
QUERYING GEOGRAPHICALLY DISPERSED,

HETEROGENEOUS DATA STORES:

THE PPERFXCHANGE APPROACH

by

MATHEW EDWARD COLGROVE

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2002

i

DEDICATION

This thesis is dedicated to my wife, Kathy, and son, Reed, whose patience and support

made this thesis possible.

ii

ACKNOWLEDGEMENTS

I gratefully acknowledge and thank the follow people for their help with this thesis.

Dr. Karen Karavanic for her advice, guidance, and entrusting PPerfXchange to me.

Christian Hansen for providing the example data and insight into PPerfDB.

Brian Kearns for his proof-reading expertise and moral support.

iii

TABLE OF CONTENTS

Acknowledgements

List of Tables

List of Figures

1 Introduction

2 Background

2.1 PPerfDB

2.2 XML

2.3 XQuery

3 The PPerfXchange Architecture

3.1 Using PPerfXchange

3.2 Parsing and Processing the XQuery

3.3 Unified, Virtual, and Native XML Documents

4 The PPerfXchange Prototype Implementation

4.1 Sending an XQuery

4.2 Parsing the Query

4.3 Process Nodes and Process Instructions

4.4 Virtual XML Documents

 4.4.1 Configuring a Virtual XML Document

 4.4.2 Representing Global XML Schemas in a Relational Database

 4.4.3 Forming a Relational Database Virtual XML Document

 4.4.4 Retrieving Data from a Relational Database Virtual XML Document

ii

v

vi

1

6

6

10

11

13

13

15

16

19

19

21

23

27

27

29

33

36

iv

TABLE OF CONTENTS

5 Examples

5.1 Example Parallel Performance Global Schema

5.2 Parallel Performance Database for SMG98

5.3 Configuration of XML to SQL

5.4 Use Cases

6 Related Work

6.1 Mediators and Semantic Integration

6.2 Representing and Querying a Relational Database Using XML

6.3 XQuery

7 Conclusions and Future Work

8 References

Appendix A: Example Global XML Schema for Parallel Performance Data

Appendix B: Resulting XML Documents from the Use Cases

38

38

39

41

44

48

48

50

54

56

61

65

67

v

LIST OF TABLES

1 Test Executions

2 Use Cases

3 Resulting XML Documents

40

44

67

vi

LIST OF FIGURES

1 An Architectural Overview of PPerfDB

2 An Example Merged Event Map

3 Comparing CPU Idle Time For Two Executions

4 Components of an XQuery

5 An Architectural Overview of PPerfXchange

6 The Unified XML Document Hierarchy

7 An Example XQuery

8 Bison Equivalent Grammar for an XQuery Grammar Rule

9 Example Flow of Process Instructions and Process Nodes

10 The Configuration Tables

11 Translating a Relational Database Schema to a Virtual XML Document

12 An Example Parallel Performance Global XML Schema

13 SMG98 Performance Database Schema

14 Mapping the Application and Execution Elements

15 Mapping the Metric, Focus, and Data Elements

16 Alternative XML Representation Approaches

7

8

9

12

15

16

20

22

25

28

30

39

41

42

43

54

1 Introduction

A group of scientists meet at a conference and discover each is working on similar

problems. They exchange ideas, discuss future needs, and find that each have data use-

ful to each other’s research. They decide to collaborate and return to their respective

labs excited about the new prospects. However, when it comes time to actually

exchange their data, they find each have very different methods for storing and organiz-

ing the data. The process of translating the data into each others respective format

becomes a laborious chore. While the new information would greatly help, the transla-

tion quickly becomes too time consuming to be useful. Ultimately the collaboration

wanes, and each scientist continues on separate paths.

What was needed for these scientists was a method by which they could quickly

retrieve each other’s data and translate it into their local format. This thesis offers a

solution to this problem and describes an innovative tool, PPerfXchange, which allows

remote users to query geographically dispersed data and return the data in a format

which can be easily translated into the local format. Such a tool may be used by many

areas of collaborative research; PPerfXchange focuses on the exchange of parallel

computing performance data.

Computer applications which execute on high performance parallel computer architec-

tures are often extremely difficult to optimize. A variety of tools have been created

which gather performance information during the execution of these applications. A
1

single run of an application can generate hundreds of megabytes of information, which

can then be analyzed using various visualization tools. However, exchanging gathered

information between collaborators can be very difficult due to the large amount of data

gathered, the incompatible data formats used, and the time it takes to convert between

formats.

The PPerfDB project [12] at Portland State University is creating an experiment man-

agement tool for parallel performance analysis. PPerfDB uses multiple sets of perfor-

mance analysis data and is able to compare results even if the data was collected by

different analysis tools. It would be advantageous to the user to compare data from

more than the limited set of executions that are stored locally. Given that the commu-

nity of developers that analyzes parallel performance is large, each developer would

benefit from the exchange of performance data. To do so, one developer would need to

allow another to transfer his or her data set to the local system where it could then be

analyzed. This process would entail a lengthy download, translating the data into a for-

mat the local system could understand, and then extracting the meaningful data. In

most cases, the cost of this process is too prohibitive to be beneficial. Ideally, a devel-

oper would query the remote location for the particular data set of interest and receive

this data in a format that easily integrates into the local system. To accomplish this, sev-

eral obstacles would need to be overcome.

The first obstacle concerns how performance data is formatted. PPerfDB uses several

external preprocessing scripts to transform various data formats into a common repre-
2

sentation. The user must run this script before the data may be analyzed. It may be

unknown what format the remote data is in, requiring the local user to transfer the

remote data to the local system and then apply the appropriate script. Instead, it would

be beneficial if the user had the option to do this translation step at the remote site.

Each site would only be responsible for translating their own data into the common rep-

resentation while not needing to know how the other sites format their data.

The second obstacle is how the remote data is stored. Given the wealth of data storage

mechanisms in use, i.e. databases, text files, XML documents, and binary files, the

remote site may employ one or more means to store their data. For instance, a site may

store archived data in a relational database and non-archived executions in a text file.

The developer should not need to know how the data is stored, and should be able to

query all of the potential data stores in a uniform manner.

The final obstacle is the volume of performance data. Each execution potentially gener-

ates hundreds of megabytes of data. If the developer is interested in only a particular

performance measurement, only the data corresponding to this measurement should be

returned. Hence, the developer needs the ability to query the remote data for this focus.

In rare cases the volume of data may be small enough to not warrant a query. However,

for the purposes of this thesis it is presumed that the volume of each data set is large

and querying this data set would significantly reduce the amount of data needing to be

transferred.

As part of the PPerfDB project, I have developed PPerfXchange to allow scientists to

easily exchange performance data by solving the obstacles described above. To facili-

tate data exchange between the collaborating scientists, each scientist maps his or her
3

data to a common naming convention described by a global XML schema. The data is

published as a set of virtual XML documents, an XML interface to a local data set,

based upon this global XML schema. The virtual XML document performs the map-

ping between the local data and the global format, and allows the local data to remain

in whatever data store the local site uses. To retrieve data from a remote site, a scientist

queries a virtual XML document using the XML query language, XQuery. When the

XQuery arrives at the remote site, PPerfXchange queries the virtual XML documents

which in turn translate and retrieve the local data. The resulting data set is returned to

the scientist as an XML document with its form defined in the XQuery. Only the data

of interest is retrieved, reducing the amount of data transferred.

This thesis details PPerfXchange’s approach for querying geographically dispersed het-

erogeneous data stores. While elements of PPerfXchange’s method have been imple-

mented for other application areas, PPerfXchange shows how these elements can be

applied to parallel performance analysis. The accomplishments of this thesis are:

• The design of an architecture for PPerfXchange, giving a uniform method to

query heterogeneous data stores;

• A proof of concept prototype implementation of PPerfXchange including a par-

tial implementation of an XQuery processor and a relational database virtual XML

document; and

• Evaluation of PPerfXchange using example parallel performance analysis data.
4

Chapter 2 of this thesis gives some background for PPerfDB, XML, XML Schemas,

and XQuery. Chapter 3 details the overall architecture of PPerfXchange. Chapter 4

describes the implementation of a PPerfXchange prototype. Chapter 5 gives an exam-

ple global XML schema, details a database containing parallel performance data,

describes how the local database schema is translated into the global XML schema, and

concludes with several example XQuery use cases. Chapter 6 highlights work related

to PPerfXchange. Chapter 7 concludes with future work.
5

6

2. Background

This chapter gives a brief introduction to parallel performance analysis using PPerfDB,

XML, XML Schemas, and XQuery. PPerfXchange makes extensive use of both XML

and XQuery to retrieve data for geographically dispersed, heterogeneous parallel per-

formance data stores. As such, a brief overview of these languages is needed. This

chapter is not intended to give a complete guide to the languages; rather it intends to

highlight the portions of the languages that PPerfXchange accepts.

2.1 PPerfDB

For a programmer writing an application for use on a parallel architecture, the process

of optimizing code is often a difficult task. In order to aid the programmer, a variety of

parallel analysis tools have been developed [4]. These tools aid in discovering bottle-

necks and poor performance by using instrumentation, performance libraries, or both to

measure particular aspects of the application. Some tools also include visualization

utilities for displaying performance measurements. However, most tools analyze only a

single run of the application at a time. For comparing multiple runs, it is up to the

developer to determine the differences. In addition, if multiple performance tools are

used, comparing the various results is made difficult by the different data formats and

specific measurements taken.

The PPerfDB project [12] at Portland State University is creating an experiment man-

agement tool that uses multiple sets of performance analysis data. The developer is able

to study particular aspects of the parallel application’s performance. If a particular

question cannot be resolved using the existing data, then a new run of the application is

performed and dynamic instrumentation inserted to measure this aspect of the applica-

7

tion. Dynamic instrumentation uses the Dyninst or DPCL libraries to insert code into a

running process to gather the performance data. The overall goal of the PPerfDB

project is to remove the developer from the analysis work and have PPerfDB self-tune

the application. Figure 1 gives a diagram of PPerfDB’s overall architecture.

To correctly compare an application’s performance data using multiple performance

tools, a common data representation is used. PPerfDB gathers performance tool data

formatted in the common representation into a Space Map. The Space Map contains the

data from multiple executions having some common parameter that the experiment will

compare. For example, the experiment may determine how varying the number of pro-

cessors affects an application’s performance when using a common platform. Each exe-

Paradyn

Tracing
Tools

DPCL

Remote
Data

Store

Space
Map

Event Map

Histograms

Visualization

Performance
Difference

Data Store

PPerfDB

Test
Application

DPCL
Interface

PPerfXchange

Graphs

Tables

Figure 1: An Architectural Overview of PPerfDB

This figure gives an overview of the PPerfDB architecture. Shown is how PPerfDB gathers data from
multiple performance tools, creates a Space Map of the gathered data, creates an Event Map, and then
visualizes the results. A performance difference operation can be applied to the Event Map or the
resulting data can be stored for future evaluation.

