
CS161 Week #6 1

Today in CS161

 Week #6 Introduction to Functions
 What is a function?

 Why would you want to use a function?

 How do you define functions?

 How do you call functions?

 Write Programs using Functions
 Black Jack (a simple version)

 Graphics
 User interaction for the tic tac toe program

CS161 Week #6 2

Functions: What are they?

 Have you ever written code and said
 Haven’t I already done this before?

 Think about your algorithms..

 How many times do you open a door or get
into your car

 It is done many times in different contexts

 These could be functions. Create them
once and then reuse them as many times
as you need!

CS161 Week #6 3

Functions: What are they?

 We can write our own functions in C++

 These functions can be called from your main
program or from other functions

 A C++ function consists of a grouping of
statements to perform a certain task

 This means that all of the code necessary to
get a task done doesn't have to be in your
main program

 You can begin execution of a function by
calling the function

CS161 Week #6 4

Functions: What are they?

 When we write algorithms, we should

divide our programs into a series of major

tasks...

 where each major task is a function, called

by the main program

 We can group together statements that

perform a distinct task and give the overall

action a name.

 This is accomplished by writing a C++

function.

CS161 Week #6 5

Functions: What are they?

 For example, tasks such as driving a car,
or cooking breakfast are every day
functions that we use.

 The exact details of driving a car or
cooking are hidden in the actual process,
but even though you don't know the details
-- just from the statement "driving a car"
you know what that involves and what I am
talking about. I don't need to have to tell
you that first I get out my keys, then unlock
the car door, then get inside, then.....

CS161 Week #6 6

Functions: What are they?

 The same thing applies to functions in C++.

 A function has a name assigned to it and
contains a sequence of statements that you
want executed every time you invoke the
function from your main program!

 Data is passed from one function to another
by using arguments (in parens after the
function name).

 When no arguments are used, the function
names are followed by: "()".

CS161 Week #6 7

Functions: Defining Them...

 The syntax of a function is very much like that

of a main program.

 We start with a function header:

data_type function_name()

{

<variable definitions>

<executable statements>

}

CS161 Week #6 8

Functions: Defining Them...

 A function must always be declared before it
can be used

 This means that we must put a one-line
function declaration at the beginning of our
programs which allow all other functions and
the main program to access it.

 This is called a function prototype (or
function declaration)

 The function itself can be defined anywhere
within the program.

CS161 Week #6 9

Functions: Using Them...

 When you want to use a function, it needs to
be CALLED or INVOKED from your main
program or from another function.

 If you never call a function, it will never be
used.

 For those of you doing graphics, you have
used functions already:

setcolor(WHITE);

linexy(x1,y1, x2,y2);

CS161 Week #6 10

Functions: Calling setcolor...

 When we called the setcolor function in

graphics.h, we are temporarily suspending

execution of our main program (or calling

routine) and executing a function called

setcolor that someone else has written.

 It takes one value as an argument (an

integer color number, where 15 is

white), called actual arguments and

returns nothing

CS161 Week #6 11

Let’s try writing a function!

 Let’s write a general algorithm for the game of
blackjack.

keeping it simple, we will have one user play against
the computer…

 Welcome the user and explain the game

 Deal two cards to the player

 Allow the player to ask for another card (“hit”) until
they are satisfied

 Player shows their hand

 Dealer shows their hand

 Do they want to play again or end the game?

CS161 Week #6 12

Sub tasks for welcome the user

 For the welcome function we want to explain:
 There will be only 1 player, playing against the computer

 The deck will have an infinite number of cards

 The goal of the game is to assemble a hand whose value is
as close to 21 as possible without going over. Whoever gets
closest to 21 without going over wins

 Aces are worth 1 point or 11 points, which is up to the user.
Face cards (Jack, Queen, King) are worth 10 points. All
other cards are worth the number of points equal to their
value.

 The player gets two cards. After that they can ask to be “hit”
with another card or decide to stay with the current hand.
They can receive as many cards as they want, until they are
ready to stop or over 21.

 The dealer is forced to stay on any hand worth 17 or more.

CS161 Week #6 13

Let’s try writing a function!

#include <iostream>

using namespace std;

// Program written by Karla Fant for CS161

// This program will allow one user to play a simple game of

// Blackjack against the computer

void welcome (); //This is where the rules will be described

int main()

{

welcome(); //calling the function to display the rules

cin.get();

return 0;

}

CS161 Week #6 14

Let’s try writing a function!

