
3

Heterogeneous Parallel Computing
– Use the best match for the job (heterogeneity in mobile SOC)

Latency 
Cores

Throughput 
Cores

DSP Cores

HW IPs

Configurable
Logic/Cores

On-chip 
Memories

Cloud 

Services



4

CPU and GPU are designed very differently

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU 
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD 
Unit

Threading



5

CPUs: Latency Oriented Design 

5

– Powerful ALU
– Reduced operation latency

– Large caches
– Convert long latency memory 

accesses to short latency cache 
accesses

– Sophisticated control
– Branch prediction for reduced 

branch latency
– Data forwarding for reduced data 

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU



6

GPUs: Throughput Oriented Design
– Small caches

– To boost memory throughput
– Simple control

– No branch prediction
– No data forwarding

– Energy efficient ALUs
– Many, long latency but heavily 

pipelined for high throughput
– Require massive number of 

threads to tolerate latencies
– Threading logic
– Thread state 

6

DRAM

GPU



7

Winning Applications Use Both CPU and GPU 

– CPUs for sequential parts 
where latency matters
– CPUs can be 10X+ faster 

than GPUs for sequential 
code

– GPUs for parallel parts 
where throughput wins
– GPUs can be 10X+ faster 

than CPUs for parallel code

7



3

A[0]vector  A

vector  B

vector  C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

3



4

Vector Addition – Traditional C Code
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int i;
for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()
{

// Memory allocation for h_A, h_B, and h_C
// I/O to read h_A and h_B, N elements
…
vecAdd(h_A, h_B, h_C, N);

}
4



5

CPU

Host Memory

GPU

Device Memory

Part 1

Part 3

Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n* sizeof(float); 
float *d_A, *d_B, *d_C;
// Part 1
// Allocate device memory for A, B, and C
// copy A and B to device memory 

// Part 2
// Kernel launch code – the device performs the actual vector addition

// Part 3
// copy C from the device memory
// Free device vectors

}

5

Part 2



6

Partial Overview of CUDA Memories
– Device code can:

– R/W per-thread registers
– R/W all-shared global 

memory

– Host code can
– Transfer data to/from per 

grid global memory 

6

We will cover more memory types and more 

sophisticated memory models later.

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers



7

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device 

global memory
– Two parameters

– Address of a pointer to the 
allocated object

– Size of allocated object in terms 
of bytes

– cudaFree()
– Frees object from device global 

memory
– One parameter

– Pointer to freed object

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers



8

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination 
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Transfer to device is asynchronous

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers



9

Vector Addition Host Code
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n * sizeof(float); float *d_A, *d_B, *d_C;

cudaMalloc((void **) &d_A, size);    
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_B, size);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_C, size);

// Kernel invocation code – to be shown later

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

9



10

In Practice, Check for API Errors in Host Code
cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess)  {
printf(“%s in %s at line %d\n”,   cudaGetErrorString(err), __FILE__,
__LINE__);
exit(EXIT_FAILURE);

}

10



4

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);



6

A program at the ISA level
– A program is a set of instructions stored in memory that can be read, 

interpreted, and executed by the hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or 
registers.

6



7

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or 
“abstracted” 
Von-Neumann Processor



8

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads 

– All threads in a grid run the same kernel code (Single Program Multiple Data)

– Each thread has indexes that it uses to compute memory addresses and make 
control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

…



9

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and 

barrier synchronization
– Threads in different blocks do not interact

9

i = blockIdx.x * blockDim.x + 

threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x + 

threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x + 

threadIdx.x;

C[i] = A[i] + B[i];

…

…… …



10

blockIdx and threadIdx

• Each thread uses indices to decide what data to work 
on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
–  

10

device

Grid Block (0, 

0)

Block (1, 

1)

Block (1, 

0)

Block (0, 

1)

Block (1,1)

Thread

(0,0,0)Thread

(0,1,3)

Thread

(0,1,0)

Thread

(0,1,1)

Thread

(0,1,2)

Thread

(0,0,0)

Thread

(0,0,1)

Thread

(0,0,2)

Thread

(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 2.2 - Introduction to CUDA C
	Objective
	Data Parallelism - Vector Addition Example
	Vector Addition – Traditional C Code
	Heterogeneous Computing vecAdd CUDA Host Code
	Partial Overview of CUDA Memories
	CUDA Device Memory Management API functions
	Host-Device Data Transfer API functions
	Vector Addition Host Code
	In Practice, Check for API Errors in Host Code
	Slide Number 11

