
Today in CS161

 Week #4

 Using if statements
 Create new Programs

 Using if and else statements

 Create new Graphics Demos
 Using if and else statements

 Learn about Repetition
 Loops!

CS161 Week #4 1

CS161 Week #4 2

Using If statements in a program

 We will now do two examples, one extending

the program we wrote last week finding out

how many classes you are taking (non-

graphical

 And…another that takes the graphics program

and finds out if the user wants to draw circles

or rectangles!

 It is all about choices!

 Plus, you will notice that now we can error

check

CS161 Week #4 3

Integrating this into a program…

CS161 Week #4 4

Integrating this into a program…

int num_classes = 0; //the number of classes you are taking

//prompt and read in the number of classes

cout << "How many classes are you taking this term? ";

cin >> num_classes;

cin.get();

//check to see if the user entered a reasonable number

if (0 > num_classes) //a negative value was entered

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

CS161 Week #4 5

Integrating this into a program…

CS161 Week #4 6

Integrating this into a program…

CS161 Week #4 7

Integrating this into a program…

CS161 Week #4 8

Using If statements in a program

 Let‟s extend this now to only echo the number

of classes that you are taking, if it is a

reasonable number

 Otherwise, after the error message we will tell the

user to re-run the program once they have a better

idea of how many classes they are taking

CS161 Week #4 9

Integrating this into a program…
//check to see if the user entered a reasonable number

if (0 > num_classes) //a negative value was entered

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

else

{

//echo what we got back to the user, if it is valid

cout << endl <<endl;

cout << "You are taking " << num_classes << " classes"

<<endl;

}

//tell the user to re-use the program if it was an invalid value

if (num_classes <= 0)

cout << "Re-run the program once you start taking classes\n\n";

else if (num_classes > 5)

cout << "Consider reevaluating the classes you are taking\n\n";

CS161 Week #4 10

Running this new version…

CS161 Week #4 11

Another approach...for next time

//check to see if the user entered a reasonable number

//If the number is less than or equal to zero OR greater than 5

if (0 >= num_classes || 5 < num_classes) //out of range!

{

cout << "The value you entered is out of range.\n\n";

cout << "Re-run the program once you figure it out!\n\n";

}

else

{

//echo what we got back to the user

cout << endl <<endl;

cout << "You are taking " << num_classes << " classes"

<<endl;

}

CS161 Week #4 12

Running this new version…

CS161 Week #4 13

Another approach...for next time

//check to see if the user entered a reasonable number

if (0 >= num_classes || 5 < num_classes) //out of range!

{

if (0 > num_classes)

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

cout << "Re-run the program once you figure it out!\n\n";

}

else

{

//echo what we got back to the user

cout << endl <<endl;

cout << "You are taking " << num_classes << " classes"

<<endl;

}

CS161 Week #4 14

Running this new version…

CS161 Week #4 15

Using Graphics…

//Here is where I am going to put my variables

int window_size;

int color;

int circle_radius;

char selection; // what does the user want to do?

int width, height; //rectangle width and height

cout << "How big of a window do you want (pick a number less than 1200): ";

cin >> window_size; cin.get();

initwindow(window_size, window_size);

cout << "What color do you want...enter in a number 1-15 (15 is white) ";

cin >> color; cin.get();

setcolor(color);

setfillstyle(SOLID_FILL,color);

Let’s extend the graphics program from last time, asking

the user if they want a Rectangle (R) or a Circle (C)

CS161 Week #4 16

Using Graphics…

//Find out if they want to draw a circle or a rectangle

cout << "Do you want to draw a CIRCLE or a RECTANGLE? C or R: ";

cin >> selection; cin.get();

if ('C' == selection) //Circle

{

cout << "How big do you want the circle? ";

cin >> circle_radius; cin.get();

fillellipse(window_size/2,window_size/2,circle_radius,circle_radius);

}

else if ('R' == selection) //Rectangle

{

cout << "How wide do you want the rectangle? ";

cin >> width; cin.get();

cout << "How high should the rectangle be? ";

cin >> height; cin.get();

// next page……

CS161 Week #4 17

Using Graphics…

//figure out how to draw the filled rectangle (a bar)

int startx = (window_size-width)/2; //center the rectangle

int starty = (window_size-height)/2;

bar(startx,starty,startx+width,starty+height); //"bars" are filled

}

else

{ //The user did not enter a C or an R

cout <<"Sorry you couldn't decide!" <<endl <<endl;

settextstyle(0,0,6); //6 is BIG

outtextxy(0,window_size/2,"TOO BAD!");

}

CS161 Week #4 18

Running this new version…

CS161 Week #4 19

Using Graphics…using the OR

//Find out if they want to draw a circle or a rectangle

cout << "Do you want to draw a CIRCLE or a RECTANGLE? C or R: ";

cin >> selection; cin.get();

if ('C' == selection || „c‟ == selection) //Circle (upper or lower case)

{

cout << "How big do you want the circle? ";

cin >> circle_radius; cin.get();

fillellipse(window_size/2,window_size/2,circle_radius,circle_radius);

}

else if ('R' == selection|| „r‟ == selection) //Rectangle

{

cout << "How wide do you want the rectangle? ";

cin >> width; cin.get();

cout << "How high should the rectangle be? ";

cin >> height; cin.get();

// ……etc. … no other changes

CS161 Week #4 20

Running this new version…

Today in CS161

 Next Topic:

 Learn about…
 Logicals: And, Or, Not

 Repetition: loops!