//Explaining the rules of the game

void welcome()

{

char rules='y'; //do you want to see the rules?

cout <<"Welcome to the game of Black Jack" <<endl;

cout <<"The game will start soon, would you like"

<<" to hear about the rules? y/n ";

cin >> rules; cin.get();

…continued on the next page…

CS161 Week #6 15

Let’s try writing a function!

if (rules == 'y') //let's display the rules

{ cout <<endl <<endl

<<"***"

<<endl <<endl;

cout <<"The goal of the game is to get as close to 21 as"

<<endl

<<"possible and get a higher number than the computer."

<<endl <<endl

<<"You will be given 2 cards."

<<endl <<"You can ask"

<<" to be hit with additional cards until you are"

<<" happy or over 21. "

<<endl <<endl;

}

cout <<"Let's begin!" <<endl <<endl;

}

CS161 Week #6 16

Welcome to Black Jack…

CS161 Week #6 17

Let’s try writing a function!

 Notice that in this example we use a function

prototype for our function declarations.

 They are very similar to the function header

except that they must be terminated by a

semicolon....just like any other declaration in

C++.

CS161 Week #6 18

Why write functions?

 You might ask, why go through the trouble to

write a program that does no more than the

original, shorter version?

 One reason is that functions can be used as

prefabricated parts for the easy construction

of more complicated programs.

 Another reason is that a function - once

created - can be called any number of times

without writing its code again.

CS161 Week #6 19

Why write functions?

 As our programs get more complicated, it is
really important that you clearly understand the
order in which statements are executed.

 The main program runs first, executing its
statements, one after another.

 Even though the functions are declared before
the main program (and may also be defined
before the main program), they are not
executed until they are called.

 They can be called as many times as you wish

CS161 Week #6 20

Why write functions?

 By giving the task a name, we make it

easier to refer to.

 Code that calls clearly named functions is

easier to understand than code in which all

tasks are described in the main program.

 Programs that use functions are easier to

design because of the way they "divide

and conquer" the whole problem.

CS161 Week #6 21

Why write functions?

 By having a function perform the task, we can

perform the task many times in the same

program by simply invoking the function

repeatedly.

 The code for the task need not be reproduced

every time we need it.

 A function can be saved in a library of useful

routines and plugged into any program that

needs it.

CS161 Week #6 22

Why write functions?

 Once a function is written and properly tested,

we can use the function without any further

concern for its validity.

 We can therefore stop thinking about how the

function does something and start thinking of

what it does.

 It becomes an abstract object in itself - to be

used and referred to.

CS161 Week #6 23

Some details about functions:

 Each function declaration can contain

declarations for its own...this includes

constants, variables.

 These are considered to be LOCAL to the

function and can be referenced only within

the function in which they are defined

data_type some_function()

{

data_type variable; //local variable

}

CS161 Week #6 24

Why write functions?

 Functions enable us to implement our

program in logically independent

sections n the same way that we

develop the solution algorithm.

 Our main approach could be…
welcome();

the user…

Deal two cards

Continue to Deal a card (hit) until satisfied

the dealer…

Deal two cards

Continue to Deal a card (hit) until reach 17

Select_winner();

CS161 Week #6 25

Dealing cards

 So, what does it mean to “Deal cards”?

 First we need to know what a card is

 A card can be Ace,1-10, Jack, Queen, and King

 Using the modulus operator we can take a random
number and mod it by the number of different
cards you can get (14). If we get a 0 it will be an
Ace, if we get an 11 it will be a Jack, 12 will be a
Queen, and 13 a King

 We are NOT talking about points right now…just
how to figure out what a card is.

CS161 Week #6 26

Dealing cards:

void welcome (); //This is where the rules will be described

int deal_card(); //get a card and find out the points...

int main()

{

int user_points; //to hold the number of points the player has

srand(time(0));

welcome(); //calling the function to display the rules

user_points = deal_card(); //Deal a card

cout <<"You have " <<user_points <<" points" <<endl;

cin.get();

return 0;

}

CS161 Week #6 27

Dealing cards:

//Deal a card - one of 14 cards, 0 is Ace, 11 is Jack, 12 Queen, 13 King

int deal_card()

{

int card = 0; //Find the numeric value of a card

int points = 0;

card = rand() % 14; //Make sure the card is within range 0-13

if (0 == card) //ACE!!

