible selectors used to determine characteristics of IPSEC traffic
- SA selectors (or Security Policy Database) thus map to SAs which shape IPSEC traffic

SPD entries might be:

- destination IP address: could be host/net/range/list/wildcard (when in doubt do this ...)
- source ip address
- userid: some token to id user
- data sensitivity level: (DOD ...)
- transport layer protocol: TCP, UDP, etc.
- IPSEC protocol, AH/ESP or both

source/dst ports, tcp/udp
 Jim Binkley

SPD entries cont.

IPv6 class:

- IPv6 flow label:
- IPv4 Type of Service:
 - all real time traffic is to be authenticated ...
- all systems may not support this much flexibility
 - e.g., routers probably will not have end/end, user attributes, hosts might eventually

- ◆ HMAC-MD5-96/AH (and ESP too ...)
 - meaning hash is chopped off at 96 bits, not key is 96 bits
- HMAC-SHA-1-96/AH
- IPSEC IP DOI document includes:
- DES-CBC
- ♦ 3DES
- RC5
- IDEA, and triple IDEA Jim Binkley

more crypto

CAST Blowfish (which can have big keys ...)

key mgmt. and outbound keys

IKE = ISAKMP + OAKLEY

- ISAKMP is general and wishes to enable
 - an *unspecified* key exchange protocol (e.g., OAKLEY)
 - very general format parameters for cookies, nonces, key material (certificates), etc.
 - and above all, the SA itself

» here's the SPI, ESP/AH algorithms desired, etc.

- therefore also enables dynamic SA generation

- DOI document exists in part to specify known Jim Binklevalues to be used with ISAKMP/AH/ESP, etcs.

RFC document roadmap picture

36

DOI includes

- one specific DOI to start with == "IP"
- "instantiates ISAKMP for use with IP when IP uses ISAKMP to negotiate S.A.s"...
- must define naming scheme for protocol identifiers
- define SA attributes, key exchange types, etc.

IPSEC AH transform values

- md5(2), sha(3)

IPSEC ESP transform values

- descbc(1)/3des(3)/rc5/idea/cast/rc4/null, etc.
- SA attributes including auth/encryption algorithms, groups, key length, compression
- identification payload id initiator of SA
 - recv must use to somehow determine policy

naming types thus include:

- IPv4 addr
- FQDN
- USER_FQDN (joe@blackhat.com)
- IPv4 subnet
- IPv6 addr/subnet
- IPv4 range/IPv6 range
- ASN1/Distinguished name (X.501)
- ASN1/General name (X.509)
- KEY_ID opaque string

technical terms:

- perfect forward secrecy regarding session keys, if K(N) is cracked, it should not be possible to use that to crack previous or subsequent session keys
- group set of mathematical attributes used as basis for session-key algorithm; e.g., Diffie-Hellman exponential + specific algorithm
- identity secrecy optional encryption of the identity DOI values in the ISAKMP exchange

IKE = ISAKMP + OAKLEY

- two modes for establishment of authenticated keys
 - main mode (6 messages)
 - aggressive mode (less messages)
- main mode is not optional, aggressive mode is optional
 - difference is in identity protection (not in aggressive mode)
- additional modes include Quick mode and New Group mode
 Jim Binkley.
 – quick is for rekeying

overview

- we do policy 1st (SA) which includes:
 - encryption/hash algorithms
 - authentication method
 - information about DH/groups
 - cookies in ISAKMP header
 - this is done first in either mode
- we also have to do session key negotiation
- we may optionally do identity protection (encrypt a "name") if desired

cookies

 from Photuris KE protocol (Karn/Simpson) comes notion of anti-clogging defense

not pesky Dutch dance troupe

- each side in initial exchange sends and receives 64 bit random number before DH computation
 - prevents one possible D.O.S. attack using IP spoofing

Jim Binkley - attacker will not be able to ACK your cookie 43

decode:

