
Today in CS161

 Week #2

 Solving Problems with Computers
 What are Algorithms

 Write a short Algorithm

 Preparing to write programs

 On Unix and Mac systems

 Assignments

 Walk through Homework #1

 Ethics

CS161 Week #2 1

Solving Problems w/ Computers

 Programs are...

 an expression of a series of instructions that the

computer must perform

 written in precise languages, called programming

languages

 Programming languages...

 translate your ideas into specific language that the

computer will understand

 C, C++, Java, Pascal, Visual Basic, Cobol, Fortran

CS161 Week #2 2

Solving Problems w/ Computers

 The most difficult part of programming is
figuring out how to design a method to
solve a problem

 Only then do we translate this into C++!

 Therefore, start by writing an algorithm
once you understand the problem

CS161 Week #2 3

Solving Problems w/ Computers

 An algorithm is a sequence of step by

step instructions for performing some

task -- usually for computation

 An algorithm must...

 accomplish the task

 be clear and easy to understand

 define the sequence of steps needed to

accomplish the task in the order specified

CS161 Week #2 4

An Algorithm is…

 Algorithm – an ordered set of actions designed to

accomplish a certain task. The method for long

division is an algorithm, so are cooking recipes, filling

out an application, or going through a sequence of

motions required to throw a curveball.

 Algorithms are vital as the complexity of our problems

increase. Think about making a cake without a recipe.

We may quickly lose our way or forget a vital

ingredient. Same goes for programming. It has always

taken me far longer to write code without an algorithm,

throw it away, and write it again than it has to write the

algorithm first, desk check it, and then finally sit down

and turn it in the code.

CS161 Week #2 5

Algorithms

 It is best to ignore the details of your

programming language (C++) when

trying to solve a problem

 Instead, figure out the steps you need to

go thru to solve the problem

 Write these steps down in English

 These steps are called the algorithm!

CS161 Week #2 6

Algorithms

 Think of your algorithm as a tool for

creating the instructions for solving a

problem....as if you were to tell them to

another person.

 Remember an algorithm is a sequence

of step by step instructions for

performing some tasks

CS161 Week #2 7

Convert Inches to MM

CS161 Week #2 8

We will create an algorithm in class:

Important Terms…

 Program – is a sequence of instructions in a

language (we will be using a high level language

C++ for most situations in this course). A program

is used to implement one or more algorithms.

 Source code is the text of a program that is

created by a programmer. It is legible to human

eyes but the computer cannot execute it directly.

 Compiler is a special program that takes source

code and translates it into object code that the

computer that you are using can understand and

execute.

CS161 Week #2 9

Important Terms…

 Object code is a program that has been translated

into machine-readable form by the compiler. It

consists of sequences of binary numbers and

therefore cannot be read by us.

 Function is a logically self consistent and

somewhat independent part of a program. Maybe it

is something that needs to happen over and over

and you don’t want to write it over and over. Every

C++ program has at least one function called main.

CS161 Week #2 10

Important Terms…

 Library is a collection of functions that can be

added to a program with ease. C++ includes many

built-in libraries that allows others to use them (so

we don’t have to recreate the wheel)

 Bug is a mistake in a program. Many years ago, an

inspect flew into a computer and caused a

malfunction; the programmer who discovered it

coined the term and it has been used ever since.

There are three main types of bugs: syntax…like

making a typo, grammatical…not using concepts in

an order that makes sense, and logical – where the

use is valid but the results are not what we were

looking form

CS161 Week #2 11

Today in CS161

 Next Topic:

 Solving Problems with Computers
 Walk through the Tic Tac Toe Algorithm

 Getting ready for Creating Programs

 Turn the Inches to MM algorithm into a
program!

 Preparing to write programs

 See Examples of creating programs with
Dev C++ and Unix

CS161 Week #2 12

Tic Tac Toe Algorithm

 Step A: Display a Message letting the user know the:

 Welcome and Rules

 Step B: Initialize the Game with an empty board

 Display Board with 2 vertical and 2 horizontal lines

 Clear the Board making sure there are no X’s or O’s in the game

positions. Clear all memory that will be needed so that it is an empty

slate.

 Select a Player to start: Give them a choice of an X or an O

 Step C: Start Playing until there is a Winner or Cat Scratch

 Display a Message:

 Tell the correct player to select a location

 Choose Mouse Location (Wait for the mouse button to be hit)

 Find the Location on the Board

 Check to see if that Location is Available

 If available, Move Piece and Switch Players

 Otherwise display a message to retry

 If it was a Cat Scratch, start back with step B.

 Display a winner’s message and end the game!

CS161 Week #2 13

Creating programs…

 The first step of program development is

to write an algorithm.

 Think of your algorithm as a tool for

creating the instructions for solving a

problem....as if you were to tell them to

another person.

