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What is Accelerated Computing ?
• Heterogeneous Computing
• Idea:  Combine general purpose x86 CPU(s) with one or 

more accelerators
• Idea: Use different hardware for different types of 

computation
• Graphics Processing Units (GPU) really bad at 

sequential computing, extremely fast and efficient at 
parallel computing

• Advantages:  speedup, power savings
• Today’s state of the art to accomplish large-scale 

computing
• Different types of accelerators: GPUs, APUs, FPGAs, 

Intel Xeon Phi, … 
• Our focus will be CUDA/GPUs with some Intel Xeon Phi
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2. What is a High End Computer Platform Today?

• Built up of thousands of processors/nodes/computers
• Nodes connected to work together (network, 

interconnect)
• Each Node may contain a number of processors and 

one or more accelerators
• (HPC/Scientific) Run Parallel Programs:

• message passing: between nodes
• Multithreading: within each node

• (High End Servers/Scientific and Commercial) Run 
Map/Reduce, Analytics, Web Servers, Database Servers

• (Cloud) Warehouse-Scale Computers: 50-100,000 
servers, networking, power and cooling
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Accelerators Motivation #1: Power and Cooling
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Under the Covers:  Big Iron
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Accelerators Motivation #2: Compute Capability

• www.top500.org
• Linpack
• Floating Point Operations per Second (FLOP/s)

• June 9, 2008:  The Roadrunner breaks the “PetaFLOP
barrier” - computer achieves a rate of 1.026 petaFLOP/s
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“Sustainability and Big Iron:  Scalable Performance Analysis for Power-
Aware Compute Clusters”

Karen L. Karavanic  April 13, 2007

WhattaFLOPS ???

• Floating Point Operations Per Second
• MFLOPS 10 6 

• GFLOPS 10 9
• TFLOPS 10 12

• PetaFLOPS – 10 15

1,000,000,000,000,000
• ___FLOPS – 10 18 coming soon…..



• www.top500.org
• Linpack
• Floating Point Operations per Second (FLOP/s)

• June 9, 2008:  The Roadrunner breaks the “PetaFLOP
barrier” - computer achieves a rate of 1.026 petaFLOP/s
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• www.top500.org
• Linpack
• Floating Point Operatings per Second (FLOP/s)

• June 9, 2008:  The Roadrunner computer achieves a 
rate of 1.026 petaFLOP/s

• Yes, that's 1.026 x 1015 floating point operations per 
second
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• www.top500.org
• Linpack
• Floating Point Operatings per Second (FLOP/s)

• June 9, 2008:  The Roadrunner computer achieves a 
rate of 1.026 petaFLOP/s

• Yes, that's 1.026 quadrillion floating point operations per 
second

• How did they do it?
• 6,948 dual-core AMD Opteron chips
• 12,960 8-core Cell BE (Playstation) chips as accelerators
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Example: NVIDIA Kepler (K20)

• Peak double precision:  1.17 TeraFLOPs
• Peak single precision:  3.52 TeraFLOPs
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Example: NVIDIA Kepler (K20)

• Peak double precision:  1.17 TeraFLOPs
• Peak single precision:  3.52 TeraFLOPs

• Yes, that’s just for one Graphics card !! 

© Karen L. Karavanic 2020 12



Example: NVIDIA Kepler (K20)

• Peak double precision:  1.17 TeraFLOPs
• Peak single precision:  3.52 TeraFLOPs

• Key Idea: Single Instruction Multiple Data
• Example: Vector sum C = A + B

for (int i = 0; i < n; i++)

C[i] = A[i] + B[i];

• We are executing the same instruction n times, with 
different data each time

• Can we do this in parallel?
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Example: Intel Phi Coprocessor
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Example: Intel Phi Coprocessor
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Today: Trinity @LANL

• Architecture Cray XC30
• Memory capacity >2 PB of DDR4 DRAM
• Peak performance >40 PF
• Number of compute nodes >19,000
• Processor architecture:

Intel Haswell & Knights Landing (“Xeon Phi”)
• Parallel file system capacity (usable) >80 PB
• Parallel file system bandwidth (sustained)1.45 TB/s
• Burst buffer storage capacity (usable) 3.7 PB
• Burst buffer bandwidth (sustained) 3.3 TB/s
• Footprint <5,200 sq ft
• Power requirement <10 MW
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Continuing Challenges: Scaling, Power, Cooling
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3. Accelerated Computing Course Structure

