
Jim Binkley 1

TCP/IP - Socket Programming

jrb@socket.to.me

Jim Binkley 2

sockets - overview
◆ sockets
◆ simple client - server model

– look at tcpclient/tcpserver.c
– look at udpclient/udpserver.c
– tcp/udp contrasts

◆ “normal” master/slave setup for TCP
◆ inetd on UNIX - mother server
◆ some details - there are more...

Jim Binkley 3

sockets
◆ in BSD world since early 80’s, 4.2 BSD
◆ client/server model
◆ “like” unix file i/o up to a point, can be

redirected to stdin/stdout/stderr (on unix)
◆ sockets are dominant tcp/ip application API

– other API is System V TLI (OSI-based)
– winsock - windows variations on sockets

» sockets in windows event-driven framework

Jim Binkley 4

sockets

◆ basic definition - “endpoint of
communication”

◆ allows connected streams (TCP) or discrete
messages (UDP) between processes on
same machine, cross network

◆ in o.s., really read/write data queues + TCP
has connection Queue (server side)

◆ talk to “socket” with handle/sock descriptor

Jim Binkley 5

kinds of sockets
◆ acc. to address family; i.e. how does

addressing work
◆ IP address family -> IP addr, tcp/udp port
◆ traditional BSD families

– TCP/IP (AF_INET; i.e., Internet)
» TCP/UDP/”raw” (talk to IP)

– UNIX (intra-machine, pipes)
– XNS, and even
– APPLETALK, DECNET, IPX ...

Jim Binkley 6

sockets

read write read write

client server

socket layer

handle

r/w queues

tcp stack

Jim Binkley 7

syscalls - TCP client/simple test server

int s = socket(2)

gethostbyname(3)

connect(2)

read/write(2)

close(2)

int s = socket(2)
bind(2)

accept(2)

read/write(2)

close(2)

listen(2)
init

i/o

client server

Jim Binkley 8

socket(2) syscall
◆ int s = socket(family, socktype, protocol);

– family = AF_INET, AF_APPLETALK, etc.
– socktype = SOCK_STREAM,

SOCK_DGRAM, SOCK_RAW
– protocol = 0, TCP_PROTO, IP_PROTO

◆ example - TCP socket:
s = socket(AF_INET, SOCK_STREAM, 0);

◆ used by both client/server

Jim Binkley 9

gethostbyname(3) - client
◆ struct hostent h* =

gethostbyname(“sirius.cs.pdx.edu”);
◆ kernel(2) calls take ip addresses via struct

sockaddr_in pointers, not DNS names
◆ maps DNS name to ip address SOMEHOW

– /etc/hosts
– DNS servers
– yellow pages (NIS)
– SOMEHOW - OS specific

Jim Binkley 10

connect(2) - client
◆ rc = connect(sd, struct sockaddr *sa, len);
◆ client connects to server that can accept
◆ normally TCP, but UDP rarely might use
◆ client must fill in server port, ip address
◆ TCP will attempt to connect to remote

machine
◆ client side TCP has client TCP port -

implicit bind

Jim Binkley 11

TCP/UDP ports
◆ distinct 64k port spaces
◆ client has port, server has port
◆ o.s. may typically allocate client port

dynamically
◆ server SETS port, as “well-known” number;

i.e., client sends packets to that port
◆ server port == which service

(telnet/ftp/web)

Jim Binkley 12

bind(2) - set tcp/udp port (server)
◆ int rc = bind(sock, struct sockaddr *sa, len);

– sock - valid sd
– sa - struct sockaddr_in (next slide)

port value goes in here
– len - sizeof struct sockaddr_in data storage

◆ server sets well-known TCP/UDP port
◆ client rarely sets client port with bind
◆ if port == 0, kernel chooses for you

Jim Binkley 13

sockaddr structure
◆ sockaddr is generic structure,

– struct sockaddr_in is instance of it for INET
– struct sockaddr_un for UNIX sockets

◆ used in bind, connect, accept, sendto,
recvfrom calls when ip/port # needs to be
passed to/from kernel

◆ ip addr/port # are in NETWORK byte order

Jim Binkley 14

sockaddr_in - address structure
◆ struct sockaddr_in {

short sin_family; /* AF_INET *;
u_short sin_port;
struct in_addr sin_addr; /* ip addr */
char sin_zero[8]; /* pad */

}
◆ struct in_addr {

u_long s_addr;
}

Jim Binkley 15

listen(2) - server
◆ int rc = listen(sd, 5);
◆ TCP server only, NOT UDP
◆ has two functions:

– 1. enables TCP state machine, can now get
connection

– 2. sets TCP socket connection queue to 5 at a
time - enables concurrent connections

◆ accept(2) takes connection from conn. Q

Jim Binkley 16

accept(2)
◆ int csd = accept(lsd, struct sockaddr *sa, *len);
◆ accepts connection - paired with connect(2)
◆ blocks without select(2) call until connection

arrives, returns connected sd
◆ now in connected state, can make read/write calls,

use connected sd (not listen sd)
◆ returns client ip/port in sockaddr_in
◆ NOTE: len is call by value-result

Jim Binkley 17

accept(2) no substitute
◆ what is the problem here?

int sock;
struct sockaddr_in recvSock;
int len = sizeof(struct sockaddr_in);
int rc = accept(sock, &recvSock, len);

Can you say BOOM!!!!!!!...