8

cution’s data is stored as a hierarchy of identifiable resources, such as code modules or

process identifiers, with each execution assigned a unique power of two as an identifier.

An Event Map gives a view of this hierarchy. Each node contains a label with the

resource name and an execution identifier. A structural merge operation combines the

various execution trees into a unified Event Map view (Figure 2). The execution identi-

fier of the merged tree is the sum of the individual execution identifiers. For example, if

execution one and two both were run on processor one, the resulting execution identi-

fier for processor one is three. Once an Event Map is constructed, the user may select a

focus, i.e. one resource from each path, a metric, and time interval, to compare the exe-

cutions’ performance. A metric might be the number of function calls performed, the

duration of a function call, or the percentage of CPU utilization. PPerfDB uses a visual-

ization tool, such as a graph or histogram, to display the results.

Figure 2: An Example Merged Event Map

This screen shot from PPerfDB gives an example of a merged Event Map and associated metrics.

9

Figure 2 gives an example of a merged Event Map using two executions, labeled 1 and

2. The main frame shows the available resources along three paths. The first path con-

tains the MPI function calls performed during the execution of the application. The sec-

ond path indicates the particular machine that each execution was run on and the

processor identifier of the machine. Blue 271 and 336 are nodes on Lawrence Liver-

more National Laboratory’s Blue Pacific supercomputer. The final path indicates the

MPI message tags. The right-hand window gives the user a list of available metrics.

The bottom window indicates the focus selected by the user. The start and end fields

give the time range the user is interested in examining. Figure 3 gives the resulting

visualization for the comparison of the CPU idle time for processor 3, obtained by

selecting the focus “/Code,/Machine/blue.pacific.llnl.gov/3,/SyncObject.”

Figure 3: Comparing CPU Idle Time for Two Executions

Shown is a graph comparing the CPU idle times from two executions of SMG98 for
the selected focus “/Code,/Machine/blue.pacific.llnl.gov/3,/SyncObject.”

10

2.2 XML

XML (Extensible Markup Language), developed by the World Wide Web Consortium

(W3C), presents a standard method for formatting data and documents. XML enforces

a rigid structure for its documents, allowing multiple parties to easily exchange data

since any XML aware client can read any XML document. While rigid in structure,

XML can be customized for a particular application. XML uses user-defined labels,

also called tags or element constructors, to define the various elements of a particular

document or data set. XML is similar to HTML in that both are mark-up languages.

However, instead of using tags to define the formatting of text, XML uses tags to

define the semantics of individual elements. XML formats documents through other

means, such as cascading style sheets.

The structure of a well-formed XML document is a hierarchy of elements with leaves

containing the actual content of the XML document. Elements may have attributes

indicating additional information about the element. This structure can represent a wide

variety of data including a relational database table, or a book. The table would have a

flat hierarchy with many sibling nodes, while the book would have an extensive hierar-

chy, i.e. book, chapter, section, paragraph, sentence, word, but fewer siblings.

While the XML family is extensive, the core of XML is quite simple. To export a par-

ticular data set, label each element of the set and arrange the elements in a hierarchy to

define relationships. However, just because a third party can parse the XML document

and read its tags, it does not mean that it can be interpreted. To give meaning and a spe-

cific structure to XML documents, the W3C XML Schema recommendation [27] gives

11

a framework for multiple parties to create a common vocabulary and rule set governing

the form of their XML documents. This allows each to publish XML documents that

others can not only read, but also interpret.

2.3 XQuery

To query XML documents, PPerfXchange uses the W3C’s working draft XML query

language, XQuery [28]. XQuery is the result of many years of collaborative effort and

merges ideas from other XML query languages such as XQL, XML-QL, and Quilt into

a single XML Query language. XQuery requests particular elements of XML docu-

ments and transforms them into other well-formed XML documents.

The FLWR (FOR LET WHERE RETURN) statement allows for iteration, aggregation,

and joins. The RETURN statement lists a set of element constructors or other FLWR

statements and defines the structure of the resulting XML document. The client can

define any structure and tagging they need to easily integrate the returned data into

their system. Hence, the data should need little additional transformation when it is

returned. FOR statements iterate through each element of the XML document and

apply the RETURN section to each element. LET statements assign a statement to a

variable. Whenever the variable is encountered in the RETURN statement, the LET

statement is evaluated. LET statements may be text or an element. If it is an element,

the entire data set is evaluated. The WHERE statement allows for the selection of par-

ticular elements in the XML document and gives the join properties for multiple XML

documents.

12

XQuery accomplishes projection using XPath syntax. XPath gives a path, similar to a

file path, to the element of interest within the XML document. In addition to projection,

XPath allows selection through the use of step qualifiers that place constraints on the

particular element. XQuery has an extensive set of built in functions such as count,

min, max, document, etc., which aid in the discovery and transformation of elements.

Users may also define their own functions. Figure 4 gives an example XQuery that

selects all metric data from the “smg98.xml” document where the application is

“smg98”. The FOR statement iterates through each metric element and returns the met-

ric’s name.

<m etrics>

{

FO R $v IN docum ent(“smg98.xml”)/application[name = “sm g98”]/metric

RE T UR N

<name>

{ $v/name/text() }

</nam e>

}

</metrics>

E lem ent C onstructor B uilt in function X Path Step Q ualif ier

FO R
statem ent

R ETU RN
Statem ent

T ext E lem ent

D ata E lem ent

Figure 4: Components of an XQuery

Shown is an example of an XQuery. The labels indicate the various components of the XQuery.
The element constructor defines elements of the resulting XML document. The FOR statement
iterates through an XML document, retrieved by the built-in document function. The XPath
defines the path within the XML document to the desired target element. A step qualifier selects
only elements matching the given criteria. RETURN statements define the element constructors
which are applied to each of the found target elements. A text element returns a literal tag while a
data element returns an element of the queried XML document.

13

3 The PPerfXchange Architecture

The following chapter begins by showing how PPerfXchange can be used to retrieve

heterogeneous data from geographically dispersed locations. An overview of the major

components of PPerfXchange are then detailed. This chapter gives a high level descrip-

tion of PPerfXchange with some components not having been implemented in the

PPerfXchange prototype. Please refer to chapter 4, the PPerfXchange prototype, for

specific information about the implemented components.

3.1 Using PPerfXchange

The first step in using PPerfXchange is for a group of collaborating scientists to decide

that exchanging data would help further their collective research. If the amount of data

to be exchanged is small and the data exchange is infrequent, then the use of

PPerfXchange would not be necessary. However, if the amount of data to be

exchanged is large, and it is updated often requiring frequent exchanges, then

PPerfXchange offers an innovative method to allow these scientists to uniformly

exchange data. The scientists begin by creating a global XML schema to represent a

common naming convention and format for their collective data. PPerfXchange makes

no assumptions as to the specific details of the global XML schema.

Next, each site publishes the data they wish to share as a set of virtual XML documents

based upon this global XML schema. A virtual XML document is an XML interface to

a site’s local data set. The site’s data resides in what ever data store they choose with

the virtual XML document performing the translation between the data store and the

14

global representation. (A complete discussion of virtual XML documents is given in

section 3.3.) To aid in publishing data, a graphical virtual XML document configura-

tion tool, similar to Microsoft’s XML View Mapper 1.0 schema mapping utility [25], is

used. This tool would give a visual representation of the global XML schema and the

data store’s schema, and allow the scientist to map the schemas as well as place con-

straints as to the specific data set published.

With the global XML schema created and a site’s data published as if it were an XML

document, the other scientist in the group can begin asking queries using XQuery. An

XQuery is formed by PPerfDB whenever a scientist requests data from a remote site.

Multiple XQueries may be used. An initial query might request meta-data about the

remote site’s published data and store this information in PPerfDB’s Space Map. Sub-

sequent queries would be asked in order to retrieve data for visualization once the sci-

entist has selected a particular focus from an Event Map. While PPerfXchange is

designed for use with PPerfDB, it will respond to any client, such as a web browser,

able to speak XQuery. Once an XQuery is sent to a remote site, the local

PPerfXchange server processes the XQuery and returns the resulting data in an XML

document. The resulting XML document’s structure is defined in the XQuery itself

allowing the client to define the format of the resulting data.

The remainder of this chapter discusses the internal components of the PPerfXchange

architecture. Figure 5 (next page) gives an overview of this architecture. Section 3.2

describes the XQuery processor and section 3.3 discusses the virtual XML document

construct.

15

3.2 Parsing and Processing an XQuery

The XQuery parser parses the XQuery into an abstract syntax tree (AST) and deter-

mines if the query is well-formed. If the XQuery is ill-formed, the parser returns an

error message to the user as to the source of the parse error. If the XQuery parser is suc-

cessful, the AST passes to the XQuery processor for transformation into a series of pro-

cessing instructions, and a set of native and virtual XML documents.

The processing instructions are then executed in order. An instruction may either create

a static text node, create a node using queried data, or execute a set of instructions such

as a FLWR statement. The created data and text elements are returned sequentially to

the user as a resulting XML document with its form defined in the user’s XQuery. By

sending the resulting elements incrementally, PPerfXchange reduces the amount of

XQuery

XQuery
Processor

Network
Interface

XQuery
Parser

Abstract Syntax Tree

Resulting
XML

Document

Process Instructions

PPerfXchange

Virtual
XML

Documents

Figure 5: An Architectural Overview of PPerfXchange

Shown is an overview of PPerfXchange’s architecture. An XQuery is sent to the remote
site where it is received by PPerfXchange’s network interface. The query is then parsed,
creating an abstract syntax tree (AST). The AST is transformed into a series of process
instructions that create a resulting XML document by retrieving data from a set of
virtual XML documents.

16

memory needed locally and ensures the successful retrieval of even the largest data

sets.

3.3 Unified, Virtual, and Native XML Documents

The processing instructions retrieve data from a unified XML document. A unified

XML document represents a single view over the data set of interest, which may span

multiple data stores. It combines all requested virtual and native XML documents into

a single virtual XML document, and applies qualifiers and aggregate functions to this

document. Figure 6 illustrates the document hierarchy of a unified XML document.

Configuration
Database

XML
Documents

- Local

Virtual
XML

Document -
Relational

Virtual
XML

Document
- Text

Relational
Databases

Text
Documents

DB
Conn.

Object-
Relational
Databases

Unified
Document

Native
XML

Document

XML
Documents

Text
Conn.

Direct Mapping Virtual Mapping

Figure 6: The Unified XML Document Hierarchy

Shown are the components of a unified XML document. The unified XML document rep-
resents an XML document based upon the global XML schema. Virtual XML documents
transform a particular data model into the global representation while connection objects
represent the actual link to a particular data store. Native XML documents are XML doc-
uments written in the global XML schema and thus require no mapping.