 Rewrite our First Program
 Using loops

 Graphics
 Let‟s make the graphics move….

CS161 Week #4 21

CS161 Week #4 22

Logical Operators

 There are 3 logical (boolean) operators:

&& And (operates on two operands)

|| Or (operates on two operands)

! Not (operates on a single operand)

 && evaluates to true if both of its operands are

true;

 otherwise it is false.

CS161 Week #4 23

Logical Operators

 || evaluates to true if one or the other of its

operands are true;

 it evaluates to false only if both of its

operands are false.

 ! gives the boolean complement of the operand.

 If the operand was true, it results in false.

CS161 Week #4 24

Logical Operators

Conditional Expression Logical value

True/False

(5 == 10) && (30 < 88) 0 False

(5 == 10) || (30 < 88) 1 True

!(5==10) && (30 < 88) 1 True

40 != 44 1 True

!(40 != 44) 0 False

CS161 Week #4 25

AND Truth Table

 op1 && op2 results in:

op1 op2 residual value

true true true 1

true false false 0

false true false 0

false false false 0

CS161 Week #4 26

OR Truth Table

 op1 || op2 results in:

op1 op2 residual value

true true true 1

true false true 1

false true true 1

false false false 0

CS161 Week #4 27

NOT Truth Table

 !op1 results in:

op1 residual value

true false 0

false true 1

CS161 Week #4 28

Logicals in if Statements

 Now let‟s apply this to the if statements.

 For example, to check if our input is
only an „m‟ or an „i‟

char selection;

cin >> selection

if ((„m‟ != selection) &&

(„i‟ != selection))

cout << “Error! Try again”;

CS161 Week #4 29

Logicals in if Statements

 Why would the following be incorrect?

if ((„m‟ != selection) ||

(„i‟ != selection))

cout << “Error! Try again”;

Because no matter what you type in (m, i, p, q)

it will never be both an m and an i!

 If an m is entered, it won‟t be an i!!!!!

CS161 Week #4 30

Logicals in if Statements

 Let’s change this to check if they
entered in either an m or an i: (this is
correct)

if ((„m‟ == selection) ||

(„i‟ == selection))

cout << “Correct!”;

else

cout << “Error. Try Again!”;

CS161 Week #4 31

Logicals in if Statements

 Now, let’s slightly change this....

if (!((„m‟ == selection) ||

(„i‟ == selection)))

cout << “Error. Try Again!”;

 Notice the parens...you must have a set of

parens around the logical expression

CS161 Week #4 32

Repetition in Programs

 What if we wanted to give the user another
chance to enter their input...

 This would be impossible without loops

 Algorithms that require loops look
something like:
 Step 1: Receive Input

 Step 2: Echo the Input

 Step 3: Ask the user if this is correct

 Step 4: If not, repeat beginning at step #1

CS161 Week #4 33

Three types of Loops

 There are three ways to repeat a set of
code using loops:

 while loop

 do while loop

 for loop

 Each of these can perform the same
operations...

 it is all in how you think about it!
....let’s see....

CS161 Week #4 34

Using a While Loop

 Let’s give the user a 2nd (and 3rd, 4th,
5th...) chance to enter their data using a
while loop.

 While loops have the form: (notice semicolons!)

while (logical expression)

single statement;

while (logical expression)

{

many statements;

}

CS161 Week #4 35

Using a While Loop

 The while statement means that while an

expression is true, the body of the while loop will

be executed.

 Once it is no longer true, the body will be

bypassed.

 The first thing that happens is that the

expression is checked, before the while loop is

executed.

THIS ORDER IS IMPORTANT TO REMEMBER!

CS161 Week #4 36

Using a While Loop

 The Syntax of the While Loop is:

while (loop repetition condition)

<body>

 Where, the <body> is either one statement
followed by a semicolon or a compound
statement surrounded by {}.

 Remember the body is only executed when
the condition is true.

 Then, after the body is executed, the condition
is tested again...

CS161 Week #4 37

Using a While Loop

 Notice, you must remember to initialize the

loop control variable before you enter the while

loop.