{

do //find out the value they want to apply to the ace

{

cout <<"You have: an Ace " <<endl <<"Do you want to count it as"

<<" a 1 or 10?: ";

cin >> points; cin.get();

} while (points != 1 && points != 10); //it has to be correct!

CS161 Week #6 28

Dealing cards:
} else if (11 == card) //Jack!

{

cout <<"You have: a Jack worth 10 points" <<endl;

points = 10;

} else if (12 == card) //Queen!

{

cout <<"You have: a Queen worth 10 points" <<endl;

points = 10;

} else if (13 == card) //King!

{

cout <<"You have: a King worth 10 points" <<endl;

points = 10;

} else

{

cout <<"You were given a face card: " <<card <<endl;

points = card;

}

return points;

}

CS161 Week #6 29

Getting the first card…

CS161 Week #6 30

Some details about functions:

 To have a function return a value - you simply

say "return expression".

 The expression may or may not be in parens.

 Or, if you just want to return without actually

returning a value, just say return; (note:

return(); is illegal).

 If you normally reach the end of a function

(the function's closing "}"), its just like saying

return; and no value is returned.

CS161 Week #6 31

Some details about functions:

 For functions that don't return anything,

you should preface the declaration with

the word "void".

 When using void, it is illegal to have your

return statement(s) try to return a value

 Also notice, that the type of a function

must be specified in both the function

declaration and in the function definition.

CS161 Week #6 32

Dealing more cards

 We have seen how to deal one card, but…
 We need to start off with the player getting two cards and

 Then getting “hit” as many times as they want.

 We don’t need to change the deal_card function but rather
just call it a few more times.

 Our “algorithm” will be:

 For the player

 Deal a card storing the points

 Deal another card and add those points to our running total

 Ask the user if they want to be “hit”

 If so, deal another card and add those points to the
running total

 Continue to do so until the user is happy or until the points
are over 21

CS161 Week #6 33

New main program….
int user_points; //to hold the number of points the player has

char hit; //do they want to be hit?

srand(time(0));

welcome(); //calling the function to display the rules

//deal the players hand

user_points = deal_card(); //Deal a card

user_points += deal_card(); //Deal the second card

do

{ //Does the user want a “hit”?

cout <<"Do you want another card? y/n ";

cin >>hit; cin.get();

if ('y' == hit || 'Y' == hit)

user_points += deal_card();

} while ((hit == 'y' || hit == 'Y') && user_points < 21);

cout <<"You have " <<user_points <<" points" <<endl;

if (user_points > 21)

cout <<"You lost! " <<endl;

CS161 Week #6 34

Player gets some cards…

CS161 Week #6 35

Another way to write it…

 This is a good start

 But, think about how we could use functions to make
the main simpler?
 Does the main really need to know about what a hit is?

 Does the main really need to always check upper and lower
case?

 Once we tackle this, we can start applying this to the
computer as the opposition.

 Keeping our main very simple

 Watch….

CS161 Week #6 36

New main program….
void welcome (); //This is where the rules will be described

int deal_card(); //get a card and find out the points...

int more_cards(); //returns the points accumulated

int main()

{

int user_points; //to hold the number of points the player has

srand(time(0));

welcome(); //calling the function to display the rules

//deal the players hand

user_points = deal_card(); //Deal a card

user_points += deal_card(); //Deal the second card

user_points += more_cards(); //keep getting cards

cout <<"You have " <<user_points <<" points" <<endl;

if (user_points > 21)

cout <<"You lost! " <<endl;

cin.get();

return 0;

}

CS161 Week #6 37

More cards….as a function

//Continue to deal cards until the user is happy or the value is too great

int more_cards()

{

char hit;

int points = 0;

do

{

cout <<"Do you want another card? y/n ";

cin >>hit; cin.get();

if ('y' == hit || 'Y' == hit)

points += deal_card();

} while ((hit == 'y' || hit == 'Y'));

return points;

}

CS161 Week #6 38

Player gets some cards…

CS161 Week #6 39

Today in CS161

 More Functions

 Write Programs using Functions
 Black Jack

 (add the dealer)

 Arguments
 Now let’s write a function that takes arguments

 Graphics
 User interaction for the tic tac toe program

CS161 Week #6 40

Adding in the dealer….main()

#include <iostream>

using namespace std;

// Program written by Karla Fant for CS161

// This program will allow one user to play a simple game of

// Blackjack against the computer

void welcome (); //This is where the rules will be described

int deal_card(); //get a card and find out the points...

int more_cards(); //returns the points accumulated, prompts user

int main()