17

A unified XML document is formed when an XQuery “document” function is encoun-

tered in the FOR clause of a FLWR statement. The content of the XML document is

determined by the path stated in the FOR clause’s XPath expression. If a query seg-

ment consists of a single XML document without a WHERE statement qualifier or an

aggregate function being applied, the unified XML document abstraction is bypassed

and only a single virtual or native XML document is used.

The virtual XML documents model the structure of an XML document based upon the

global XML schema. It can be thought of an XML interface to a data set in that it maps

the underlying local data store’s schema to the common XML representation. Each

class of virtual XML document represents a common data model such as a relational

database or text file. Additional modules can be written to be able to support a wider

variety of data stores. A connection object performs the connection to a specific data

store such as a MySQL database, and performs the actual data retrieval. Multiple con-

nection modules can be written to support the various data stores. Native XML docu-

ments are XML documents whose format and content are based upon the global XML

schema. Since a native XML document’s structure matches the global XML schema,

schema mapping is not needed.

The configuration database contains the information needed for PPerfXchange to

access and model the remote data. This includes the names of the published XML doc-

uments as well as the XML document’s data store type, location, connection method,

and description. Other entities describe the structural mapping between the local virtual

XML document and global XML schema. The configuration database’s meta-data is

18

published as a virtual XML document and can be queried in the same manner as the

site’s published data.

19

4. The PPerfXchange Prototype Implementation

In this chapter, the implementation of the PPerfXchange prototype is detailed. The pro-

totype implements partial or complete versions of all PPerfXchange components.

Rather than focusing on a complete implementation of certain components, it was

decided to create limited versions for all components. This allows for the evaluation of

the PPerfXchange approach as a whole rather than focusing on a single aspect of the

approach.

Section 4.1 begins by examining how an XQuery is created by the client and sent to the

PPerfXchange prototype. Section 4.2 discusses the parsing of the XQuery and some of

the implementation details of the XQuery parser. Section 4.3 details how the XQuery is

processed using processing nodes and process instructions. Finally, section 4.4 shows

how virtual XML documents are used to map schemas and retrieve data from relational

databases.

4.1 Sending an XQuery

The first step to any query is the XQuery formulation by the client. While PPerfX-

change has been developed for use with PPerfDB, the actual client could be any pro-

gram with the ability to send an XQuery to the PPerfXchange prototype, such as a web

client. The PPerfXchange prototype does not currently use any headers or authorization

methods. Rather, it simply takes an XQuery and returns the results. The PPerfXchange

prototype supports portions of the XQuery language and allows the client to formulate

20

a wide range of queries. The PPerfXchange prototype allows queries to retrieve and

manipulate the data from a single virtual XML document at a time. Multiple virtual

XML documents may be queried in succession. Qualifiers are used to limit the size of

the returned data. Users may define their own return element tags, or use the default

global tags for the returned XML document.

An example question a client might ask is “For the application SMG98’s fourth execu-

tion, what was the CPU idle time for the focus /Code/MPI/MPI_ALLGATHER,/Pro-

cess/4,/SyncObject/Communicator/0.” If the question cannot be satisfied locally, the

client may retrieve this information from a remote site by reformulating the question

into an XQuery. Figure 7 shows an example XQuery to answer this question.

<smg98>
{ FOR $x IN document(“smg98.xml”)
 /Application[name=”SMG98”]
 /execution[id=4]
 /metric[name=”cpu_idle”]
 /focus[path1=”/Code/MPI/MPI_ALLGATHER”]
 [path2=”/Process/4”]
 [path3=”/SyncObject/Communicator/0”]
 /data
 RETURN
 <data>
 {$x/time}
 {$x/value}
 </data>
}
</smg98>

Figure 7: An Example XQuery

The shown XQuery requests all data from the fourth execution of the SMG98 application with the met-
ric CPU idle time and the focus “/Code/MPI/MPI_ALLGATHER./Process/4./SyncObject/Communi-
cator/0.”

21

The query is created to retrieve data from one or more published XML documents

located at the remote site. The client may obtain a list of the available published XML

documents, as well as the documents’ schemas, by first sending an XQuery requesting

a list of documents from the remote site’s configuration database. Once the client has

formed and sent the query to the PPerfXchange prototype, the network interface

receives the request. Each request is placed on a queue to be serviced by an XQuery

processor. The PPerfXchange prototype is multi-threaded; the exact number of threads

is a command line argument. Each thread contains an XQuery processor and processes

a single request at a time from start to finish. Once finished, a thread will take the next

request off the queue. If no requests are pending, it will wait until one becomes avail-

able. When an XQuery processor receives a request, it stores the query temporarily on

disk. Storing the query in an intermediary file allows the queries to be arbitrary sizes

and helps reduce the risk of running out of memory. Each new query an XQuery pro-

cessor receives, overwrites the previous query. When the program terminates, the tem-

porary files are removed.

4.2 Parsing the Query

After the XQuery is received, the XQuery parser reads the query from disk and trans-

forms it into an in-memory abstract syntax tree (AST). If the XQuery is ill-formed, the

XQuery parser aborts and the XQuery processor sends an error message to the client.

Otherwise, the XQuery parser returns the root of the AST to the XQuery processor.

The XQuery parser was created using GNU’s Flex [15] and Bison [6] utilities. The

22

XQuery grammar rules [28], an LL(1) grammar, were translated into Bison compliant

grammar rules, LALR(1). Figure 8 gives an example of an XQuery grammar rule and

its equivalent Bison grammar rule.

Each FLWRExpr rule is composed of one or more FOR or LET clauses, zero or one

WHERE clauses, and a RETURN expression. The FOR and LET clause rules contain

a variable, an expression, and zero or more additional clauses without the FOR or LET

identifier. In order to mimic the one or more constructs, new list elements were added

to build a left recursive list. While Bison does allow rules to have empty sentences,

XQuery Grammar Rule:

 FLWRExpr := (ForClause | LetClause)+ WhereClause? “return” Expr

ForClause := “for” Variable “in” Expr (“,” Variable “in” Expr)*

LetClause := “let” Variable “:=” Expr (“,” Variable “:=” Expr)*

Bison Grammar Rule:

FLWRExpr:

 ForLetList WhereClause RETURN Expr

| ForLetList RETURN Expr

ForLetList:

 ForLetList

| ForLetList LetClause

| ForLetList ',' LetNextClause

| ForLetList ',' ForNextClause

| ForClause

| LetClause

ForClause:

 FORVariable IN Expr

ForNextClause:

 Variable IN Expr

LetClause:

 LET Variable ASSIGN Expr

LetNextClause:
 Variable ASSIGN Expr

Figure 8: Bison Equivalent Grammar for an XQuery Grammar Rule

Shown is an XQuery grammar rule for the FLWR statement and the equivalent Bison grammar rule.

23

doing so causes multiple reduce/reduce conflict errors. To create zero occurrences of a

clause, a rule is given in its parent rule without the corresponding child rule. In order to

mimic the property that multiple FOR or LET clauses can be put together without a

new FOR or LET identifier, the “ForNextClause” and “LetNextClause” rules were

added.

The resulting AST is comprised of nodes, called xnodes, each corresponding to the

major rules. For example, the above rules are reduced to two xnodes, “FLWR” and

”ForLetList”. The parser was tested using the W3C’s published use cases [31]. All que-

ries from this list were accepted. However, user defined functions, context declarations

(namespaces), and data types do not have a corresponding xnode. These grammar rules

are ignored by inserting an “unsupported” xnode into the AST.

4.3 Process Nodes and Process Instructions

Once the XQuery has been represented as a tree of xnodes, the xnodes are returned to

the XQuery processor. The XQuery processor creates a series of process nodes and pro-

cess instructions to fulfill the client’s request. The process nodes represent an element

in the resulting XML document. There are three types of process nodes: text process

nodes contain only labels or literal value, data processing nodes contain data from the

resulting query, and a document node indicates the start of the resulting XML docu-

ment and contains header information. Process instructions represent control structures

and functions.

24

The PPerfXchange prototype implements a single process instruction, the FLWR

instruction. While additional instructions would be needed to create a fully functional

XQuery processor, the FLWR instruction illustrates how instructions can be accom-

plished. The FLWR instruction contains a variable table, a document list, and a set of

process instructions and processing nodes. The variable table is used for retrieving the

appropriate virtual XML document when forming data nodes. The documents list con-

tains a linked list of unified XML documents. However, the current implementation is

limited to a single virtual XML document per FLWR instruction and the unified XML

document construct is bypassed. The scope for the FLWR instruction’s data process

nodes is limited to this virtual XML document and the virtual XML documents

declared in any higher order FLWR statements. While nesting of FLWR statements is

allowed in the PPerfXchange prototype, joining documents is not. As such, nested

FLWR statements are not recommend since they result in the cross product of the two

documents.

Figure 9 (next page) shows the resulting processing nodes and instructions from the

XQuery given in Figure 7. The process nodes and process instructions are created by

recursively descending the xnode tree. Semantic rules are applied during this creation

process. If a semantic error occurs, the process stops and an error message is returned

to the user. The PPerfXchange prototype implements a stricter set of semantics than the

formal semantics defined by the W3C [28]. The stricter set is due to the lack of support

for other XQuery instructions and functions. For example, a FOR clause’s expression

25

must contain a document function or a variable. XQuery semantics would allow any

document related expression, such as an aggregate function. After the process nodes

and process instructions are created, the query is executed. Starting at the document

node, the XQuery processor recursively descends through the process nodes and pro-

cess instructions. The document node contains the header information about the return

document. This information is contained in a document configuration object passed to

the XQuery processor by the main program. The configuration information is stored in

a text file and read by the main program. It contains such information as the site con-

tact, XML document version number, and the character encoding used. The document

Text Process
“SMG98” FLWR

 “Data”

Text Process

“Time”
Data Process

“Value”
Data Process

Figure 9: Example Flow of Process Instructions and Process Nodes

The shown process instruction and process nodes represent the processing of the sample XQuery given
in Figure 7. The XQuery processor recursively descends through the process node and process instruc-
tion hierarchy. Text process nodes return a literal tag to the client while data process nodes return con-
tent retrieved from a virtual XML document. The FLWR instruction iterates through each item in the
virtual XML document and applies its child process nodes to the virtual XML document.

 Instruction

Process

 Node

Node

Node

Node

26

header also contains a randomly generated document number for use in logging. The

PPerfXchange prototype can be modified to store the tracking number and information

about the requested XQuery for statistical use.

When encountering a process node, an opening tag is generated and sent to the client.