- HDR ISAKMP header
- SA security association material
- HDR* encrypted payload in header
- KE Key Exchange material (for DH)
- Nx a nonce
- CERT certificate
- IDx identification payload
- [] it's optional

main mode with certificates

- 1st two messages are "policy" (SAs) ISAKMP HDR, SA ----> <--- HDR, SA
- 2nd two messages do DH data and nonces HDR, KE, Ni -->

<-- HDR, KE, Nr

 3rd send authenticated bits HDR*, IDii, [CERT], SIG_I -->
 Jim Binkley <--- HDR*, Idir, [CERT], SIG_R 45

aggressive mode with signatures

HDR, SA, KE, Ni, IDii -->
<--- HDR, SA, KE, Nr, Idir, [CERT], SIG_R
HDR, [CERT,] SIG_I -->

other modes in IKE include

- main/aggressive mode with public key encryption
 - plus a cheaper form with less public key operations
 - cannot prove as with digital signature that conversation occurred
- authentication done with pre-shared keys
 - basically manual key based, id is IP address

details: Oakley groups

1. DH prime, generator, 768 bits
2. DH prime, generator, 1024 bits
3/4 based on elliptical curves (see OAKLEY RFC)

ISAKMP format

- variable-length, generic header + various possible payload headers appended on
- header has (initiator cookie, responder cookie, next payload, Major/Minor, exchange type, flags, message id, length)
- payload (next payload, reserved, length)
 - 0 in next payload means last
 - followed by payload specific data
- multiple payloads in a message

payload types include:

- SA == DOI and other bits
- proposal == some SA specifics, e.g., SPI
- transform == crypto algorithm info
- Key Exchange (data)
- Identification
- Certificate
- Certificate Request
- Hash
- Signature
- Nonce

Jim Binkle Meation (errors) and Delete (burn that one)

50

sample implementations

FreeBSD/PSU manual IPSEC keys
FreeBSD - Kame IPv6/IPSEC

included/free as is next

Linux Redhat S/WAN (handout) config

Linux 2.6 seems to have KAME?!

Cisco IOS 12.0 sample configuration

commercial, of course

FreeBSD/NRL/PSU route-based

- 1st specify manual keys in /etc/keys two lines for two-way exchange ah 1234 ip-src ip-dst md5 128-bit-key ah 1235 ip-dst ip-src md5 128-bit-key esp (similar)
- 2nd load above at boot from /etc/rc.local # keyadmin load /etc/keys
- now SAs are in kernel

FreeBSD/NRL/PSU cont.

- statically (or dynamically) add routes which invoke existing SPIs versus SAs
- route add type -spi SPI -itsrc SA -itdst SA destination
- e.g., type might be -ah, -esp, -ahtunnel esptunnel
- routing daemon may dynamically use route socket to make IPSEC binding to route

IPSEC/Mobile-IP basis

Cisco simple config example

- from www.cisco.com (search on ipsec configuration)
- supported on Cisco
 1600/2500/2600/3600/4000/7200/7500/AS5300
- IKE, ah old and new, esp old and new forms supported
- key material still needs to be supplied in next slide
- anti-replay supported only with IKE, not manual setup (makes sense as it can't rollover ...)

simple ipsec config on cisco

- 1. access-list 101 permit ip 10.0.0 0.0.0.255 10.2.2.0
 0.0.0.255
- ◆ 2. crypto ipsec transform-set *myset* esp-des esp-sha
- ◆ 3. crypto map *toRemotesite* 10 ipsec-isakmp
- match address 101
- set transform-set *myset*
- set peer 10.2.2.5
- 4. interface Serial0
 - ip address 10.0.0.2
 - crypto map *toRemoteSite*

summary

- IPSEC does not rule out firewalls
 - but may be viewed as a way to talk to a new secure class of bastion hosts or "security gateways"
 - certainly can be firewall feature, talk IPSEC to X
- tunnel-mode with "non-null" ESP should be most common
- IPSEC seems less popular than ssh/ssl in terms of use. why so?
 - lost in the key mgmt bits?

TBD and bottom line

still only way to make UDP secure
or make local link TCP RST attacks hard ...