{

int user_points; //to hold the number of points the player has

int dealer_points; //to hold the dealer's points

srand(time(0));

welcome(); //calling the function to display the rules

CS161 Week #6 41

Main() continued….the player

//deal the players hand

cout <<"IT IS NOW THE PLAYERS TURN:" <<endl;

user_points = deal_card(); //Deal a card

user_points += deal_card(); //Deal the second card

user_points += more_cards(); //keep getting cards until 21

cout <<"You have " <<user_points <<" points" <<endl;

if (user_points > 21)

cout <<"You lost! " <<endl;

else if (user_points == 21)

cout <<"You won!" <<endl;

else

{

CS161 Week #6 42

Main() continued….the dealer

//deal the dealer's hand

cout <<endl <<endl <<"IT IS NOW THE DEALERs TURN: " <<endl;

dealer_points = deal_card();

dealer_points += deal_card();

while (dealer_points < 17)

dealer_points += deal_card();

if (user_points > dealer_points || dealer_points > 21)

cout <<"You beat the Dealer!! Great job" <<endl;

else if (user_points == dealer_points) //push

cout <<"A push...you get your money back!" <<endl;

else

cout <<"Better luck next time - Dealer Rules!" <<endl;

}

cin.get();

return 0;

}

CS161 Week #6 43

The Functions….deal_card()
//Deal a card - one of 14 cards, 0 is Ace, 11 is Jack, 12 Queen, 13 King

int deal_card()

{

int card = 0; //Find the numeric value of a card

int points = 0;

card = rand() % 14;

if (0 == card) //ACE!!

{

do //find out the value they want to apply to the ace

{

cout <<"Dealt: an Ace " <<endl <<"Do you want to count it as"

<<" a 1 or 11?: ";

cin >> points; cin.get();

} while (points != 1 && points != 11); //it has to be correct!

}

CS161 Week #6 44

The Functions….deal_card()
else if (11 == card)//Jack!

{

cout <<"Dealt: a Jack worth 10 points" <<endl;

points = 10;

} else if (12 == card) //Queen!

{

cout <<"Dealt: a Queen worth 10 points" <<endl;

points = 10;

} else if (13 == card) //King!

{

cout <<"Dealt: a King worth 10 points" <<endl;

points = 10;

} else //a numbered card instead…

{

cout <<"Dealt: a Numbered card, worth: " <<card <<" points" <<endl;

points = card;

}

return points;

}

CS161 Week #6 45

The Functions….more_cards()

//Continue to deal cards until the user is happy or the value is too

great

int more_cards()

{

char hit;

int points = 0;

do

{

cout <<"Do you want another card? y/n ";

cin >>hit; cin.get();

if ('y' == hit || 'Y' == hit)

points += deal_card();

} while ((hit == 'y' || hit == 'Y'));

return points;

}

CS161 Week #6 46

Playing against the Dealer…

CS161 Week #6 47

Playing against the Dealer…

CS161 Week #6 48

Playing against the Dealer…

CS161 Week #6 49

Another way to write it…

 This is a good start

 But, could we get any simpler?

 How about we break it down further

 While the user wants to play

 Call a function to deal for the player

 Call a function to deal for the computer

 Find out if the user wants to play again

 By doing this we could go the next step easily to add
more players!

CS161 Week #6 50

New main program….
#include <iostream>

using namespace std;

// Program written by Karla Fant for CS161

// This program will allow one user to play a simple game of

// Blackjack against the computer

//Here are the functions we will be using this time…break it down!

void welcome (); //This is where the rules will be described

int deal_card(); //get a card and find out the points...

int more_cards(); //returns the points accumulated, prompts user

int player(); //handles the player's hand and returns points

int dealer(); //handles the dealer's hand and returns points

void ending_message(); //Let them know the game is over

CS161 Week #6 51

New main program….

//Now begins main…let’s start trying to clean up the main…this will be

a process

int main()

{

//These are the variables we will be using in main

int user_points; //to hold the number of points the player has

int dealer_points; //to hold the dealer's points

char again; //do you want to play again?

srand(time(0));

welcome(); //calling the function to display the rules

CS161 Week #6 52

New main program….
do //let's allow the user to play as much as they want

{

user_points = player();

if (user_points > 21)

cout <<"You lost! " <<endl;

else if (user_points == 21)

cout <<"You won!" <<endl;

else

{

dealer_points = dealer();

if (user_points > dealer_points || dealer_points > 21)

cout <<"You beat the Dealer!! Great job" <<endl;

else if (user_points == dealer_points)

cout <<“A Push – try again next time” <<endl;

else

cout <<"Better luck next time - Dealer Rules!" <<endl;

}

cout <<endl <<"Would you like to play again? y/n ";

cin >>again; cin.get();

} while (again == 'y' || again == 'Y');

ending_message(); cin.get();

return 0;

}

CS161 Week #6 53

Using functions to simplify
//display a termination message so the user knows the program is over.

void ending_message()

{

cout <<endl <<endl <<"This has been a great game - Until next time!"