After the subsequent process nodes and process instructions have been executed, the

XQuery processor returns to this node, and the closing tag is sent. Data process nodes

contain a pointer to a virtual XML document and a path in the virtual XML document

to the elements of interest. The data process node has two options, return a complete

XML element based on the path, or just the element’s text. The type sent is determined

by the client’s XQuery. A text or data function call after the node’s path, i.e. “element-

Name/text()”, indicates only the text of the node should be returned. Using just the ele-

ment name indicates the complete XML element is returned.

Process instructions themselves do not return data to the client; rather they indicate that

special processing is to be done. In the case of the FLWR process instruction, the

XQuery processor will open a virtual XML document, apply qualifiers and ranges, and

then move to the first data item in the result set. See section 4.4 for more information

about how documents are formed and queried. Next, the FLWR process instruction will

iterate through each data item and apply its process nodes and process instructions to

each. Once all the data items have been processed, the FLWR process instruction will

close the document and proceed with the next process node or process instruction.

27

4.4 Virtual XML Documents

This section details the methods used to create and retrieve data from virtual XML doc-

uments. Virtual XML documents may represent any number of different data stores,

including structured text files or databases. The PPerfXchange prototype implements a

single virtual XML document class used to model a relational database. Each virtual

XML document is created from a common virtual base class and allows for the devel-

opment of other future virtual XML document classes. The specific type of virtual

XML document created is determined by information contained in the configuration

database. Section 4.4.1 outlines the configuration process. Section 4.4.2 details how a

relational database schema is represented as a global XML schema. Section 4.4.3

shows the process of forming a relational database virtual XML document and section

4.4.4 details how data is acquired by the XQuery processor.

4.4.1 Configuring a Virtual XML Document

When the XQuery processor encounters a document function while creating the pro-

cess nodes and process instructions, a new virtual XML document object is instanti-

ated. However, the specific virtual XML document employed is unknown by the

XQuery processor. The document’s name and database configuration object (see

below) are passed to a global function called “createDocument”, which determines

which type of virtual XML document to create and returns an object of this type to the

XQuery processor.

28

The “createDocument” function first connects to the local configuration database and

issues an SQL query to the “documents” table requesting information about this virtual

XML document. The document identifier, connection type and connection identifier

are returned. If no document record exists, an error is returned to the client. Figure 10

gives the schema for the XML document configuration tables.

A second SQL query is made to the table containing the particular connection type for

this document. Currently, there is a single connection type, a relational database (SQL).

As additional connection types are supported, additional connection tables can be

added. For relational database connections, the database type and name are the only

required fields. Host, host address, and port can be used if the database is not located on

the same location as the PPerfXchange prototype. User name and password are used to

access the database as a different user than the user that started the PPerfXchange pro-

totype.

Did

document

Name

Connection T ype

Connection Id

Database type

sql connection

Database Name

Host Address

Connection Id

Host

Port

User Name

Password

1

∞

Figure 10: The Configuration Tables

Shown is the relational schema of the configuration database’s configuration tables. These
tables are used by the PPerfXchange prototype to create the appropriate virtual XML docu-
ment and connection object.

29

For a relational database connection, a database configuration object is used to store the

configuration information. This information is used by an object of the database con-

nection class to create the actual connection to the database. The database connection

class is a virtual base class allowing for uniform access to multiple relational databases.

Each type of relational database has its own connection class based upon this common

interface. The PPerfXchange prototype supports the PostgreSQL [19] object-relational

database. Support for additional databases can be added by creating a corresponding

database connection classes.

4.4.2 Representing Global XML Schemas in a Relational Database

The PPerfXchange prototype does not attempt to completely translate the XQuery into

an SQL query. Rather, only a small portion, the XPath, is actually translated. From the

example XQuery in Figure 7, the “/Application[name=”smg98”]” part of the XPath is

translated into the following generalized SQL statement:

 SELECT * FROM Application WHERE name = “smg98”

To map the virtual XML document to the relational database’s schema, each level in

the virtual XML document’s hierarchy is represented as an SQL statement. Retrieval of

child elements is accomplished using additional subqueries. While this method is sim-

ple to implement and allows for easier schema mapping, performance suffers when the

document has an extensive hierarchy. The multiple subqueries act as nested SQL que-

30

ries with each subquery being re-evaluated each time a higher order item is moved.

The translation process is accomplished using several tables in the configuration data-

base. The tables are based on the structure of an XML document and allow the map-

ping of a particular XML document to a relational view. Figure 11 shows these tables

and their relationships.

The "objects" table contains the identifier and name of each global XML schema’s non-

leaf elements, called objects, for all documents. Because each document can contain

objects having the same name, the document identifier is given so only the correct

objects for a particular virtual XML document are retrieved. The “name” field is the

name of the object in the global XML schema and the “relation” field is the relational

Cid
child

Name
Field
IsAttr
IsNode

ParentId

Jid

joins

Objid

RefId

EqlType

ValType

Refcid

Objcid

Did

root objects

Objid
Name

Objid

objects

Did
Name
Relation
OrderField
Ascending

Objid

reference

RefId
Name

Cid

constraints

Objid

EqlType

ValType

Value

Figure 11: Translating A Relational Database Schema to a
Virtual XML Document

Shown are the configuration database tables used to translate the local relational data-
base’s schema to a particular virtual XML document. The tables model the hierarchical
structure of an XML document. The arrows indicate the relationships between the rela-
tional database’s tables.

31

database’s entity that models this object. The “root objects” table defines which

objects are document nodes, with one root object for each virtual XML document.

Each object maps to an entity, table or view, in the relational database that the virtual

XML document is modeling. When there is not a one-to-one mapping between a data-

base table and a virtual XML document object, a view must be created in the database

that correctly models this object. Entities can be shared among objects.

One key feature of XML is that its data is ordered. However, most relational databases

do not inherently keep data in an ordered manner. To help maintain order, the

“orderField” and “ascending” fields were added to the “objects” table. The

“orderField” indicates which of the object's children determines the order of the data.

The “ascending” field is a Boolean value indicating the order direction. The document

order of the objects themselves is determined by the object identifier. Lower object ids

will be traversed before higher object ids.

Objects may contain children, the leaf elements or attributes of the virtual XML

document. To represent the mapping between the children and the relational database,

the PPerfXchange prototype uses the "child" table. The “name” field is the global

XML schema name for the child. "Field" indicates the field in the parent object's entity

to which the child is mapped. The “isattr” field is a Boolean value used to indicate if

this child is an attribute of the object. Certain fields in the relational database are

sometimes needed to satisfy joins between the virtual XML document’s levels, or

32

indicate ordering, but are not elements of the virtual XML document itself. The

“isnode” field is a Boolean flag indicating if the contents of this child are actually part

of the virtual XML document or are only used to aid in the processing of the virtual

XML document.

In addition to children, objects may contain other objects. The "reference" table

contains a list of child objects. The "joins" table is used to define the relationships

between the parent and child objects’ relational database entities. For example, if a

student object contains a address object, then a join is used the to retrieve an address for

a particular student. The "reference" contains the object identifier of the parent, a

reference identifier of the child object, and the global XML schema name for the child

object. The “reference id” uniquely identifies which join to use for a particular child

object. Within the "joins" table, the “object id” is the identifier of the child object. The

“refcid” and “objcid” are the child identifiers from the "child" table that join the two

objects. The “eqltype” field defines which equality type, i.e. equals, not equals, less

than, greater, etc., the join is bounded by. The “valtype” field is the data type of the two

child values.

The "constraints" table is used to add qualifiers to a particular object's data. If only

certain records of a given entity define an object, adding a constraint eliminates the

need to create a separate view. The “cid” is the child identifier of the object's children

upon which the projection is based. The object identifier is the object applied to the

33

constraint. The “eqltype” and “valtype” are the same as the "joins" table equality and

value types. The “value” field is the literal value of the constraint.

4.4.3 Forming a Relational Database Virtual XML Document

During the execution phase of the XQuery processor, a virtual XML document is cre-

ated when the “document” function is encountered. The query then applies selection

and projection qualifiers to the virtual XML document using the subsequent XPath.

Step qualifiers and range expressions are applied to achieve selection and the document

path is applied to achieve projection. This path information is stored in the virtual XML

document and is used to form the document when the FLWR instruction that contains it

is first encountered. The formation of a document is the process of creating an in-mem-

ory data structure matching the virtual XML document whose structure is defined in

the configuration database. This section first describes how XPath is applied to a docu-

ment and then details how documents are formed.

Adding a new object is straightforward for simple path navigation, i.e. “/”. The object

is simply added to the document’s path object. For recursive navigation, i.e. “//”, all

object’s of a given name that are descendants of the current object are added. This

could lead to multiple branches within the path. The PPerfXchange prototype does not

currently allow a path to contain more than one branch. Hence, only the first descen-

dant in document order is added. To find the path to the descendant, the descendant’s

parent object is determined by generating a SQL query to the configuration database. If

34

the parent object does not match the object indicated before the recursive navigation, a

second query is made to find the parent’s parent object. The process continues until the

complete path is found.

Qualifiers are added by passing the virtual XML document the path of the qualified

object, the name of the object’s child that the qualifier is applied to, the equality type of

qualifier, the value to apply, and finally the data type of the value. A range expression

constrains the resulting data set from a particular minimum element to a maximum ele-

ment, for example from element 2 to 10. Since applying a range expression implies the

document is ordered, results will only be correct if the order field in the “child” table is

specified.

A new document is formed each time an FLWR instruction is entered. For nested

FLWR statements, the document is re-formed each time it is encountered. This allows

different qualifiers to be applied to each iteration of the FLWR instruction. Qualifiers

added during the document’s configuration are permanently added, while qualifiers

added during the execution phase are only applied to the next formation of the docu-

ment.

An XML object class represents an object as defined in the “object” table of the config-

uration database. It is formed by querying the configuration database for its relation,

order field, and order direction. Next, it determines if it is the target object, i.e. the last

35

XPath node, and if the “descendants” flag is true. The descendants flag is used to

enable or disable adding the target object’s descendants to the virtual XML document.

Disabling descendants increases the efficiency of the PPerfXchange prototype since the

subqueries for the descendants are not evaluated and only the target object’s children

are used in the query. By default this flag is set to false, but may be set to true using

the function call “descendants("true”)” within the user’s XQuery.

If this is not the target node, the XML object creates a new XML object for the next

object in the path. If this is the target object and the descendants flag is true, a new

XML object is created for each of the target object’s child objects. The parent object

queries the configuration database for all joins between the parent object and child

objects. Joins are stored in the parent object and applied when the child object is

opened. Each child object is formed until all descendents on this path are created. After

all descendent objects have been formed, the current XML object’s children are added.

The configuration database’s “child” table is queried for a list of children for this

object. Each child is added to the object’s children list, ordered by identifier. The XML

object stores the child’s global XML schema name, the database field name, a Boolean

flag determining whether the child is an attribute, and second Boolean flag determining

whether the child is a node and should be part of the resulting XML document. The

final query to the configuration database determines the constraints to apply to this

object.