Jim Binkley 18

computer gets programmer’s attention

Jim Binkley 19

read(2) / write(2)
◆ with normal TCP, read may return less data than

you expect. Call it in a loop.
◆ example: you ask for 1024, you get two 512 byte

packets.
◆ write will block until your data is written - don’t

need loop (unless you use non-blocking i/o)
◆ note: read(fd, char *buf, int cc)

– TCP addresses setup at connect time!

Jim Binkley 20

syscalls - UDP client/simple test server

int s = socket(2)

gethostbyname(3)

for(;;)
 sendto(2)
 recvfrom(2)

close(2)

int s = socket(2)

bind(2)

for(;;)
 recvfrom(2)
 do something...
 sendto(2)

close(2)

init

i/o

client server

Jim Binkley 21

udp - send/recv packets
◆ int sd = socket(AF_INET, SOCK_DGRAM, 0);
◆ bind used to set server port
◆ sendto/recvfrom have sockaddr_in parameters that

must specify “peer” ip address/port #.
◆ recvfrom will tell you from whom you got the

packet (ip/port), you use sendto to send it back
◆ one server may get packets from N clients
◆ no idea of connection

Jim Binkley 22

UDP server
◆ socket/bind call
◆ loop

recvfrom(sd, ...&fromaddr ...);
 sendto(sd, ...&fromaddr ...);

◆ one server can serve packets from many
clients

◆ TCP needs to have one server per client and
must use threads/fork a process/task per
connection

Jim Binkley 23

tcp/udp contrasts
◆ tcp is stream
◆ tcp is reliable
◆ tcp is point to point

and “connected”
◆ connect/accept specify

addresses at setup
time, read/write don’t
need addresses

◆ data is checksummed

◆ udp discrete packets
◆ udp is unreliable
◆ udp can broadcast, 1

to N or
◆ server can receive

from many clients
◆ each read/write

specifies address
◆ data MAY be csum’ed

Jim Binkley 24

master/slave tcp server
socket/bind/listen
signal(SIGCHLD, reapem);
for (;;)

init

nsd = accept(lsd, ...)
if (fork() == 0) {
 read/write(nsd, ...);
 close(nsd);
}
close(nsd);

fork slave
on accept

slave does
i/o

reapem() - signal handlercleanup
Zombies

Jim Binkley 25

master/slave - master signal handler
init: int reapem();

signal(SIGCHLD, reapem)

signal handler:
reapem() {

for(;;) {
rc = waitpid(,WNOHANG,);
if (rc <= 0)

return;
}

}

Jim Binkley 26

inetd - unix mother daemon
◆ per well-known port protocol servers ate up

too many o.s. resources
◆ combined into one TITANIC mother

daemon - only one thread at rest
◆ “listens” at tcp/udp ports - spawns stub

server to do work
◆ see /etc/inetd.conf for setup
◆ uses select(2) mechanism

Jim Binkley 27

BSD/UNIX select(2) call
◆ nohits = select(nofds, readmask, writemask,

exceptionmask, timeout);
◆ select functions:

– allows callers to detect i/o to be read on > 1
socket or char device descriptor at a time

– allows callers to detect TCP connection (so you
can call accept) - inetd does this

– handles TCP “out of band data”
– can do timed poll or block if time == 0

Jim Binkley 28

some socket details:
◆ inet_addr(3) routines - manipulate ip addrs

example: convert string to ip addr
struct in_addr * = inet_addr(“1.2.3.4”);
char *inet_ntoa(struct in_addr inaddr);

◆ BSD “database” routines:
– /etc/hosts - gethostbyname(3), gethostbyaddr(3)

– /etc/services - getservbyname(3)
– /etc/protocols - getprotobyname(3)

Jim Binkley 29

BSD oft-used TCP/IP files
◆ /etc/hosts - host/ip pairs, they don’t all fit
◆ /etc/services - TCP/UDP well known ports

– 9 - discard port
◆ /etc/resolv.conf - DNS servers
◆ /etc/protocols - proto name to number

mapping (protocols above IP)
◆ /etc/inetd.conf - servers inetd can run

Jim Binkley 30

details, the end:
◆ byte-order routines: BIG-ENDIAN rules

– sparc/68k not Intel Architecture
– long word: htonl(3), ntohl(3)
– short: htons(3), ntohs(3)
– bytes - no problem

◆ misc. socket ops
– setsockopt(2), getsockopt(2)

» turn on UDP broadcast, multicast
» see Stevens for details

	TCP/IP - Socket Programming
	sockets - overview
	sockets
	sockets
	kinds of sockets
	sockets
	syscalls - TCP client/simple test server
	socket(2) syscall
	gethostbyname(3) - client
	connect(2) - client
	TCP/UDP ports
	bind(2) - set tcp/udp port (server)
	sockaddr structure
	sockaddr_in - address structure
	listen(2) - server
	accept(2)
	accept(2) no substitute
	computer gets programmer’s attention
	read(2) / write(2)
	syscalls - UDP client/simple test server
	udp - send/recv packets
	UDP server
	tcp/udp contrasts
	master/slave tcp server
	master/slave - master signal handler
	inetd - unix mother daemon
	BSD/UNIX select(2) call
	some socket details:
	BSD oft-used TCP/IP files
	details, the end:

