Accelerated Computing with GPUs and Intel Xeon Phi

Summer 2020
Prof. Karen L. Karavanic
karavan@pdx.edu http://web.cecs.pdx.edu/~karavan

What is Accelerated Computing ?

- Heterogeneous Computing
- Idea: Combine general purpose x86 CPU(s) with one or more accelerators
- Idea: Use different hardware for different types of computation
- Graphics Processing Units (GPU) really bad at sequential computing, extremely fast and efficient at parallel computing
- Advantages: speedup, power savings
- Today's state of the art to accomplish large-scale computing
- Different types of accelerators: GPUs, APUs, FPGAs, Intel Xeon Phi, ...
- Our focus will be CUDA/GPUs with some Intel Xeon Phi

Portland State

2. What is a High End Computer Platform Today?

- Built up of thousands of processors/nodes/computers
- Nodes connected to work together (network, interconnect)
- Each Node may contain a number of processors and one or more accelerators
- (HPC/Scientific) Run Parallel Programs:
- message passing: between nodes
- Multithreading: within each node
- (High End Servers/Scientific and Commercial) Run Map/Reduce, Analytics, Web Servers, Database Servers
- (Cloud) Warehouse-Scale Computers: 50-100,000 servers, networking, power and cooling

Accelerators Motivation \#1: Power and Cooling

Power Efficiency and the Top500

John Shalf and David Bailey
Lawrence Berkeley National Laboratory
Top500 Birds of a Feather SC2006, Tampa Florida
November 14, 2006

ORNL Computing Power and Cooling 2006-2011

- Immediate need to add 8 MW to prepare for 2007 installs of new systems
- NLCF petascale system could require an additional 10 MW by 2008
- Need total of 40-50 MW for projected systems by 2011
- Numbers just for computers: add 75\% for cooling
- Cooling will require 12,000 15,000 tons of chiller capacity

Computer Center Power Projections

Annual Average Electrical Power Rates $\$ / \mathrm{MWh}$

Oak Ridge National Laboratory
U. S. DEpartment of Energy
© Karen L. Karavanic 2020

Accelerators Motivation \#2: Compute Capability

- www.top500.org
- Linpack
- Floating Point Operations per Second (FLOP/s)
- June 9, 2008: The Roadrunner breaks the "PetaFLOP barrier" - computer achieves a rate of 1.026 petaFLOP/s

WhattaFLOPS ???

- Floating Point Operations Per Second
- MFLOPS 10^{6}
- GFLOPS 10^{9}
- TFLOPS $10{ }^{12}$
- PetaFLOPS - $10{ }^{15}$ 1,000,000,000,000,000
- ___FLOPS - 10^{18} coming soon.....

Accelerators Motivation \#2: Compute Capability

- www.top500.org
- Linpack
- Floating Point Operations per Second (FLOP/s)
- June 9, 2008: The Roadrunner breaks the "PetaFLOP barrier" - computer achieves a rate of 1.026 petaFLOP/s

Accelerators Motivation \#2: Compute Capability

- www.top500.org
- Linpack
- Floating Point Operatings per Second (FLOP/s)
- June 9, 2008: The Roadrunner computer achieves a rate of 1.026 petaFLOP/s
- Yes, that's 1.026×10^{15} floating point operations per second

Accelerators Motivation \#2: Compute Capability

- www.top500.org
- Linpack
- Floating Point Operatings per Second (FLOP/s)
- June 9, 2008: The Roadrunner computer achieves a rate of 1.026 petaFLOP/s
- Yes, that's 1.026 quadrillion floating point operations per second
- How did they do it?
- 6,948 dual-core AMD Opteron chips
- 12,960 8-core Cell BE (Playstation) chips as accelerators

Example: NVIDIA Kepler (K20)

- Peak double precision: 1.17 TeraFLOPs
- Peak single precision: 3.52 TeraFLOPs

Example: NVIDIA Kepler (K20)

- Peak double precision: 1.17 TeraFLOPs
- Peak single precision: 3.52 TeraFLOPs
- Yes, that's just for one Graphics card !!

Example: NVIDIA Kepler (K20)

- Peak double precision: 1.17 TeraFLOPs
- Peak single precision: 3.52 TeraFLOPs
- Key Idea: Single Instruction Multiple Data
- Example: Vector sum C = A + B

$$
\begin{gathered}
\text { for } \quad(\text { int } i=0 ; i<n ; i++) \\
C[i]=A[i]+B[i] ;
\end{gathered}
$$

- We are executing the same instruction n times, with different data each time
- Can we do this in parallel?

Example: Intel Phi Coprocessor

Knights Corner Coprocessor

$$
\begin{array}{|c|c|c|}
\begin{array}{|c|c|c|}
\hline \text { GDDR5 } \\
\text { Channel }
\end{array} & \cdots & \begin{array}{c}
\text { GDDRE } \\
\text { Channel }
\end{array} \\
>=8 \text { BGB GDDR5 } & \text { memory }
\end{array}
$$

Example: Intel Phi Coprocessor

Knights Corner Micro-architecture

Today: Trinity @LANL

- Architecture

Cray XC30

- Memory capacity >2 PB of DDR4 DRAM
- Peak performance >40 PF
- Number of compute nodes >19,000
- Processor architecture:

Intel Haswell \& Knights Landing ("Xeon Phi")

- Parallel file system capacity (usable) >80 PB
- Parallel file system bandwidth (sustained)1.45 TB/s
- Burst buffer storage capacity (usable) 3.7 PB
- Burst buffer bandwidth (sustained) 3.3 TB/s
- Footprint $<5,200 \mathrm{sq} \mathrm{ft}$
- Power requirement <10 MW

Continuing Challenges: Scaling, Power, Cooling

3. Accelerated Computing Course Structure

- Week 1: See course web page for tentative calendar, slides:
- http://web.cecs.pdx.edu/~karavan/gpu
- Week 2-8: All materials will be on the google drive in a shared folder: CS 435535 Accelerated
- Accessible only by registered students
- If your class registration isn't complete at the end of week 1 let me know or you will lose access
- The lectures will not fully reproduce the readings - you must do both
- We will spend zoom time with lecture, hands on demo and group work
- Please let me know if something is not working for you. I have been teaching for 20 years and zoom teaching for 2.5 months!

3. Accelerated Computing Course Structure

- Readings include material not in lecture but needed for homework
- Homeworks are designed for independent learning
- Questions and discussions - yes BUT do your own work
- Include programming in C/C++, CUDA, OpenACC
- Small Group Projects allow you to explore a topic in more detail
- I will post a list of projects and you will select your $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ choice
- I will form the groups
- Presentations last day of class
- Grading Breakdown
- Homeworks 60\%
- Project 40\%

4. Introductions: Professor Karavanic

- Stuyvesant High School (NYC):
- Public, Math and Science, admission by exam
- New York University: B.A. Computer Science
- I am a "First Generation College Student"
- I completed my degree while working full-time
- University of Wisconsin - Madison:
- M.S. Computer Science
- Ph.D. Computer Science
- WARF Fellow, IBM intern, NASA GSRP Fellow
- Portland State University 2000 ->
- LLNL, SDSC, New Mexico Consortium
- Current ResearchProjects:
- Drought Prediction, Holistic HPC Workflow Performance, SMMbased Runtime Integrity Checking

4. Introductions: Professor Karavanic

- How to reach me:
- Email: please take care with subject lines
- Zoom:
- Weekly Office Hours: TBD
- OR
- Email for an appointment (zoom - video optional)
- OR
- Ask questions in email
- I do enjoy your questions, feedback and interest
- I will do my best to reply to email quickly
- karavan@pdx.edu
- Special Pandemic rule in effect: Please feel free to call me Karen

Introductions: You

Please email to me at karavan@pdx.edu
-1. Your name

- 2. Your goals for this course (including what grade you want)
-3. Your experience with C and $\mathrm{C}++$
- 4. Your experience with parallel programming, CUDA, Xeon Phi (if any)
- 5. Any topics of particular interest?

5. Multicore and Manycore Computing How did we get here?

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra
Portland State
univessity

Microprocessor Transistors and Clock Rate

Growth in transistors per chip

Increase in clock rate

Why bother with parallel programming? Just wait a year or two...
Portland State
univessity
© Karen L. Karavanic 2020

Limit \#1: Power density

Can soon put more transistors on a chip than can afford to turn on.
-- Patterson ‘07
Scaling clock speed (business as usual) will not work

 Surface

Source: Patrick Gelsinger, Intel®

Parallelism Saves Power

- Exploit explicit parallelism for reducing power

$$
\text { Power }=\left(\mathrm{C} * \mathrm{~V}^{2} * \mathrm{~F}\right) / 4 \quad \text { Performance }=(\text { Cores } * \mathrm{~F}) * 1
$$

Capacitance Voltage Frequency

- Using additional cores
- Increase density (= more transistors = more capacitance)
- Can increase cores (2x) and performance (2x)
- Or increase cores (2x), but decrease frequency (1/2): same performance at $1 / 4$ the power
- Additional benefits
- Small/simple cores \rightarrow more predictable performance

Limit \#2: Hidden Parallelism Tapped Out

Application performance was increasing by 52\% per year as measured by the SpecInt benchmarks here

Limit \#2: Hidden Parallelism Tapped Out

- Superscalar (SS) designs were the state of the art; many forms of parallelism not visible to programmer
- multiple instruction issue
- dynamic scheduling: hardware discovers parallelism between instructions
- speculative execution: look past predicted branches
- non-blocking caches: multiple outstanding memory ops
- Unfortunately, these sources had been used up

Uniprocessor Performance (SPECint) Today

Limit \#3: Chip Yield

Manufacturing costs and yield problems limit use of density
Cost of semiconductor factories in millions of 1995 dollars

- Moore's (Rock' s) $2^{\text {nd }}$ law: fabrication costs go up
- Yield (\% usable chips) drops
- Parallelism can help
-More smaller, simpler processors are easier to design and validate
-Can use partially working chips:
-E.g., Cell processor (PS3) is sold with 7 out of 8 "on" to improve yield

Limit \#4: Speed of Light (Fundamental)

1 Tflop/s, 1
Tbyte sequential machine

- Consider the 1 Tflop/s sequential machine:
- Data must travel some distance, r, to get from memory to CPU.
- To get 1 data element per cycle, this means 10^{12} times per second at the speed of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Thus r $<\mathrm{c} / 10^{12}=0.3 \mathrm{~mm}$.
- Now put 1 Tbyte of storage in a $0.3 \mathrm{~mm} \times 0.3 \mathrm{~mm}$ area:
- Each bit occupies about 1 square Angstrom, or the size of a small atom.
- No choice but parallelism

"Sea Change"

- Chip density continuing increase $\sim 2 x$ every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Little or no hidden parallelism (ILP) to be found
- Parallelism must be exposed to and managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Intel Core i7 Cache Hierarchy

Processor package

Main memory

L1 i-cache and dcache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 11 cycles

L3 unified cache: 8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for all caches.

What about Today?

- It is 13 years after the switch to multicore
- IBM Power8: 4-12 cores, Intel Xeon E7: 4-24 cores
- Post Moore's Law Era
- We are no longer on the Moore's Law curve!
- \# devices per chip increasing at a slower rate
- Focus has switched to compute efficiency
- Large systems now have a power budget
- Dark Silicon
- not all parts of the chip can be powered at once
- due to thermal constraints
- Domain-specific architectures and Acceleration

What is Manycore ?

- What if we use all of the transisters on a chip for as many cores as we can fit??
- Beyond the edge of number of cores in common "multicore" architectures
- Dividing line is not clearly defined, changes with advances in technology
- Active research, now in embedded \& clusters
- Current trend at the high end is to combine CPUs with manycore "accelerators"

What is Manycore ?

- Examples:
- NVIDIA Fermi Graphics Processing Unit (GPU)
- First model: 32 "CUDA cores" per SM, 16 SMs
- (SM = "streaming multiprocessor")
- Kepler K20 model: 2496 CUDA cores, peak 3.52 TFlops
- Tesla V100 model: 5120 CUDA cores, 7.5 TFlops
- Matrix-2000 accelerators
- Chinese name "迈创", meaning "taking a creative step"
- 128 cores, each can perform 16 Double Precision FLOPs per cycle
- Intel Xeon Phi 7290
- Up to 72 cores each
- Intel AVX-512 vector instructions

Ex: NVIDIA Fermi

Accelerated Computing Today

- Example: TianHe-2A Supercomputer (China)
- 17,792 nodes with Intel XeonCPUs and Matrix-2000 accel.
-4,981,760 cores total
- peak 100,679 TeraFLOPS
- Example: Summit Supercomputer (U.S.)
- IBM Power9 processors
- accelerated with NVIDIA Volta GPUs ("accelerators")
- Total \# cores: 2,414,592
- peak 200,794.9
- achieved on TOP 500 benchmark Nov 2019:
- 148,600.0 TFlop/s
- See top500.org

Thanks...

- This talk includes slides, ideas, and examples from: Kathy Yelick (UC Berkeley), Wen-mei Hwu (UIUC/NVIDIA)
- This course includes hardware generously provided by NVIDIA. We will use some materials from NVIDIA
- This course includes hardware, technical staff time, software licenses and other resources generously provided by Intel Corp.