36

During the formation of each XML object, a helper class is employed to build and store

this object’s SQL statement. The “sqlBuild” class enables the SQL statement to be built

incrementally. The “FROM” clause is set using the object’s “relation” field. The

“SELECT” clause is built by adding each child’s “field” value. Permanent “WHERE”

statements are added using constraints while variant qualifiers are added just before

execution of the SQL query. “ORDER BY” clauses are set using the object’s order field

value.

4.4.4 Retrieving Data from a Relational Database Virtual XML Document

This section illustrates the process of retrieving data from a virtual XML document and

how the data is returned to the user. The virtual XML document begins by opening its

root object. The root object connects to the actual relational database containing the

performance data and executes an SQL query created during the formation of the

object. If a range expression is used with this object, the object will move to the first

record in the range. Next the object’s children are assigned values from the return data

set. The object then applies all joins to its child objects. Each child object is then

opened. The process repeats for each child.

Each iteration of the FLWR instruction moves to the next record in the data set. The

next record is defined as the next record in the target object. When the target object

reaches the last item in its set, it is closed and its connection to the database is

destroyed. Its parent object moves to its next record and the target object is re-opened,

37

joining to the parent object’s new data item. The process is the same for objects on all

levels in the path.

The virtual XML document returns data to the XQuery processor using an xmlNode

object from the GNU’s libxml2 library [33]. The first time a process node, data or text,

is retrieved, a new xmlNode is created by recursively moving through each object in

the virtual XML document. The object adds its own information and each of its chil-

dren, attributes and content, to the xmlNode. Children with the “isNode” flag set to

false, are ignored. The XQuery processor can retrieve the entire xmlNode or a particu-

lar sub-node at a given point in the path. The XQuery processor then either sends the

entire retrieved portion of the xmlNode or just the text. Every subsequent retrieval for

this record is applied to this current xmlNode. When the object is moved or closed, the

xmlNode is destroyed.

38

5 Examples

This chapter gives an example of how PPerfXchange can be used to query remote par-

allel performance data. Section 5.1 details an example global schema for parallel per-

formance data. Section 5.2 gives three example performance data databases created

from data gathered by Christian Hansen [12] for use with PPerfDB. Section 5.3 illus-

trates the mapping between the global schema and the performance data databases.

Finally, section 5.4 gives some example use cases for retrieving data from the perfor-

mance data databases using PPerfXchange.

5.1 Example Parallel Performance Global Schema

The initial step in using PPerfXchange is to develop a global schema. The specifics of

the schema is left to the participants. So long as each party agrees to the schema, any

schema can be used. Figure 12 (next page) gives an example global schema hierarchy

for parallel performance data. Appendix A contains the corresponding schema file.

The root element of the global XML schema is the application for which the perfor-

mance analysis data was generated. Each application contains the name of the applica-

tion, any general information the author wishes to publish, and one or more executions.

Each execution contains an unique identifier, various configuration information, the

start and end times of the performance data, and one or more observed metrics. The

author can also add zero or more “other” elements. These are meant to allow additional

39

information about a specific execution but cannot be queried. Metrics have a name and

zero or more foci. Each focus contains one or more paths and zero or more data ele-

ments. Data elements contain a time value as well as the data value observed.

5.2 Parallel Performance Database for SMG98

The example data used to show PPerfXchange’s features is taken from a set of parallel

performance analysis data gathered by Christian Hansen [12]. The data was gathered

using the Vampir tracing tool for the application SMG98. SMG98 is a semicoarsing

multigrid solver used to solve systems of linear equations that compute finite differ-

ence, finite volume, or finite element discrete diffusion equations on distributed mem-

ory architectures [12]. The data for each execution of SMG98 was transformed from

application

executionname Information

metric

id optimizationLevelarguments platform

starttime endtime

other

focusname

datapath

valuetime

1..∞

0..∞

0..∞

1..∞

0..∞1..∞

Figure 12: An Example Parallel Performance Global XML Schema

Shown is an example global schema hierarchy for parallel performance data.

40

Vampir’s data format into a set of text files. One file contains a list of available metrics,

a second contains the available foci, and a third contains a listing of metric-focus pairs,

the start and end times of the execution, and the name of the file containing the gath-

ered data for this pair. Each focus contains three paths, “/Code”, “/Process”, and

“/SyncObject.” Depending upon the specific execution, the number of metric-focus

pair entries, and hence the number of data files, ranges from 2 to 2199.

Three executions were used, SMG98_4, SMG98_8, and SMG98_27. The amount of

data generated is dependent on the number of metric-focus pairs observed, the amount

of time the application was allowed to run, and the number of observable events. Table

1 lists the number of metric-focus pairs, run time, and total size of the data.

A PostgreSQL database was created to store the execution’s data. Initially, all execu-

tions for SMG were to be stored in a single database. However, the number of data

value tuples exceed 20 million for just these three executions. SQL queries of the data

values had unsatisfactory execution times due to the large number of tuples. As a result,

a separate database was created for each execution. Note that the size of each database

could not be determined due to the lack of administration support in the PostgreSQL

Table 1: Test Executions

Execution
Number of

Pairs
Run time (sec.)

Total Size of
all files (MB)

SMG98_4 2 12.7 20

SMG98_8 1057 5.6 257

SMG98_27 2199 11 248

41

database used. The databases share the same schema as shown in Figure 13. A utility

program was created, paraImport, which populated the three databases from the text

data files.

5.3 Configuration of XML to SQL

With the SMG98 databases populated, the configuration database must be configured

to allow XQueries to the PostgreSQL databases. The initial step is to determine the

mapping between the global XML schema and the database schema. Each level of the

global XML schema’s hierarchy must be mapped to an entity in the database. Figures

14 (next page) and 15 (page 43) illustrate these mappings.

fid

focus

Name

mid

Data

did

path1

path2

path3

startTime

endTime

mid

metrics

Name

id

information

appname

appinfo

execid

args

optlevel

platform

problemSize

sharedMemory

commProtocol

vid

value

did
time

value

Figure 13: SMG98 Performance Data Database Schema

Shown is the database schema used to store the SMG98 performance data. The data
table contains the metric-focus pairs and the start and end times. The metrics and focus
tables store the metric and focus names. The value table contains the observed perfor-
mance data. The information table contains information about the execution and appli-
cation.

42

Once the mapping has been determined, the configuration database is populated. First

each database is entered in the documents table with the SMG98_4 database entered as

the smg98_4.xml document, SMG98_8 as smg98_8.xml, and SMG98_27 as

smg98_27.xml. Next, an sql_connection entry is made for each database. Entries for

the five objects in the XML schema, application, execution, metric, focus, and data, are

made in the objects tables. For application, metric, and data, the entries are straightfor-

ward since each has a direct mapping to an entity, information, metrics, and value

id

information

appname

appinfo

execid

args

optlevel

platform

problemSize

sharedMemory

commProtocol

application

execution

name

Information

id

optimizationLevel

arguments

platform

starttime

endtime

other
mid

Data

did

path1

path2

path3

startTime

endTime

Global XML Schema SMG98 Database Schema

Figure 14: Mapping the Application and Execution Elements

Shown is the mapping between the application and execution elements in the global XML
schema with the corresponding tables in the SMG98 database schema. Most elements
map to a field in the information table with the exception of the start and end times, which
map to the data table. Since all data items have the same start and end times, only one
value from each is needed. Note that there are three “other” elements mapping to informa-
tion specific to SMG98.

43

respectively. However, execution and focus are composites of multiple entities. Two

views, execution and paths, were created in each of the SMG98 databases. Execution

and focus are then mapped to the views. Each child element of the objects are entered

in the child table and mapped to a specific field in the corresponding entity. Child

objects are entered in the reference table and joins are added for the metric/focus and

focus/data relationships. Additional children were added, i.e. the metric identifier and

data identifier, to facilitate the joins. Finally, application was entered as the root object.

focus

name

data

path

value

time

Metric

path

path

fid

focus

Name

mid

Data

did

path1

path2

path3

startTime

endTime

mid

metrics

Name

vid

value

did
time

value

fid

focus

Name

fid

focus

Name

Global XML Schema SMG98 Database Schema

Figure 15: Mapping the Metric, Focus, and Data Elements

Shown is the mapping for the global XML schema’s metric, focus, and data elements to
the SMG98 database tables. The metric element directly maps to the metrics table while
the focus element indirectly maps to the data table through three instances of the focus
table. The data element maps directly to the value table. The combination of metrics iden-
tifier and the focus paths obtain the values comprising the selected metric-focus pair.

44

5.4 Use Cases

With the databases in place and the mapping configuration complete, PPerfXchange is

now able to begin evaluating XQueries. This section gives a series of use cases (see

Table 2) that PPerfDB may need to retrieve remote performance analysis for use in an

experiment. The situation for each case is given as well as a corresponding XQuery.

Each of use case’s XQueries were sent to PPerfXchange and a resulting XML docu-

ment retrieved. Performance measurements, such as the retrieval time, were not

recorded since the test use cases are meant to only illustrate the usefulness of

PPerfXchange. Once a full implementation of PPerfXchange is developed, the perfor-

mance of PPerfXchange will be evaluated. Portions of the resulting XML documents

are given in Appendix B.

Table 2: Use Cases

Use XQuery

1 To determine the remote
site’s published virtual XML
documents, PPerfDB querys
the configuration database
for a list of virtual XML doc-
uments as well the corre-
sponding global XML
schema. The schema’s tag is
replaced with “template” and
the schema element’s text is
inserted using the “text()”
function.

<documentList>
{
 FOR $x IN document("PPerfConf.xml")/documents
 RETURN
 <document>
 { $x/name }
 <template> { $x/schema/text() } </template>
 </document>
}
</documentList>

45

2 Once a list of documents is
obtained, PPerfDB now
determines what informa-
tion is available about the
applications in the
“smg98_8.xml” document.
While each document in the
example corresponds to a
single execution, a virtual
XML document may span
more than one execution.

<applicationInformation>
{
 FOR $x IN document("smg98_8.xml")/application
 RETURN
 <application> { $x } </application>
}
</applicationInformation>

3 Next, PPerfDB gathers a list
of information about the
available executions. Again,
the example document has
only a single execution but
may span multiple runs.

<executionInformation>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution
 RETURN
 <execution> { $x } </execution>
 }
</executionInformation>

4 The information about the
available metrics is deter-
mined and the results are
placed into PPerfDB’s Event
Map.

<metricInformation>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution/metric
 RETURN
 <metric> { $x/name/text() } </metric>
 }
</metricInformation>

5 Next, PPerfDB determines
what foci are available for
the metric “func_calls.”
PPerfDB now has a com-
plete Event Map and the
experiment may now begin
retrieving data.