• Week 1: See course web page for tentative calendar, 
slides:
• http://web.cecs.pdx.edu/~karavan/gpu

• Week 2-8: All materials will be on the google drive in a 
shared folder: CS 435 535 Accelerated
• Accessible only by registered students
• If your class registration isn’t complete at the end of week 1 let 

me know or you will lose access
• The lectures will not fully reproduce the readings – you 

must do both 
• We will spend zoom time with lecture, hands on demo 

and group work
• Please let me know if something is not working for you.  I have 

been teaching for 20 years and zoom teaching for 2.5 months! 
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3. Accelerated Computing Course Structure

• Readings include material not in lecture but needed for 
homework

• Homeworks are designed for independent learning
• Questions and discussions - yes BUT do your own work
• Include programming in C/C++, CUDA, OpenACC

• Small Group Projects allow you to explore a topic in 
more detail
• I will post a list of projects and you will select your 1st, 2nd, 3rd

choice
• I will form the groups
• Presentations last day of class

• Grading Breakdown
• Homeworks 60%
• Project 40%
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4. Introductions: Professor Karavanic
• Stuyvesant High School (NYC): 

• Public, Math and Science, admission by exam
• New York University: B.A. Computer Science

• I am a “First Generation College Student”
• I completed my degree while working full-time

• University of Wisconsin – Madison: 
• M.S. Computer Science
• Ph.D. Computer Science

• WARF Fellow, IBM intern, NASA GSRP Fellow
• Portland State University 2000 ->

• LLNL, SDSC, New Mexico Consortium
• Current ResearchProjects:  

• Drought Prediction, Holistic HPC Workflow Performance, SMM-
based Runtime Integrity Checking
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4. Introductions: Professor Karavanic
• How to reach me:

• Email: please take care with subject lines
• Zoom: 

• Weekly Office Hours: TBD
• OR
• Email for an appointment (zoom – video optional)
• OR
• Ask questions in email

• I do enjoy your questions, feedback and interest 
• I will do my best to reply to email quickly 
• karavan@pdx.edu

• Special Pandemic rule in effect:  Please feel free to call 
me Karen
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Introductions: You

Please email to me at karavan@pdx.edu
• 1. Your name
• 2. Your goals for this course (including what grade you 

want)
• 3. Your experience with C and C++
• 4. Your experience with parallel programming, CUDA,  

Xeon Phi (if any)
• 5. Any topics of particular interest?
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5. Multicore and Manycore Computing
How did we get here?
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Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have 
become smaller, denser, 
and more powerful.

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months. 

Slide source: Jack Dongarra
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Microprocessor Transistors and Clock Rate
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Why bother with parallel programming?  Just wait a year or two…
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Limit #1: Power density
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Scaling clock speed (business as usual) will not work

Can soon put more transistors on a chip than can afford to turn on. 
-- Patterson ‘07
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Parallelism Saves Power

• Exploit explicit parallelism for reducing power

Power = C * V2 * F Performance = Cores * F

Capacitance    Voltage   Frequency        

• Using additional cores
– Increase density (= more transistors = more 

capacitance)
– Can increase cores (2x) and performance (2x)
– Or increase cores (2x), but decrease frequency (1/2): 

same performance at ¼ the power 

Power = 2C * V2 * F Performance = 2Cores * FPower = 2C * V2/4 * F/2 Performance = 2Cores * F/2Power = (C * V2 * F)/4 Performance = (Cores * F)*1

• Additional benefits
– Small/simple cores à more predictable performance
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Limit #2: Hidden Parallelism Tapped Out

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006

Application performance was increasing by 52% per year as measured 
by the SpecInt benchmarks here

• ½ due to transistor density
• ½ due to architecture 

changes, e.g., Instruction 
Level Parallelism (ILP)
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Limit #2: Hidden Parallelism Tapped Out

• Superscalar (SS) designs were the state of the art; 
many forms of parallelism not visible to programmer
• multiple instruction issue
• dynamic scheduling: hardware discovers parallelism 

between instructions
• speculative execution: look past predicted branches
• non-blocking caches: multiple outstanding memory ops

• Unfortunately, these sources had been used up
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Uniprocessor Performance (SPECint) Today

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006

Þ Sea change in chip 
design: multiple “cores” or 
processors per chip

3X

2x every 
5 years?

