
CS532:		Operating	Systems	Foundations

Winter	2020
Prof.	Karen	L.		Karavanic

Operating	Systems:		Major	Trends

PSU	CS	533
Prof.	Karen	L.	Karavanic

Outline
• The	Single	Core	Era	(->	2006)

– 0.	The	Operating	System	is	Human
– 1.	Batch	Processing
– 2.	MultiProgramming and	Timesharing
– 3.	Personal	Computing	&	Connectivity

• The	Multicore	Era	(2006	->)
– 5.	Why	Multicore?
– 6.	Manycore

CS	532	Winter	2020 3

CS 532 Winter 20204

The Single Core Era: Early Days
■ The First Computer!
■ Charles Babbage (1792-1871) and Ada Lovelace: “Analytical

Engine”

■ 1821: Difference Engine No. 1: add,
subtract, solve polynomial equations

✦ Required 25,000 precision-crafted
parts

◆ Difference Engine No. 2: Simpler
version

◆ Analytical Engine: multiplication,
division, algebra

CS 532 Winter 20205

The Single Core Era: Early Days

◆ 1990: Science Museum in London builds Difference Engine No. 2
in one year

✦ Cost: $500,000
✦ Weight: three tons
✦ Size: 11 feet long, 7 feet tall
✦ Calculated successive values of seventh-order polynomial

equations containing up to 31 digits
✦ Proves Babbage’s design

CS 532 Winter 20206

The Single Core Era: Early Days
■ “First Generation” Computing (1940-

50)
◆ Goal: compute trajectories for warfare
◆ Relays/vacuum tubes (about 20,000)

CS 532 Winter 20207

The Single Core Era: Early Days
◆ Programming: plugboards
◆ Operating System: none
◆ Innovation: punch cards

CS 532 Winter 20208

The Eniac (1946)

CS 532 Winter 20209

The Single Core Era: Early Days

■ “Second Generation” Computing (1950-64)
■ Innovation: transistors, mainframes
■ Innovation: first compiler (fortran)
■ Batch systems
■ Programming: Fortran, assembly language
■ Innovation: Operating Systems: FMS, IBSYS

CS 532 Winter 202010

The Single Core Era #1: Batch Systems

Early “OS” was human:

◆ Operator carries punch cards to an I/O device
◆ Input device reads cards to tape
◆ Operator carries tape over to computer
◆ Single job runs by reading instructions from tape

and writing output to tape
◆ Operator carries tape back to I/O machine which

prints output

■ Cards include instruction to stop to load tape or
compiler

■ Switching from one activity to another, loading and
saving data were manual, unlike today

CS 532 Winter 202011

The Monitor
■ Monitor reads jobs one at a time

from the input device
■ Monitor places a job in the user

program area
■ A monitor instruction branches to

the start of the user program
■ Execution of user program continues

until:
◆ end-of-pgm occurs
◆ error occurs

■ Causes the CPU to fetch its next
instruction from Monitor

CS 532 Winter 202012

Batch OS: Hardware Requirements

■ Memory protection
◆ Need to protect the monitor code from the user programs

■ Timer
◆ prevents a job from monopolizing the system
◆ an interrupt occurs when time expires

■ Privileged instructions
◆ can be executed only by the monitor
◆ an interrupt occurs if a program tries these instructions

■ Interrupts
◆ provides flexibility for relinquishing control to and regaining

control from user programs

CS 532 Winter 202013

The Single Core Era #2: Multiprogramming
■ Major Innovation: Multiprogramming

◆ three jobs in memory at once

CS 532 Winter 202014

Multiprogrammed Batch Systems: The Insight

■ I/O operations are exceedingly slow (compared to
instruction execution)

■ A program containing even a very small number of
I/O ops, will spend most of its time waiting for
them

■ Hence: poor CPU usage when only one program is
present in memory

CS 532 Winter 202015

Multiprogrammed Batch Systems: The Insight

■ If memory can hold several programs, then CPU
can switch to another one whenever a program is
awaiting for an I/O to complete

■ This is multitasking (multiprogramming)

CS 532 Winter 202016

Multiprogramming (cont’d)

■ Multiprogramming is a virtualization of the single
CPU

■ Hardware support:
◆ I/O interrupts and (possibly) DMA

✦ in order to execute instructions while I/O device is busy
◆ Memory management

✦ several ready-to-run jobs must be kept in memory
◆ Memory protection (data and programs)