<focusInformation>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution/metric[name="func_calls"]
 /focus
 RETURN
 <func_calls> { $x } </func_calls>
 }
</focusInformation>

Table 2: Use Cases

Use XQuery

46

6 The scientist has selected a
focus from the Event Map
and wishes to visualize the
results. PPerfDB now
retrieves all performance
data for this focus from the
remote site.

<smg98_8data>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution
 /metric[name="func_calls"]
 /focus[path1="/Code/MPI/MPI_Comm_size"]
 [path2="/Process/4"]
 [path3="/SyncObject/Communicator/0"]
 /data
 RETURN
 <process4> { $x } </process4>
 }
</smg98_8data>

7 The scientist wishes to only
analyze the focus data
between the time interval of
1 and 1.02 seconds. PPerfDB
retrieves only a subset of
data for the given focus.

<smg98_8data>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution
 /metric[name="func_calls"]
 /focus[path1="/Code/MPI/MPI_Comm_size"]
 [path2="/Process/4"]
 [path3="/SyncObject/Communicator/0"]
 /data[time>1][time<1.02]
 RETURN
 <process4> { $x } </process4>
 }
</smg98_8data>

Table 2: Use Cases

Use XQuery

47

8 The scientist wishes to com-
pare the focus data from the
“smg98_8.xml” document
with the same focus from the
“smg98_27.xml” document.
Both documents are queried
in succession. The results are
returned as a single XML
document. Note that the time
intervals selected are meant
to reduce the size of the
resulting XML document.
They are not meant to corre-
spond to an actual perfor-
mance analysis experiment.

<smg98data>
 <smg98_8data>
 {
 FOR $x IN document("smg98_8.xml")/application
 /execution
 /metric[name="func_calls"]
 /focus[path1="/Code/MPI/MPI_Comm_size"]
 [path2="/Process/4"]
 [path3="/SyncObject/Communicator/0"]
 /data[time>1][time<1.02]
 RETURN
 <process4> { $x } </process4>
 }
 </smg98_8data>
 <smg98_27data>
 {
 FOR $x IN document("smg98_27.xml")/application
 /execution
 /metric[name="func_calls"]
 /focus[path1="/Code/MPI/MPI_Comm_size"]
 [path2="/Process/4"]
 [path3="/SyncObject/Communicator/0"]
 /data[time>7.7][time<7.74]
 RETURN
 <process4> { $x } </process4>
 }
 </smg98_27data>
</smg98data>

Table 2: Use Cases

Use XQuery

48

6 Related Work

The architecture and implementation of PPerfXchange presented in chapters 3 and 4

are the results of research in three major areas. Section 6.1 describes the mediator con-

cept in which a unified process is created to access multiple databases using a global

schema for semantic integration. Section 6.2 presents work related to representing

XML and XML queries in relational databases. Section 6.3 describes some of the work

surrounding the development of the XQuery language.

6.1 Mediators and Semantic Integration

The term mediator is used to describe a semi-autonomous module that manages parti-

tioned, i.e. distributed, information systems. The mediator is placed between the user

and the information system. The users see a single system and can make read-only que-

ries against this unified view. The mediator receives this query and evaluates it by issu-

ing sub-queries to particular data stores within the system. In Gio Wiederhold’s 1991

paper Mediators in the Architecture of Future Information Systems [26], the author

details an architecture that uses mediators to abstract the details of a distributed infor-

mation system. The unified document hierarchy as described in section 4.3 is based

upon this idea. A paper by Richard Hull, Managing Semantic Heterogeneity in Data-

bases: A Theoretical Perspective [13], discusses how mediators can be used for read-

only queries across data stores containing varying schemas.

49

Gio Wiederhold details two approaches for using mediators. The first is a materialized

approach in which data from the various data stores is periodically updated into a single

source. Data warehousing is an example of this approach. A second approach, which

PPerfXchange adopts, is to use an integrated view, or virtual schema, across all data

stores. The virtual approach has the advantage of being able to query active data stores

but suffers from the complexity of needing to translate local schemas into the unified

view, and the added costs associated with it. For the materialized approach, only histor-

ical data may be viewed. If large volumes of data are present, the cost of querying this

large data store may outweigh the cost of mapping virtual schemas.

The concept of mediators has been studied for a variety of data stores. The paper

Object-Oriented Mediator Queries to XML Data [16] discusses a method of using

object-oriented mediator queries to retrieve data from a collection of XML documents.

Querying Heterogeneous Information Systems Using Source Descriptions [10]

describes a method of querying the world wide web (WWW) called the information

manifold. The information manifold uses a “world view” to represent a virtual view

across multiple WWW documents.

The concepts illustrated by these and other papers are presently used in commercial

database systems. One such application, Nimble [7], extensively uses XML to achieve

a unified model of the underlying data stores. Nimble uses the global-as-view approach

[11] in which XML queries are definitions for how to query the local data stores.

50

While Nimble and PPerfXchange have similar architectures, PPerfXchange was devel-

oped without prior knowledge of Nimble. Nimble was released in February 2002 after

PPerfXchange was developed and implemented. However, the co-founder of Nimble,

Alon Halevy, has authored several papers on data integration including Logic-Based

Techniques in Data Integration [11].

6.2 Representing and Querying a Relational Database Using XML

As the development of the PPerfXchange prototype began, the W3C published their

working draft for the XQuery language [28]. While little work prior to this point had

been done in the translation of XQuery to SQL, work had been done on related XML

Query languages. In particular, Pushing XML Queries Inside Relational Database [17]

by Ioana Manolescu, Daniela Florescu, and Donald Kossmann used the Quilt XML

query language to show how such queries could be translated into SQL. The authors

work uses a “local as view” (LAV) approach, purposed by Alon Halevy [11] in which

the contents of a data store are described in terms of the global schema. The query is

reformulated in terms of the local data store, executed, and then translated it back into

the global schema. Manolescu, Florescu, and Kossmann define a set of relations that

correspond to the structure of a virtual generic XML Schema. The local relations are

then described as a virtual XML document based upon the virtual generic schema. The

XML query is then normalized, translated into an SQL query, and evaluated by the

relational database.

51

A second approach that influenced PPerfXchange’s design is given by SilkRoute [9].

SilkRoute offers two methods to represent an XML query as a relational database

query. The first is a virtual view in which an XML query, in this case XML-QL, is

applied against virtual XML views representing entities within the relational database.

Each query is translated into SQL via an intermediately query language called “Rela-

tional to XML Transformation Language” (RXL). However, the translation process is

complex and may create a slightly differing result then the intended query. The second

method uses a materialized XML document for the entire database. While this means

the query is not acting on live data, no translation step is needed.

For PPerfXchange, some of the ideas expressed above have been implemented in the

PPerfXchange prototype. However, aspects have been modified to better solve the

objectives of PPerfXchange. One area that both solutions do not address is how other

data stores can be queried and how virtual XML documents from multiple data stores

can be joined. If the prototype followed the approach given by Pushing XML Queries

Inside Relational Database [17], each class of data store, i.e. text, XML, object-ori-

ented databases, would need its own SQL-like query mechanism and a translation pro-

cess from an XML Query to this mechanism. Also, if multiple documents are used in a

single query, and each document maps to a different data store, then an additional

higher-order process will need to divide the query across the data stores and then join

the resulting data sets. For native XML documents, XML documents written in the glo-

bal schema, a complete XML query processor would need to be developed, passing the

52

result set to a higher level XML query processor for additional processing. A second

unsolved issue is that several features of a XML query are difficult, if not impossible,

to translate into SQL. One example is when a query needs to be materialized for inter-

mediate XML results. A second is support for user-defined functions.

The approach the PPerfXchange prototype uses is to push only a small part of XQuery

into the relational database, leaving the bulk of the processing to be done in the XQuery

processor itself. Only the XPath portion of an XQuery is used by a virtual XML docu-

ment to configure the mapping to the actual data set. The virtual XML document repre-

sents the entire object defined by the XPath, including children. The XQuery processor

then processes the virtual XML documents as if they were native XML documents.

While virtual XML documents would most likely be less efficient than an SQL proces-

sor and return larger than needed data sets for processing, this penalty is mitigated by

benefit of applying a uniform process to all data stores.

In The Table and the Tree: On-Line Access to Relational Data Through Virtual XML

Documents [2], the authors describe the ROLEX (Relational On-Line Exchange with

XML) system architecture. ROLEX is a SAX and DOM interface to a relational data-

base, specifically DataBlitz, in which relational data may be published as an XML doc-

ument for use with a web server. DOM stands for “Document Object Model” and

creates an in-memory tree data structure of an XML document. DOM allows for pars-

ing of the XML document and retrieval of specific elements within the document tree.

53

SAX is an event driven XML document parser for use with large XML documents or

used to model XML documents in a different object model than DOM. The authors

determined that the techniques for translating XML queries to SQL as shown in

SilkRoute [8,9] were too costly for the high demand of a web-server. Instead, they pro-

vide the interface for extracting relational data as an XML document and lets the XML

query processor or web server handle any additional processing. PPerfXchange

adopted this idea of only pushing part of the XML query into the relational database but

stopped short of creating a SAX and DOM interface.

The paper Efficiently Publishing Relational Data as XML Documents [22] describes

several methods for representing relational data as an XML document. This paper was

not found until after PPerfXchange was designed and the prototype implemented. It is

unfortunate because several of the methods discussed could have been implemented

and might have greatly improved the performance of the relational database to virtual

XML document translation process. The approach used in PPerfXchange is described

by the authors as the “stored-procedure approach”. This approach uses nested queries

to model the hierarchical XML model. For documents with large hierarchies, the nested

queries result in a considerable performance cost. Other approaches are the Redundant

Relation and Outer Union. Both join all relations into a single view. Markers keep track

of the movement within the hierarchy, either in a column or row, and data is tagged

appropriately. Figure 16 (next page) illustrates this approach.

54

The differences between the two is that the Redundant Relation approach uses left-

outer joins to combine the relation while the Outer Union approach uses a combination

of right and left outer joins. The Redundant Relation approach will return a tuple for all

leaf nodes, even if that leaf node contains no data. The outer union approach returns

only populated tuples thus reducing the result size and decreasing the amount of pro-

cessing needed.

6.3 XQuery

The direction of XQuery’s development was heavily influenced by the document Data-

base Desiderata for an XML Query Language written by Dr. David Maier [18]. The

document outlines Dr. Maier’s desired characteristics for XQuery. This document

34/SyncObject/Process/Code/MPI

13/SyncObject/Process/Code/MPI

22/SyncObject/Process/Code/MPI

34/SyncObject/Process/Code

63/SyncObject/Process/Code

52/SyncObject/Process/Code

51/SyncObject/Process/Code/MPI

101/SyncObject/Process/Code

ValueTimePathPathPath

Focus

Path PathPath Data

ValueTime

Figure 16: Alternative XML Representation Approaches

Shown is how the Redundant Relation and Outer Union approaches would view an XML
document in SQL.