 Remember an algorithm is a sequence

of step by step instructions for

performing some tasks

CS161 Week #2 14

Here is the algorithm we did…

 Convert inches to millimeters

 First understand the problem

 where do the inches come from (the user)

 what is the math needed for the conversion

 mm = 25.4 times inches

 how do we want to display the results

 2in convert to 50.8mm

CS161 Week #2 15

Convert inches to millimeters

 Next, write the algorithm

 Step 1: Welcome the user

 tell them what to expect

 tell them the purpose of the program

CS161 Week #2 16

Convert inches to millimeters

 Step 2:

 Get the number of inches from the user

 display a prompt asking the user to enter

 read in the number of inches

 Remove the newline from the input buffer

 display what was read (echo)

 ask the user if this is really correct (confirm)

 if not, repeat this step until the user is satisfied

CS161 Week #2 17

Convert inches to millimeters

 Continuing with Steps 3 and 4:

 Convert the number of inches to mm

 mm = 25.4 times inches

 Display the results

 Provide a sign-off message

CS161 Week #2 18

Convert inches to millimeters

 The next step is to turn this into a C++
program!

 All programs have the following “form”

#include <iostream>

using namespace std;

//header comments...

int main()

{

//program body goes here...

return 0;

}

CS161 Week #2 19

Convert inches to millimeters

#include <iostream>

using namespace std;

// ***********************************

// Karla S. Fant

// CS161 Programming Assignment #0

// Purpose of this program is to convert

// inches entered in by the user into

// millimeters and display the results

// **********************************

int main() {

CS161 Week #2 20

(Different Kind of Comment...)

#include <iostream>

using namespace std;

/* ***********************************

Karla S. Fant

CS161 Programming Assignment #0

Purpose of this program is to convert

inches entered in by the user into

millimeters and display the results

********************************* */

int main() {

CS161 Week #2 21

Convert inches to millimeters

//Define variables

float inches; //to save # inches

float mm; //to save the result

//Step #1, welcome the user

cout <<“Welcome! We will be converting”

<<“ inches to mm today” <<endl;

CS161 Week #2 22

(A different way to do this...)

//Define variables

float inches, //to save # inches

mm; //to save the result

//Step #1, welcome the user

cout <<“Welcome! We will be converting”;

cout <<“ inches to mm today” <<endl;

(NOTE: endl is end followed by a letter l)

CS161 Week #2 23

Convert inches to millimeters

//Step #2, Get the input (prompt, read)

cout <<“Please enter the number of inches”

<<“ that you wish to convert: “;

cin >> inches; //read the # inches

cin.get(); //remove the newline

//echo what was entered

cout <<“You entered: “ <<inches <<“in”

<<endl;

CS161 Week #2 24

Convert inches to millimeters
//Step #3 Convert inches to millimeters

mm = 25.4 * inches;

//Step #4 Display the results

cout <<inches <<“in converts to “

<<mm <<“mm” <<endl;

//Step #5 Sign off message

cout <<“Thank you for using CONVERT”

<<endl;

return 0;

}

CS161 Week #2 25

Preparing to Write Programs:

 The following slides show some examples of Dev-
C++ windows

 The first displays just a text window

 The second has both text and graphics windows

 Dev-C++ is for PCs

 Your other choice is to use Unix

 With Dev-C++ you have to be very careful not to
leave newlines in the input buffer. It will be a good
habit for everyone to get into….removing newlines!

CS161 Week #2 26

27CS161 Week #2

When we execute the program…

 A program like this will have one “window”

pop up when we run the program. We call

this the console window:

When we do Graphics too…

When we do graphics we will have both a

graphics window and a console window:

What’s up with newlines???

 With Dev-C++ you have to be very careful not to
leave newlines in the input buffer. It will be a good
habit for everyone to get into….removing newlines!

 Let me explain…

 With Dev-C++, they want the “window” that is open
showing your computer program running to stay
active (and visible) until you hit that final enter key
(also called a newline).

 Sounds like a good plan.

 You get to see the screen with the result of your
program until you are done…by hitting enter! Yes!

CS161 Week #2 30

Newlines…when they happen…

 But, the problem comes in since we are working in
what is called “batch” mode versus “event driven”
mode for input

 Input means that the program is going to receive
information from the user…something will be typed
in at the keyboard for example
 In batch mode, nothing actually goes into the system until

the user hits enter (i.e., a newline causes the information
that has been typed in the “input buffer” to become
available for your program to use

 So, after we are prompted for input, the user types
something in, then they have to hit enter to get that data
to be available for the computer.

CS161 Week #2 31

Newlines…there is a catch!

 So what happens to that enter?

 It becomes a newline that sits in the input buffer
waiting to be used (read) by your program

 If your program doesn’t use it…and the program
ends – guess what?
 The system will see that newline and think that you are

done with the window that is up on the screen

 So FLASH…you won’t see the results of your program
running

 Is it a bug? Nope.

 What can I do? … Get rid of the newlines each and every
time you read something into your program!!!!