 Then, you must have some way of updating

that variable inside of the body of the loop so

that it can change the condition from true to

false at some desired time.

 If this last step is missing, the loop will execute

"forever" ... this is called an infinite loop.

CS161 Week #4 38

Using a While Loop

 We will need a control variable to be used to
determine when the loop is done...
char response = „n‟;

while („n‟ == response)

{

cout << “Please enter ... “;

cin >> data; cin.get();

cout << “We received: “ << data

<< “\nIs this correct? (y/n)”;

cin >> response; cin.get();

}

CS161 Week #4 39

Using a While Loop

 What is a drawback of the previous loop?

 The user may have entered a lower or upper case

response!

 One way to fix this:

 Change the logical expression to list all of the

legal responses

while (‘n’ == response || ‘N’ == response)

{

...

}

CS161 Week #4 40

Using a While Loop

 Yet another way to fix this:

 To loop, assuming that they want to continually

try again until they enter a Y or a y!

 Notice the use of AND versus OR!

while (‘y’ != response && ‘Y’ != response)

{

...

}

CS161 Week #4 41

Using a While Loop

 Another way to fix this:

 Use the tolower function in the ctype.h library:

#include <cctype>

while (tolower(response) != ‘y’)

{

...

}

CS161 Week #4 42

Using a While Loop

 Another way to fix this:

 Use the toupper function in the ctype.h

library:

#include <cctype>

while (toupper(response) != ‘Y’)

{

...

}

CS161 Week #4 43

Using a do while Loop

 This same loop could have been rewritten
using a do while loop instead

 do while loops have the form: (notice semicolons!)

do

single statement;

while (logical expression);

do

{

many statements;

} while (logical expression);

CS161 Week #4 44

Using a do while Loop

 Things to notice about a do while statement:

(1) The body of a do while statement can be
one statement or a compound statement
surrounded by {}

(2) Each statement in the do while loop is
separated by a semicolon

(3) Notice the body is always executed once!
Even if the logical expression is false the first
time!

CS161 Week #4 45

Using a do while Loop

 Don't use a do while unless you are sure
that the body of the loop should be
executed at least once!
char response;

do {

cout << “Please enter ... “;

cin >> data; cin.get();

cout << “We received: “ << data

<< “\nIs this correct? (y/n)”;

cin >> response; cin.get();

} while („y‟ != response && „Y‟ != response);

CS161 Week #4 46

Using a for loop

 The for loop is commonly used to loop a

certain number of times. For example, you

can use it to print out the integers 1 thru 9:

int i;

for (i=1; i <= 9; ++i)

cout << i << endl;

CS161 Week #4 47

Using a for loop

 i is called the loop control variable.

 It is most common to use variables i, j, and k for

control variables.

 But, mnemonic names are better!

for (initialize; conditional exp; increment)

<body>

 Note: The body of the for loop is either one

statement followed by a semicolon or a compound

statement surrounded by {}.

CS161 Week #4 48

Using a for loop

 The for statement will first

(1) INITIALIZE VARIABLE i to 1;

(2) Check the logical expression to see if it is
True or False;

(3) if it is True the body of the loop is executed
and it INCREMENTs VARIABLE i by 1;

or, if it is False the loop is terminated and the
statement following the body of the loop is
executed.

CS161 Week #4 49

Using a do while Loop

 When using loops, desk check for the
following conditions:

(1) Has the loop iterated one too many times?
Or, one too few times?

(2) Have you properly initialized the variables
used in your while or do-while logical
expressions?

(3) Are you decrementing or incrementing
those variables within the loop?

(4) Is there an infinite loop?

CS161 Week #4 50

Giving the user another chance

 Remember our program from last class

 We displayed error messages if they

entered in an unusual number – for the

number of classes they were taking.

 This time, we will still display that error

message, but we will loop until a valid

number has been entered.

CS161 Week #4 51

Giving the User another chance

//Written by: Karla Fant

//Purpose: To demonstrate the use of loops

//

//This program asks the user how many classes they

//are taking. It will continue to loop until a valid

//input value is received.

#include <iostream>

using namespace std;

int main()

{

int num_classes = 0; //the number of classes you are taking

//prompt and read in the number of classes

cout << "How many classes are you taking this term? ";

cin >> num_classes;

cin.get();

CS161 Week #4 52

Giving the User another chance

//check to see if the user entered a reasonable number

while (0 >= num_classes || 5 < num_classes) //out of range!