55

pushed the development of XQuery toward the “XML as data” instead of the “XML as

document” [14]. This facilitated XQuery’s support for relational query operations and

made it easier to translate XQuery syntax to SQL.

At the time the development of PPerfXchange began, XQuery 1.0 [28] had just been

released by the W3C. At the time only two XQuery processor implementations had

been created, one by Microsoft and one by FatDog Software. Both are commercial

products and unavailable for use with PPerfXchange. This condition lead to the devel-

opment of PPerfXchange’s XQuery processor. Nearly nine months later, several more

implementations have become available. Notably, Galax [24] is in development at Bell

labs and is currently in alpha release. Galax’s goal is to fully implement the entire

XQuery family [27-32] as an open source application. The current alpha release is used

as a module to Bell Labs DataBlitz database.

56

7 Conclusions and Future Work

This thesis has detailed the PPerfXchange approach for retrieval of parallel perfor-

mance data from geographically dispersed, heterogeneous data stores. PPerfXchange

uses global XML schemas to describe a common format for parallel performance data.

For each set of data a site wishes to publish, a virtual XML document is created. A vir-

tual XML document maps the published data set’s schema to an XML document based

on the global XML schema. PPerfXchange uses a configuration database to store

information about this mapping. Once a set of virtual XML documents is published by

a site, other sites may query these documents using the XML query language XQuery.

Since the amount of parallel performance data is often large, the use of XQuery allows

a user to retrieve a specific subset of performance data from the larger published set.

XQuery also allows the user to define the format of the resulting data set for easier inte-

gration with the user’s local format.

Chapter 5 gives an example of how PPerfXchange is used to retrieve parallel perfor-

mance data from a remote data store. The data store used was a PostgreSQL object-

relational database. The chapter shows how the global XML schema is mapped to the

PostgreSQL database schema and gives several example use cases. The use cases illus-

trate the XQuery expressions, path expressions, element constructors, and FOR expres-

sions, necessary to retrieve data from a relational database. Future versions of

PPerfXchange should add the ability to join two or more documents, apply aggregate

functions, and sort documents. Other XQuery expressions would only need to be

57

implemented in order to fully support XQuery but are not necessary for the evaluation

of the PPerfXchange approach. These unsupported expressions are: data types, most

built-in functions, user defined functions, process instructions, references, arithmetic

operation, comparison operations, logical operations, sequence-related operations, and

conditional expressions. Future versions of PPerfXchange may consider integrating an

open-source XQuery processor, such as GALAX [15], instead of completing the cur-

rent XQuery processor.

The unified XML document hierarchy described in chapter 3, shows how multiple vir-

tual XML documents can be combined into a single view. While each virtual XML

document may map to a single data store, unified XML documents allow an integrated

view of multiple data stores. Completion of the unified XML document is not abso-

lutely necessary. As shown in the use cases, performance data can be retrieved without

it. However, a unified XML document would allow for the abstracting of the SMG98

databases, each containing a single execution’s performance data, into a single view

over all executions. This allows for simpler and more uniform queries and reduces the

amount of site specific information needed by users to form queries.

Additional virtual XML document classes and connection classes are needed to support

a wider variety of data models and data stores, including native XML documents and

other structured text files. The supported structured text files would be those generated

from parallel performance analysis tools such as the text files used to create the SMG98

58

database described in chapter 5. Since virtual XML documents map a specific data

store’s structure to the global XML schema, each type of structured text file may

require a unique virtual XML document. Also needed is the creation of a schema-to-

schema mapping tool to simplify the publishing of a data set as a virtual XML docu-

ment.

Since each site’s performance data is proprietary, future versions of PPerfXchange

should give administrators the ability to authenticate and log XQuery requests. An

administrator should be able to grant or deny access to each particular published data

set depending upon privileges of the person sending the query. Also, logs should be

kept of all requests for administrative information. The use of encryption for sending

the XQuery and the resulting XML document is encouraged in future versions.

While the performance of PPerfXchange was not measured nor optimized, several per-

formance issues should be addressed in future versions. The main performance issue is

the time to transfer data. While additional processing by the XQuery processor may

reduce the amount of data in some cases, the volume of data is still assumed to be large.

Currently, the PPerfXchange prototype uses TCP to transport data across the network

connection. While TCP is reliable, the use of UDP should be researched since UDP

has less overhead than TCP and can be more efficient for bulk data transfer. A second

performance issue is the time to process an XQuery. Specifically, the relational data-

base virtual XML document class can be modified to use a more efficient method of

59

modeling a relational database schema. The PPerfXchange prototype uses the “stored-

procedure approach” but should investigate the use of the Outer Union approach [22]

as described in section 6.2. Also, a reduction in the number of times the data is copied

within the XQuery processor would increase efficiency. The virtual XML document

first stores the data returned from the PostgreSQL database in a temporary data struc-

ture. A second copy is made when forming the resulting XML document and a final

copy is created when the resulting XML document is buffered for network transport.

The final two copies could be eliminated if the libxml2 library [33] was not used and if

PPerfXchange contained its own method of creating and transferring the resulting

XML document.

Although the prototype of PPerfXchange is not complete, it does allow for the evalua-

tion of the PPerfXchange approach. The overall goal of PPerfXchange is to allow geo-

graphically dispersed collaborating scientists, specifically those scientists optimizing

applications for use on a parallel architecture, to easily exchange heterogeneous data.

To accomplish this goal, PPerfXchange needs to overcome three main obstacles. The

first obstacle is the semantic integration of the heterogeneous data stores. To solve this,

PPerfXchange uses a global XML schema. Each site maps their data’s format and

semantics to the common format. A site needs to only translate their own data into the

global XML schema but does not need to have knowledge of the specific formats used

by other sites. The second obstacle is each site may use different methods to store the

data. Some sites may use a relational database, while others may use text files. In

60

order to retrieve the data, the query writer should not need to know what data store is

being used by the remote site. To solve this, PPerfXchange uses virtual XML docu-

ment classes to represent various data models and connection classes to connect to a

specific data store. A virtual XML document maps a specific data store’s schema to the

global XML schema and retrieves the data. The final obstacle is the volume of data

that can be generated by parallel performance analysis tools. Since a single execution

can generate hundreds of megabytes of data, the time to transfer the entire data set

would be lengthy. To limit the amount data retrieved to the specific data set needed to

aid in a particular performance analysis, PPerfXchange allows for the querying of

remote performance data using XQuery. Also, an XQuery defines a resulting XML

document’s format allowing for easier integration at the local site.

61

8 References

[1] Fabio Arciniegas. C++ XML. Indianapolis, IN: New Riders Publishing,
2002.

[2] P. Bohannon, H.F. Korth, P.P.S. Narayan. The Table and the Tree:
On-Line Access to Relational Data Through Virtual XML Documents.
Bell Laboratories, Murry Hill, NJ. Proceedings of the WebDB 2001
Workshop on Databases and the Web. May 2001. Santa Barbara, CA

[3] Ronald Bourret. XML and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.
February, 2002

[4] Rajkumar Buyya. High Performance Cluster Computing: Volume 1
Architectures and Systems. Prentice Hall, New Jersey, 1999.
Pages 33-34.

[5] Justin Campbell, Daniel Grossman, Ana-Maria Popescu. Quilt2Sql -
An ML Storage Schema and Query Engine for the Quilt Query
Language. University of Washington CSE 544 Term Paper.
http://www.cs.washington.edu/homes/grossman/projects/544project
June 5, 2000.

[6] Charles Donnelly, Richard Stallman. Bison: The YACC-compatible
Parser Generator. November 1995. Bison version 1.25
http://www.gnu.org/manual/bison-1.25/html_node/bison_toc.html

[7] Denise Draper, Alon Y. Halevy, Daniel S. Weld. The Nimble XML Data
Integration System. Proceedings of ACM SIGMOD Conference on
Management of Data 2001. http://www.cs.washington.edu/homes/
alon/site/files/sigmod01-nimble.ps

[8] Mary Fernandez, Atsuyuki Morishima, Dan Suciu. Efficient Evaluation
of XML Middle-ware Queries. 2001 SIGMOD Conference
http://www.research.att.com/~mff/files/final.pdf

[9] Mary Fernandez, Atsuyuki Morishima, Dan Suciu, Wang-Chiew Tan.
Pushing Relational Data in XML: the SilkRoute Approach.
IEEE Data Engineering Bulletin , no. 24(2) , pp. 12--19 , 2001
http://www.research.att.com/~mff/files/_F292063957.pdf

62

[10] Alon Y. Halevy, Anand Rajaraman, Joann J. Ordille. Querying
Heterogeneous Information Sources Using Source Descriptions.
Proceedings of the 22nd VLDB Conference, Mumbai (Bombay),
India, 1996. http://dbpubs.stanford.edu:8090/pub/1996-61

[11] Alon Y. Halevy. Logic-Based Techniques in Data Integration.
University of Washington, May 1999
http://citeseer.nj.nec.com/391746.html

[12] Christian Hansen. Towards Comparative Profiling of Parallel
Applications with PPerfDB. Portland State University Master’s
Thesis. October, 2001.

[13] Richard Hull. Managing Semantic Heterogeneity in Databases:
A Theoretical Perspective. Proceedings ACM Symposium on
Principles of Databases (Invited Tutorial) (1997), pp. 51--61.
http://www-db-out.bell-labs.com/user/hull/pods97-tutorial.html

[14] Howard Katz. An Introduction to XQuery.
http://www-106.ibm.com/developerworks/xml/library/x-xquery.html.

[15] John R. Levine, Tony Mason, Doug Brown. lex & yacc. (second
edition) Sebastopol, CA: O’Reilly & Associates, Inc., 1992

[16] Hui Lin, Tore Risch, Timour Katchaounov. Object-Oriented Mediator
Queries to XML Data. Proceedings of 1st International Conference on
Web Information Systems Engineering, (Vol 2), Hong Kong, China,
June 2000, pp 38-45. http://www.dis.uu.se/~udbl/publ/hui_xml.pdf

[17] Ioana Manolescu, Daniela Florescu, Donald Kossmann. Pushing
XML Queries Inside Relational Databases. INRIA Domaine de
Voluceau-Rocquencourt, Le Chesnay Cedex, France.
http://www.inria.fr/rrrt/rr-4112.html. January 2001.

[18] David Maier. Database Desiderata for an XML Query Language.
 Query Languages 98.

http://www.w3.org/TandS/QL/QL98/pp/maier.html

[19] PostgreSQL 7.1 Documentation. http://www.postgresql.org/idocs/
2001.

[20] Erik T. Ray. Learning XML. Sebastopol, CA: O’Reilly & Associates,
Inc., 2001.