CS161 Week #2 32

Now…add some graphics

 With Dev C++ we can do regular C++ or we can
add a graphics window and draw as well

 Again, graphics is extra and not required in this
course

 To start you have to open a graphics window and
decide what the size is:
 This window is from 0,0 (upper left) to 500,500 (lower

right)

 You can make this bigger…we will see this in class

 To output text we use either:
 outtextxy(x,y, “text to display”);

 Or, outtext(“text at the current position”);

CS161 Week #2 33

34CS161 Week #2

#include "graphics.h"

#include <iostream>

using namespace std;

int main()

{

cout <<"We are going to have a great time!";

initwindow(500,500);

outtextxy(250,250,"HI!");

getch();

cin.get(); //wait so the window doesn't go away

return 0;

}

35CS161 Week #2

When we execute the program…

Now…with comments…

//This goes to the text window (dialog box)

cout <<"We are going to have a great time!";

//This is the size (max x, max y) of the graphics window:

initwindow(500,500);

//cout does not go to the graphics window…outtext and

//outtextxy do. 0,0 (origin) is at the upper left corner!

outtextxy(250,250,"HI!");

getch(); //this is what we need to do to wait so the graphics

//window does not go away….hit any key

cin.get(); //wait so the text (dialog) window doesn't go away

return 0;

}

CS161 Week #2 38

Program Style

 The Style of your program is important

because by doing it cleanly, you can create

programs that are easier to read and easier

tocorrect

 Style includes...

...indentation

...grouping like elements

...using blank lines

...variables and program names

Now…think about “style”

 The following is the same program as before but
with comments explaining what is happening!

 Things to know about this program:
 You have to use the #include <iostream>

 And, using namespace std;

 In order to do input from the keyboard and output to the
screen

 cout is pronounced “see out”

 cin is pronounced “see in”

CS161 Week #2 39

CS161 Week #2 40

Poor Program Style

#include <iostream>

using namespace std;

int main() { float celsius; float fahrenheit; cout <<"Please enter”

<<“ temperature in Celsius: " <<endl; cin >>celsius; cin.get();

fahrenheit = (celsius * 9.0/5.0) +32.0;cout <<celsius;cout <<"

Celsius = " <<fahrenheit;cout <<" Fahrenheit"; cout<<endl;

return 0;}

CS161 Week #2 41

Better Program Style

#include <iostream>

using namespace std;

//This program converts temperatures……

int main()

{

float celsius; //temp in celsius

float fahr; //temp in Fahrs

//Read in the temperature in celsius

cout << "Enter temp in Celsius: “ << endl;

cin >> celsius; cin.get();

CS161 Week #2 42

Better Program Style

//Convert celsius to fahrenheits

fahr = (celsius * 9.0 / 5.0) + 32.0;

//Print the results

cout << celsius << " Celsius = " << fahr;

cout << " Fahrenheit" << endl;

cout <<“Please hit ENTER when finished:”;

cin.get();

return 0;

}

CS161 Week #2 43

Compare the next two slides….

 Look at the next two slides and come up with

your comments on the benefits and drawbacks

of the style used

 Comment on each of these areas:

...understandable?

...readable?

...are like areas grouped together?

...what could be better?

#include <iostream>

using namespace std;

int main()

{

cout <<"We are going to have a great time!";

cin.get(); //wait so the window doesn't go away

return 0;

}

44CS161 Week #2

//Test Program #1

//Written by Karla Fant for CS161

//The purpose of this program is to show how to display

//a welcome message to the user

//These first two lines make sure that we can perform Input and Output

#include <iostream>

using namespace std;

//This is where the heart of the program is…you will always have the following line:

int main()

{

//”see out” is how we can output a message to the screen

// The << is called the “insertion” operator; anything inside the “ “ is displayed

cout <<"We are going to have a great time!";

//On PC’s you need to wait for the user to hit enter otherwise the screen just flashes

//and you won’t see anything at all! cin.get() will wait for the user to hit Enter….

cin.get(); //wait so the window doesn't go away

return 0; //return “success” back to the operating system!

}
45CS161 Week #2

CS161 Week #2 46

Again …Compare another

 Again, look at the next two slides and come up

with your comments on the benefits and

drawbacks of the style used

 Comment on each of these areas:

...are there ethical implications of a poorly styled program?

…does the program tell the reader what is going to happen?

…do we have to read English or C++ to figure it out?

…what would happen if the C++ was more complex? Yikes

#include <iostream>

using namespace std;

// This is a simple program

// Written by: Beth Miller

int main()

{

cout << "We are going to have a great time!!!!!!!!!!!!!!!!!!!";

cout << endl <<endl;

cout <<"WOWWWWWWWWWWWWWWWWWWWW"

<<endl;

cout << endl <<endl <<endl;

cout << "HIT ENTER TO END THIS SESSION";

cin.get();

return 0;

}
47CS161 Week #2

Same example w/ Poor Style

48CS161 Week #2