<<endl;

}

//deal the players hand

int player()

{

int points; //accumulate points for this player

cout <<"IT IS NOW THE PLAYERS TURN:" <<endl;

points = deal_card(); //Deal a card

points += deal_card(); //Deal the second card

points += more_cards(); //keep getting cards until 21

cout <<"You have " <<points <<" points" <<endl;

return points;

}

CS161 Week #6 54

Using functions to simplify

//deal the dealer's hand

int dealer()

{

int points;

cout <<endl <<endl <<"IT IS NOW THE DEALERs TURN: " <<endl;

points = deal_card();

points += deal_card();

//dealers must accept more cards if their total is less than 17

while (points < 17)

points += deal_card();

return points;

}

CS161 Week #6 55

Playing again…simplifying…

CS161 Week #6 56

Functions: What are arguments?

 If we want to send information to a function

when we call it, we can use arguments

 For example, when we supplied one item

within the parentheses for the setcolor

function – this is an argument that is being

passed to the function setcolor!

 We can define functions with no

arguments, or with many arguments

CS161 Week #6 57

Functions: What are arguments?

 If we go back to our blackjack game

 We could make our main() simpler by making a

winner’s function that takes the players points and

the dealers points and displays the result based

on what is passed.

 So, we want to write a function with two

arguments – both integers.

 void winner(int player, int dealer);

 The purpose of the function will be to display the

appropriate message based on who has the best

hand!

CS161 Week #6 58

New main program….
void winner(int player, int dealer); //display the winning message

int main()

{

int user_points; //to hold the number of points the player has

int dealer_points; //to hold the dealer's points

char again; //do you want to play again?

srand(time(0));

welcome(); //calling the function to display the rules

do //let's allow the user to play as much as they want

{

user_points = player();

dealer_points = dealer();

winner(user_points, dealer_points);

cout <<endl <<"Would you like to play again? y/n ";

cin >>again; cin.get();

} while (again == 'y' || again == 'Y');

ending_message(); cin.get();

return 0;

}

CS161 Week #6 59

The winner function….

//Display a message as to which player wins

//Return true if the player doesn't win

void winner(int player, int dealer)

{

//First let's see if the player is the clear winner

if (player > 21)

cout <<"You lost! " <<endl;

else if (player == 21)

cout <<"You won!" <<endl;

//now let's see how the dealer did!

else if (player > dealer || dealer > 21)

cout <<"You beat the Dealer!! Great job" <<endl;

else if (player == dealer)

cout <<"Push - try again next time" <<endl;

else

cout <<"Better luck next time - Dealer Rules!" <<endl;

}

CS161 Week #6 60

Playing again…with functions…

CS161 Week #6 61

Functions: What are arguments?

 When you call winner,

 There are two arguments

 Both are integers

 A copy is made of both arguments from the

function call

 And sent to the function as the initial value

for that function’s arguments

 Inside the function, the arguments act as

local variables.

CS161 Week #6 62

Functions: What are arguments?

 When the function call is executed,

 the actual arguments are conceptually

copied into a storage area local to the

called function.

 If you then alter the value of a formal

argument, only the local copy of the

argument is altered.

 The actual argument never gets changed

in the calling routine.

CS161 Week #6 63

Functions: What are arguments?

 C++ checks to make sure that the
number and type of actual arguments
sent into a function when it is invoked
match the number and type of the
formal arguments defined for the
function.

 The return type for the function is
checked to ensure that the value
returned by the function is correctly
used in an expression or assignment to
a variable.

CS161 Week #6 64

Functions: What are arguments?

 Technically, what we are doing with the

arguments to setcolor, or winner is called

PASS BY VALUE

 the value of the arguments in the function

call cannot be modified by the function.

 This allows us to use these functions,

giving literals and constants as arguments

without having conflicts.

 This is the default way of doing things in

C++.

CS161 Week #6 65

Functions: More possibilities
 Can we even further simplify?