{

if (0 > num_classes)

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

cout << "Please re-enter the number of classes you are taking: ";

cin >> num_classes;

cin.get();

}

//At this point, we KNOW that we have a valid number...

cout << “\n\nYou are taking " << num_classes << " classes"

<<endl;

cout << "Hit ENTER to finish";

CS161 Week #4 53

Looping until you get it right!…

CS161 Week #4 54

Using the do-while loop instead

 A do-while loop means that we will always

use the loop once, but we don’t know if we

will use it more than once:

 Pseudo code…
do

{

/ / read in the value

/ / d isplay error messages if a bad value is received

} while (the value is still bad);

CS161 Week #4 55

Integrating this into a program…

//prompt and read in the number of classes

do

{

cout << "How many classes are you taking this term? ";

cin >> num_classes;

cin.get();

//check to see if the user entered a reasonable number

if (0 > num_classes)

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

} while (0 >= num_classes || 5 < num_classes); //out of range!

//At this point, we KNOW that we have a valid number...

//echo what we got back to the user

cout << endl <<endl;

cout << "You are taking " << num_classes << " classes"

<<endl;

CS161 Week #4 56

Running this new version…

CS161 Week #4 57

Give them only 5 chance….
bool out_of_range = true;

for (int i = 5; i > 0 && out_of_range; --i)

{

//prompt and read in the number of classes

cout << "How many classes are you taking this term? ";

cout << "\nYou get " <<i <<" chances to get it right! ";

cin >> num_classes;

cin.get();

//check to see if the user entered a reasonable number

if (0 < num_classes && 5 >= num_classes)

out_of_range = false;

if (0 > num_classes)

cout << "You can't take fewer than zero classes!!\n\n";

else if (0 == num_classes) //zero classes!

cout << "I'm sorry to hear you are not taking classes.\n\n";

else if (5 < num_classes) //more than 5 classes

cout << "Wow...you are really taking a lot of classes!\n\n";

}

CS161 Week #4 58

Running this new version…

CS161 Week #4 59

Breaking it down….simplier

//prompt and read in the number of classes

cout << "How many classes are you taking this term? ";

cin >> num_classes;

cin.get();

for (int i = 1; i < 5 && (num_classes <=0 || num_classes > 5); ++i)

{

cout <<"\n\nTry again! How many classes are you taking? " <<endl;

cout <<"You get " <<5-i <<" more chances to get it right!\n";

cin >> num_classes;

cin.get();

}

CS161 Week #4 60

Running this new version…

CS161 Week #4 61

Using Graphics…movement

//Here is where I am going to put my variables

int window_size;

int color;

int circle_radius;

int num_circles; //number of circles to draw & redraw

int background_color; //how to undraw a circle!

int slow; //allow user to set a delay

cout << "How big of a window do you want (pick a number less than 1200): ";

cin >> window_size; cin.get();

initwindow(window_size, window_size);

To achieve movement, we need to draw and un-draw our

objects over and over at d ifferent locations

CS161 Week #4 62

Using Graphics…movement

//set up the drawing colors for outlines and fills

cout << "What color do you want...enter in a number 1-15 (15 is white) ";

cin >> color; cin.get();

setcolor(color);

setfillstyle(SOLID_FILL,color);

background_color = getbkcolor(); //get the background color

cout << "How big do you want the circle? ";

cin >> circle_radius; cin.get();

cout << "How many circles would you like? ";

cin >> num_circles; cin.get();

cout << "How fast do you want it to run... a big number will slow it down: ";

cin >> slow; cin.get();

CS161 Week #4 63

Using Graphics…movement

//Draw the first ellipse

int x = 0; //let‟s start at the lower left corner of the window

int y = window_size;

fillellipse(x,y,circle_radius,circle_radius);

for (int i = 0; i < num_circles; ++i)

{

delay(slow); //if you don‟t do this…it runs too fast!

//undraw the circle

setcolor(background_color); //really make it disappear!

setfillstyle(SOLID_FILL,background_color);

fillellipse(x,y,circle_radius,circle_radius); //undraw the circle

x = x + 5; //same as x += 5; //go up diagonally

y = y - 5; //same as y -= 5;

setcolor(color); //go back to requested color

setfillstyle(SOLID_FILL,color);

fillellipse(x,y,circle_radius,circle_radius);

}

CS161 Week #4 64

Running this new version…

CS161 Week #4 65

Moving in a spiral like motion…

for (int i = 0; i < num_circles; ++i)

{

delay(slow);

// setcolor(background_color); //make outline disappear

setfillstyle(SOLID_FILL,background_color);

fillellipse(x,y,circle_radius,circle_radius); //undraw the circle

x += angle * cos(angle);

y += angle *sin(angle);

angle += 1;

if (angle > 360) angle = 0;

//continued on next page….

CS161 Week #4 66

Moving in a spiral like motion…

//Reset if they go outside of the window back to the center

if ((x > window_size || x <0) || (y > window_size || y < 0))

{

x = window_size/2;

y = window_size/2;

angle = 0;

}

setcolor(color); //go back to requested color

setfillstyle(SOLID_FILL,color);

fillellipse(x,y,circle_radius,circle_radius);

}

CS161 Week #4 67

Running this new version…