63

[21] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang,
David DeWitt, Jeffrey Naughton. Relational Database for Querying
XML Documents: Limitations and Opportunities. Proceedings of the
25th Very Large Database Conference, Edinburgh, Scotland, 1999.

[22] Jayavel Shanmugasundaram, Eugene Shekita, Rimon Barr, Micheal
Carey, Bruce Lindsay, Hamid Pirahesh, Berthold Reinwald.
Efficiently Publishing Relational Data as XML Documents.
IBM Almaden Research Center, San Jose, CA
Proceedings of the 26th International Conference on Very Large
Databases, Cairo, Egypt, 2000.

[23] J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krishnamurthy, E.
Viglas, J. Naughton, I. Tatarinov. A General Technique for Querying
XML Documents Using a Relational Database System.
SIGMOD Record, September 2001

[24] Jerome Simeon. GALAX. Bell Labs, Lucent Technologies.
http://db.bell_labs.com/galax

[25] Karli Watson, Brian Smith, Darshan Singh, Denise Gosnell, Carvin Wilson,
Sam Ferguson, Warren Wiltsie, Paul Morris, Jan Narkiewicz, Jon Reid, Paul J
Burke, J. Michael Palermo IV. Professional SQL Server 2000 XML.
Appendix B pages 527-577. Wrox Press Ltd. Birmingham, UK. 2001.

[26] Gio Wiederhold. Mediators in the Architecture of Future Information
Systems. IEEE Computer Magazine, March 1992.
http://www-db.stanford.edu/LIC/mediator.html

[27] XML Schema. Part 0: Primer, Part 1: Structures, Part 2: Data Types.
W3C Recommendation. May 2001
http://www.w3.org/XML/Schema#dev

[28] XQuery 1.0: An XML Query Language. W3C Working Draft.
June 2001. http://www.w3.org/TR/xquery/

[29] XQuery 1.0 Formal Semantics. W3C Working Draft. June 2001
http://www.w3.org/TR/query-semantics/

[30] XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft
June 2001. http://www.w3.org/TR/query-datamodel/

[31] XML Query Use Cases. W3C Working Draft. June 2001
http://www.w3.org/TR/xmlquery-use-cases

64

[32] XML Syntax for XQuery 1.0 (XQueryX). W3C Working Draft
June 2001. http://www.w3.org/TR/xqueryx

[33] The XML C Library for Gnome. http://www.xmlsoft.org

[34] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura,
Shunsuke Uemura. XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases.
ACM TOIT, 1(1), 2001. http://db-www.aist-nara.ac.jp/members/
Yoshikawa/paper/TOIT2001-authorCopy.pdf

65

Appendix A: Example Global XML Schema for Parallel Performance Data

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 (http://www.xmlspy.com)
 by Mat Colgrove -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Application">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ApplicationType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="metric" type="metricType"/>
 <xs:complexType name="ApplicationType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element ref="execution" maxOccurs="unbounded"/>
 <xs:element name="Information" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="name" type="xs:string"/>
 <xs:complexType name="metricType">
 <xs:sequence>
 <xs:element name="name"/>
 <xs:element ref="focus" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="execution" type="executionType"/>
 <xs:complexType name="executionType">
 <xs:sequence>
 <xs:element name="id">
 <xs:simpleType>

 <xs:restriction base="xs:integer">
 <xs:whiteSpace value="preserve"/>
 </xs:restriction>

 </xs:simpleType>
 </xs:element>
 <xs:element name="arguments" type="xs:string"/>
 <xs:element name="optimizationLevel" type="xs:integer"/>
 <xs:element name="platform" type="xs:string"/>
 <xs:element ref="metric" maxOccurs="unbounded"/>
 <xs:element name="other" maxOccurs="unbounded"/>
 <xs:element name="startTime" type="xs:float"/>
 <xs:element name="endTime" type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="focus" type="focusType"/>
 <xs:element name="data" type="dataType"/>

66

 <xs:complexType name="dataType">
 <xs:sequence>
 <xs:element name="value" type="xs:double"/>
 <xs:element name="time" type="xs:long"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="focusType">
 <xs:sequence>
 <xs:element name="path" type="xs:string"
 maxOccurs="unbounded"/>
 <xs:element ref="data" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

67

Appendix B: Resulting XML Documents from the Use Cases

Given is the resulting XML documents, or portions of the resulting XML documents,

for the corresponding use case. The use case is given along with the size of the result-

ing XML document.

Table 3: Resulting XML Documents

Use Case Resulting XML Document

1) What documents are
available at the remote
site and what schemas
do they use?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="1893159416-1026" -->
<documentList>
 <document>
 <name>PPerfConf.xml</name>
 <schema> pperfconfig.xsd</schema>
 </document>
 <document>
 <name>smg98_4.xml</name>
 <schema>paradata.xsd</schema>
 </document>
 <document>
 <name>smg98_8.xml</name>
 <schema>paradata.xsd</schema>
 </document>
 <document>
 <name>smg98_27.xml</name>
 <schema>paradata.xsd</schema>
 </document>
</documentList>

2) What is the applica-
tion information for
SMG98_8.xml?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="1968639724-1026" -->
<applicationInformation>
 <application>
 <name>smg98</name>
 <information>Data gathered by Christian Hansen for his thesis</
information>
 </application>
</applicationInformation>

68

3) What is the
execution information
for SMG98_8.xml?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="1929940265-1026" -->
<executionInformation>
 <execution id="smg_8">
 <optimizationlevel>blue</optimizationlevel>
 <platform>40x40x40</platform>
 <sharedMemory>yes</sharedMemory>
 <commProtocol>ip</commProtocol>
 <starttime>0</starttime>
 <endtime>5.600076</endtime>
 <arguments>basic</arguments>
 </execution>
 </executionInformation>

4) What metrics are
available for the
SMG98_8 execution?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="1633500571-1026" -->
<metricInformation>
 <metric>func_calls</metric>
 <metric>msg_bytes</metric>
 <metric>func_duration</metric>
 <metric>msg_deliv_time</metric>
</metricInformation>

Table 3: Resulting XML Documents

Use Case Resulting XML Document

69

5) What foci are avail-
able for the metric
“func_calls” and execu-
tion SMG98_8?

Size: 51 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="2097126748-1026" -->
<focusInformation>
 <func_calls>
 <focus>
 <path1>/Code/MPI</path1>
 <path2>/Process</path2>
 <path3>/SyncObject</path3>
 </focus>
 </func_calls>
 <func_calls>
 <focus>
 <path1>/Code/MPI/MPI_Allgather</path1>
 <path2>/Process</path2>
 <path3>/SyncObject</path3>
 </focus>
 </func_calls>
 <func_calls>
 <focus>
 <path1>/Code/MPI/MPI_Allgather</path1>
 <path2>/Process/1</path2>
 <path3>/SyncObject</path3>
 </focus>
Results continue.

Table 3: Resulting XML Documents

Use Case Resulting XML Document

70

6) Return all the data
from SMG98_8.xml
given the metric
“func_calls” and the
focus “/Code/MPI/
MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0.”

Size: 400 KB

Header Omitted
 <data>
 <value>10</value>
 <time>0.456719</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>11</value>
 <time>0.457316</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>12</value>
 <time>0.457363</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>13</value>
 <time>0.467556</time>
 </data>
Results continue

Table 3: Resulting XML Documents

Use Case Resulting XML Document

71

7) Return all the data
between 1 and 1.02
seconds from
SMG98_8.xml given
the metric “func_calls”
and the focus “/Code/
MPI/MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0.”

Size: 4 KB

Header omitted
 <data>
 <value>611</value>
 <time>1.007649</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>612</value>
 <time>1.007709</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>613</value>
 <time>1.00853</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>614</value>
 <time>1.008592</time>
 </data>
Results continue

Table 3: Resulting XML Documents

Use Case Resulting XML Document

72

8) Return all the data
between 1 and 1.02
seconds from
SMG98_8.xml and the
data between 7.7 and
7.74 seconds from the
SMG98_27.xml given
the metric “func_calls”
and the focus “/Code/
MPI/MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0”.

Size: 5 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfXchange generated document from test site.
 Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
 Query id ="929202754-1026" -->
<smg98data>
 <smg98_8data>
 <process4>
 <data>
 <value>609</value>
 <time>1.006873</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>610</value>
 <time>1.006954</time>
 </data>
 </process4>
 ...
 </smg98_8data>
 <smg98_27data>
 <process4>
 <data>
 <value>5</value>
 <time>7.729737</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>6</value>
 <time>7.729837</time>
 </data>
 </process4>
 <process4>
 <data>
 <value>7</value>
 <time>7.73039</time>
 </data>
 Results continue

Table 3: Resulting XML Documents

Use Case Resulting XML Document

	1 Test Executions
	2 Use Cases
	3 Resulting XML Documents
	1 An Architectural Overview of PPerfDB
	2 An Example Merged Event Map
	3 Comparing CPU Idle Time For Two Executions
	4 Components of an XQuery
	5 An Architectural Overview of PPerfXchange
	6 The Unified XML Document Hierarchy
	7 An Example XQuery
	8 Bison Equivalent Grammar for an XQuery Grammar Rule
	9 Example Flow of Process Instructions and Process Nodes
	10 The Configuration Tables
	11 Translating a Relational Database Schema to a Virtual XML Document
	12 An Example Parallel Performance Global XML Schema
	13 SMG98 Performance Database Schema
	14 Mapping the Application and Execution Elements
	15 Mapping the Metric, Focus, and Data Elements
	16 Alternative XML Representation Approaches
	1 Introduction
	2. Background
	2.1 PPerfDB
	2.2 XML
	2.3 XQuery
	3 The PPerfXchange Architecture
	3.3 Unified, Virtual, and Native XML Documents
	The configuration database contains the information needed for PPerfXchange to access and model t...
	4. The PPerfXchange Prototype Implementation
	4.1 Sending an XQuery
	4.2 Parsing the Query
	4.3 Process Nodes and Process Instructions
	4.4 Virtual XML Documents
	4.4.1 Configuring a Virtual XML Document
	4.4.2 Representing Global XML Schemas in a Relational Database
	4.4.3 Forming a Relational Database Virtual XML Document
	4.4.4 Retrieving Data from a Relational Database Virtual XML Document

	5 Examples
	5.1 Example Parallel Performance Global Schema
	5.2 Parallel Performance Database for SMG98
	Table 1: Test Executions

	5.3 Configuration of XML to SQL
	5.4 Use Cases
	Table 2: Use Cases
	6 Related Work
	6.1 Mediators and Semantic Integration
	6.2 Representing and Querying a Relational Database Using XML
	6.3 XQuery

	7 Conclusions and Future Work
	Appendix A: Example Global XML Schema for Parallel Performance Data
	Table 3: Resulting XML Documents