■ Software support from the OS:
◆ Scheduling (which program should run next ?)
◆ Resource Management (contention, request ordering)

CS 532 Winter 2020 17

The	Single	Core	Era	#3:	Time Sharing Systems (TSS)

• Batch multiprogramming does not support
interaction with users

• TSS extends multiprogramming to handle multiple
interactive jobs

• Single core Processor’s time is shared among
multiple users

• Multiple users simultaneously access the system
through terminals
– Because of slow human reaction time, a typical user

needs 2 sec of processing time per minute
– Then (about) 30 users should be able to share the

same system without noticeable delay in the computer
reaction time

• Concurrency: two users try to write to same file

CS 532 Winter 2020 18

The	Single	Core	Era	#3:	Time Sharing Systems (TSS)

• New OS needs:
– Shared File Systems: files must be protected from

unauthorized users (multiple users…)
– Improvements needed for the user interface,

connection / networking speeds
• Operating Systems: Multics, Unix
• Hardware needs: memory capacity

– What if this program doesn’t fit in my memory??
– HW/SW Solution: Virtualize the memory
– Virtual addresses are used in programs
– They are translated to physical addresses at

runtime

CS 532 Winter 2020 19

The Single Core Era #4:
Personal Computing & Connectivity (1980-1990s)
• Hardware Innovation: [Very] Large Scale

Integration ([V]LSI)
• Platform Innovation: microcomputers / PCs
• Innovation: GUI (XEROX), X
• Innovation: fast networks, internet, WWW,

client/server model, multithreading
• Operating Systems: DOS, Windows, Linux

CS 532 Winter 2020 20

The Single Core Era #4:
Personal Computing & Connectivity (1980-1990s)
• Operating Systems: DOS, Windows, Linux
• The POSIX API

– Programmers can write Posix-compliant code and it
will run across Unix/Linux systems from different
vendors

• OS must support: communication, data
exchange, disconnection, battery lifetimes

• Security: servers running 24/7 are vulnerable

The	Single	Core	Era	#5:	The	Memory	Hierarchy

• Why	have	a	hierarchy of	memory?
• How	does	it	work?

CS	532	Winter	2020 21

Carnegie Mellon

22

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage	Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200

Carnegie Mellon

23

The	CPU-Memory	Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Disk

DRAM

CPU

SSD

Carnegie Mellon

24

Locality	to	the	Rescue!

The	key	to	bridging	this	CPU-Memory	gap	is	a	fundamental	
property	of	computer	programs	known	as	locality

Carnegie Mellon

25

Locality
¢ Principle	of	Locality: Programs	tend	to	use	data	and	

instructions	with	addresses	near	or	equal	to	those	they	
have	used	recently

¢ Temporal	locality:		
§ Recently	referenced	items	are	likely	

to	be	referenced	again	in	the	near	future

¢ Spatial	locality:		
§ Items	with	nearby	addresses	tend	

to	be	referenced	close	together	in	time

Carnegie Mellon

26

Locality	Example

¢ Data	references
§ Reference	array	elements	in	succession	

(stride-1	reference	pattern).
§ Reference	variable	sum each	iteration.

¢ Instruction	references
§ Reference	instructions	in	sequence.
§ Cycle	through	loop	repeatedly.	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality
Temporal	locality

Spatial	locality
Temporal	locality

Carnegie Mellon

27

Memory	Hierarchies
¢ Some	fundamental	and	enduring	properties	of	hardware	

and	software:
§ Fast	storage	technologies	cost	more	per	byte,	have	less	capacity,	

and	require	more	power	(heat!).	
§ The	gap	between	CPU	and	main	memory	speed	is	widening.
§ Well-written	programs	tend	to	exhibit	good	locality.

¢ These	fundamental	properties	complement	each	other	
beautifully.

¢ They	suggest	an	approach	for	organizing	memory	and	
storage	systems	known	as	a	memory	hierarchy.