 We could make a play_again function that would

find out if the user wants to play again and make

sure to capitalize their answer so that your main

won’t have to worry about it.

bool play_again();

 Revise the deal_card function to take an

argument. If the argument indicates that it is the

dealers turn, then the ace is either a 1 or an 11

depending on which is calculated to be “best” and

not put the dealer over 21.

int deal_card(int dealer=-1);

CS161 Week #6 66

bool play_again(); //Do you want to play again?

int deal_card(int dealer=-1); //get a card and find out the points...

int main()

{

int user_points; //to hold the number of points the player has

int dealer_points; //to hold the dealer's points

srand(time(0));

welcome(); //calling the function to display the rules

do //let's allow the user to play as much as they want

{

user_points = player();

dealer_points = dealer();

winner(user_points, dealer_points);

} while (play_again());

ending_message(); cin.get();

return 0;

}

CS161 Week #6 67

The play_again function….

//Do you want to play again

bool play_again()

{

char again;

cout <<endl <<"Would you like to play again? y/n ";

cin >>again; cin.get();

return (again == 'y' || again == 'Y');

}

CS161 Week #6 68

The deal_card changes….
//Deal a card - one of 14 cards, 0 is Ace, 11 is Jack, 12 Queen, 13 King

//if the argument is a -1, we are dealing to the player, otherwise dealer

int deal_card(int dealer)

{

int card = 0; //Find the numeric value of a card

int points = 0;

card = rand() % 14;

if (0 == card) //ACE!!

{

if (dealer == -1) //player...prompt for what to do

do //find out the value they want to apply to the ace

{

cout <<"Dealt: an Ace " <<endl <<"Do you want to count it as"

<<" a 1 or 11?: ";

cin >> points; cin.get();

} while (points != 1 && points != 11); //it has to be correct!

CS161 Week #6 69

The deal_card changes….

else //dealer

{

if (dealer + 11 > 21) //will 11 put it over the top?

points = 1;

else

points = 11;

cout <<"Dealt: an Ace with " << points <<" point";

if (points == 11)

cout <<"s"; //points should be plural…

cout <<endl;

}

else //same code for other cards….as before

CS161 Week #6 70

Functions: Value vs. Reference

 Call by value brings values into a function
(as the initial value of formal arguments)

 that the function can access but not
permanently change the original actual args

 Call by reference can bring information
into the function or pass information to
the rest of the program;

 the function can access the values and can
permanently change the actual arguments!

CS161 Week #6 71

Functions: Value vs. Reference

 Call by value is useful for:

- passing information to a function

- allows us to use expressions instead of
variables in a function call

- value arguments are restrained to be
modified only within the called function; they
do not affect the calling function.

- can't be used to pass information back,
except through a returned value

CS161 Week #6 72

Functions: Value vs. Reference

 Call by reference is useful for:

- allowing functions to modify the value of an

argument, permanently

- requires that you use variables as your actual

arguments since their value may be altered by

the called function;

- you can't use constants or literals in the

function call!

CS161 Week #6 73

Example of call by reference:

void convert (float inches, float & mils);

int main() {

float in; //local variable to hold # inches

float mm; //local variable for the result

cout << “Enter the number of inches: “;

cin >> in;

convert (in, mm); //function call

cout << in << “ inches converts to “ << mm << “mm”;

return 0;

}

void convert (float inches, float & mils) {

mils = 25.4 * inches;

}

CS161 Week #6 74

Example of call by reference:

void swap (int & a, int & b);

int main() {

int i = 7, j = -3;

cout << "i and j start off being equal to :" << i

<< " & " << j << '\n';

swap(i,j);

cout << "i and j end up being equal to :" << i

<< " & " << j << '\n';

return 0;

}

void swap(int & c,int & d) {

int temp = d;

d = c;

c = temp;

}

CS161 Week #6 75

What kind of args to use?

 Use a call by reference if:

1) The function is supposed to provide

information to some other part of the

program. Like returning a result and returning

it to the main.

2) They are OUT or both IN and OUT

arguments.

3) In reality, use them WHENEVER you don’t

want a duplicate copy of the arg...

CS161 Week #6 76

What kind of args to use?

 Use a call by value:

1) The argument is only to give information to
the function - not get it back

2) They are considered to only be IN
parameters. And can't get information back
OUT!

3) You want to use an expression or a
constant in function call.

4) In reality, use them only if you need a
complete and duplicate copy of the data