© Karen L. Karavanic 2020 30



Limit #3: Chip Yield 

• Moore’s (Rock’s) 2nd law: 
fabrication costs go up

• Yield (% usable chips) 
drops

• Parallelism can help
•More smaller, simpler 
processors are easier to design 
and validate
•Can use partially working chips:
•E.g., Cell processor (PS3) is sold 
with 7 out of 8 “on” to improve 
yield

Manufacturing costs and yield problems limit use of density



Limit #4: Speed of Light (Fundamental)

• Consider the 1 Tflop/s sequential machine:
• Data must travel some distance, r, to get from memory 

to CPU.
• To get 1 data element per cycle, this means 1012 times 

per second at the speed of light, c = 3x108 m/s.  Thus r 
< c/1012 = 0.3 mm.

• Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
• Each bit occupies about 1 square Angstrom, or the size 

of a small atom.
• No choice but parallelism

r = 0.3 
mm

1 Tflop/s, 1 
Tbyte sequential 
machine
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“Sea Change”
• Chip density continuing 

increase ~2x every 2 
years
• Clock speed is not
• Number of processor 

cores may double 
instead

• Little or no hidden 
parallelism (ILP) to be 
found

• Parallelism must be 
exposed to and 
managed by software

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond) © Karen L. Karavanic 2020 33



Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
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L2 unified 
cache

Core 0
Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1	i-cache	and	d-

cache:
32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	

Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	

cycles

Block	size:	64	bytes	
for	all	caches.	



What about Today?

• It is 13 years after the switch to multicore
• IBM Power8: 4-12 cores, Intel Xeon E7: 4-24 cores

• Post Moore’s Law Era
• We are no longer on the Moore’s Law curve !
• # devices per chip increasing at a slower rate
• Focus has switched to compute efficiency

• Large systems now have a power budget
• Dark Silicon

• not all parts of the chip can be powered at once
• due to thermal constraints

• Domain-specific architectures and Acceleration
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What is Manycore ?
• What if we use all of the transisters on a chip for as many 

cores as we can fit??
• Beyond the edge of number of cores in common “multicore” 

architectures
• Dividing line is not clearly defined, changes with advances in 

technology
• Active research, now in embedded & clusters
• Current trend at the high end is to combine CPUs with 

manycore “accelerators”
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What is Manycore ?
• Examples: 

• NVIDIA Fermi Graphics Processing Unit (GPU)
• First model: 32 “CUDA cores” per SM, 16 SMs

– (SM = “streaming multiprocessor”)
• Kepler K20 model:  2496 CUDA cores, peak 3.52 TFlops
• Tesla V100 model:  5120 CUDA cores, 7.5 TFlops

• Matrix-2000 accelerators
• Chinese name “迈创”, meaning “taking a creative step” 
• 128 cores, each can perform 16 Double Precision FLOPs per 

cycle
• Intel Xeon Phi 7290

• Up to 72 cores each
• Intel AVX-512 vector instructions
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Ex:  NVIDIA Fermi
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Accelerated Computing Today
• Example:  TianHe-2A Supercomputer (China)

• 17,792 nodes with Intel XeonCPUs and Matrix-2000 accel.
• 4,981,760 cores total
• peak 100,679 TeraFLOPS

• Example: Summit Supercomputer (U.S.)
• IBM Power9 processors 
• accelerated with NVIDIA Volta GPUs (“accelerators”)
• Total # cores:  2,414,592
• peak 200,794.9
• achieved on TOP 500 benchmark Nov 2019:

– 148,600.0 TFlop/s
• See top500.org
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Thanks…

• This talk includes slides, ideas, and examples from: 
Kathy Yelick (UC Berkeley), Wen-mei Hwu
(UIUC/NVIDIA)

• This course includes hardware generously provided by 
NVIDIA. We will use some materials from NVIDIA

• This course includes hardware, technical staff time, 
software licenses and other resources generously 
provided by Intel Corp.
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