Carnegie Mellon

28

An	Example	Memory	Hierarchy

Registers

L1	cache
(SRAM)

Main	memory
(DRAM)

Local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

Remote	secondary	storage
(tapes,	distributed	file	systems,	Web	servers)

Local	disks	hold	files	
retrieved	from	disks	on	
remote	network	servers

Main	memory	holds	disk	blocks	
retrieved	from	local	disks

L2	cache
(SRAM)

L1	cache	holds	cache	lines	retrieved	
from	L2	cache

CPU	registers	hold	words	retrieved	
from	L1	cache

L2	cache	holds	cache	lines	
retrieved	from	main	memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per	byte

The	Single	Core	Era:	Other	Advances
– Mobile devices

• Innovation: Fast Pervasive wireless and cellular
• Innovation: Power Management

– Embedded Systems
• Is your car on the internet? Your toaster?

– Open Source
• Accessibility of OS, rate of upgrades to OS

– Virtualization: including HW support
– Cloud Computing

• One server farm consumes as much power as a
small U.S. city

CS 532 Winter 2020 29

The	Multicore	Era

• A	single	chip	now	has	more	than	one	CPU
• Most	systems	today	are	multicore:

– Servers
– PCs/laptops
– Your	phone

• Is	everythingmulticore??
– Your	toaster	may	not	be

• Software:	everything	is	parallel
• OS:	must	manage	across	CPUs

CS	532	Winter	2020 30

CS	532	Winter	2020 31

Technology	Trends:	Microprocessor	Capacity

2X	transistors/Chip	Every	1.5	years
Called	“Moore’s	Law”

Moore’s	Law

Microprocessors	have	
become	smaller,	denser,	and	
more	powerful.

Gordon	Moore	(co-founder	of	Intel)	
predicted	in	1965	that	the	transistor	
density	of	semiconductor	chips	would	
double	roughly	every	18	months.	

Slide	source:	Jack	Dongarra

CS	532	Winter	2020 32

Microprocessor	Transistors	and	Clock	Rate

i4004

i80286
i80386

i8080

i8086

R3000
R2000

R10000
Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005
Year

T
ra

ns
is
to

rs

Growth in transistors per chip Increase in clock rate

0.1

1

10

100

1000

1970 1980 1990 2000
Year

C
lo

ck
 R

at
e

(M
H

z)

Why	bother	with	parallel	programming?		Just	wait	a	year	or	two…

CS	532	Winter	2020 33

Limit	#1:	Power	density

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w
er
	D
en

sit
y	
(W

/c
m

2)

Hot	Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source:	Patrick	
Gelsinger,	Intelâ

Scaling	clock	speed	(business	as	usual)	will	not	work

Can	soon	put	more	transistors	on	a	chip	than	can	afford	to	turn	on.	
-- Patterson	‘07

CS	532	Winter	2020 34

Parallelism	Saves	Power
• Exploit	explicit	parallelism	for	reducing	power

Power = C * V2 * F Performance = Cores * F

Capacitance Voltage Frequency

• Using	additional	cores
– Increase	density	(=	more	transistors	=	more	capacitance)
– Can	increase	cores	(2x)	and	performance	(2x)
– Or	increase	cores	(2x),	but	decrease	frequency	(1/2):	same	
performance	at	¼	the	power	

Power = 2C * V2 * F Performance = 2Cores * FPower = 2C * V2/4 * F/2 Performance = 2Cores * F/2Power = (C * V2 * F)/4 Performance = (Cores * F)*1

• Additional	benefits
– Small/simple	cores	àmore	predictable	performance

CS	532	Winter	2020 35

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

25%/year

52%/year

??%/year

Limit	#2:	Hidden	Parallelism	Tapped	Out

• VAX:		25%/year	
1978	to	1986

• RISC	+	x86:	52%/year	
1986	to	2002

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

Application	performance	was	increasing	by	52%	per	year	as	measured	by	the	SpecInt	
benchmarks	here

• ½ due to transistor density
• ½ due to architecture

changes, e.g., Instruction
Level Parallelism (ILP)

CS	532	Winter	2020 36

Limit	#2:	Hidden	Parallelism	Tapped	Out

• Superscalar	(SS)	designs	were	the	state	of	the	art;	many	
forms	of	parallelism	not	visible	to	programmer
– multiple	instruction	issue
– dynamic	scheduling:	hardware	discovers	parallelism	

between	instructions
– speculative	execution:	look	past	predicted	branches
– non-blocking	caches:	multiple	outstanding	memory	ops

• Unfortunately,	these	sources	have	been	used	up

37

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor	Performance	(SPECint)	Today

• VAX :	25%/year	1978	to	1986
• RISC	+	x86:	52%/year	1986	to	2002
• RISC	+	x86:	??%/year	2002	to	present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

Þ Sea	change	in	chip	design:	
multiple	“cores” or	processors	
per	chip

3X

2x	every	5	
years?

CS	532	Winter	2020

Limit	#3:	Chip	Yield	

• Moore’s (Rock’s) 2nd law:
fabrication costs go up

• Yield (% usable chips)
drops

• Parallelism can help
•More	smaller,	simpler	processors	are	
easier	to	design	and	validate
•Can	use	partially	working	chips:
•E.g.,	Cell	processor	(PS3)	is	sold	with	7	
out	of	8	“on” to	improve	yield

Manufacturing	costs	and	yield	problems	limit	use	of	density

CS	532	Winter	2020 39

Limit	#4:	Speed	of	Light	(Fundamental)

• Consider	the	1	Tflop/s	sequential	machine:
– Data	must	travel	some	distance,	r,	to	get	from	memory	to	
CPU.

– To	get	1	data	element	per	cycle,	this	means	1012 times	per	
second	at	the	speed	of	light,	c	=	3x108 m/s.		Thus	r	<	
c/1012	=	0.3	mm.

• Now	put	1	Tbyte	of	storage	in	a	0.3	mm	x	0.3	mm	area:
– Each	bit	occupies	about	1	square	Angstrom,	or	the	size	of	
a	small	atom.

• No	choice	but	parallelism

r	=	0.3	mm
1	Tflop/s,	1	Tbyte	
sequential	machine

CS	532	Winter	2020 40

Thus,	the	Multicore	Era
• Chip	density	is	

continuing	increase	
~2x	every	2	years*
– Clock	speed	is	not
– Number	of	

processor	cores	
may	double	instead

• There	is	little	or	no	
hidden	parallelism	
(ILP)	to	be	found

• Parallelism	must	be	
exposed	to	and	
managed	by	software

Source:	Intel,	Microsoft	(Sutter)	and	
Stanford	(Olukotun,	Hammond)

Carnegie Mellon

41

Intel	Core	i7	Cache	Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1	i-cache	and	d-cache:

32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

Block	size:	64	bytes	for	
all	caches.	

What	is	Manycore ?

• What	if	we	use	all	of	the	transisters on	a	chip	for	
as	many	cores	as	we	can	fit??

• Beyond	the	edge	of	number	of	cores	in	common	
“multicore”	architectures

• Dividing	line	is	not	clearly	defined
• Active	research,	now	in	embedded	&	clusters
• Examples:	

– NVIDIA	Fermi	Graphics	Processing	Unit	(GPU)
• First	model:	32	“CUDA	cores”	per	SM,	16	SMs

– (SM	=	“streaming	multiprocessor”)
• K20	model:		2496	CUDA	cores,	peak	3.52	Tflops

CS	532	Winter	2020 42

Ex:		NVIDIA	Fermi

CS	532	Winter	2020 43

What	is	Manycore ?

• Examples	(cont’d)
– Intel	Xeon	Phi	coprocessor	and	Knights	Landing

• Up	to	61	cores	each
– Example:		Tianhe-2	Supercomputer	(China)

• 32,000	multicore	CPUs
• 48,000	coprocessors (“accelerators”)
• peak	33.86	PetaFLOPS

– Example:	Summit	Supercomputer	(U.S.)
• IBM	Power9	processors	
• accelerated	with	NVIDIA	Volta	GPUs
• Total	#	cores:		2,414,592

CS	532	Winter	2020 44

Acknowledgments

• This	presentation	includes	materials	and	ideas	
developed	by	others:
– 15-213:	Introduction	to	Computer	Systems,	2010

• Randy	Bryant	and	Dave	O’Hallaron

– Jack	Dongarra,	University	of	Tennessee
– Kathy	Yelick,	UC-Berkeley
– Andrew	S.	Tanenbaum,	Modern	Operating	
Systems

– Remzi and	Andrea	C.	Arpaci-Dusseau,	Operating	
Systems:		Three	Easy	Pieces

CS	532	Winter	2020 45

