
CS161 Week #7 1

Today in CS161

 Week #7 Arrays

 Learning about arrays
 Being able to store more than one item using a

variable

 Examples
 Tic Tac Toe board as an array

 Graphical
 User interaction for the tic tac toe program

CS161 Week #7 2

Why we need….Arrays

 Think for a moment what it would be like if you
wanted to store your name or all of the scores for
your homework?

 My first name is 5 characters long – I really don‟t
want 5 character variables. Or, what about my
middle name! Way too long.

 Or, think about homework scores: 6 homework plus
a midterm and final to consider. Does that mean we
would need 8 variables if we wanted to write a
program to keep track of our grade in the class? No!

 Our programs would become large and hard to
manage.

CS161 Week #7 3

First…Arrays of Characters

 For a name, we have a choice of using..

 A string

 Or, an Array of characters

 In C, you have to use an array of characters for a
string

 In Java, you typically use a string

 In C++ we find that not everything can be done with
a string, so we will learn about arrays first…then
strings.

 We all know what a character is (a single byte), so
what‟s an array of characters?

 a sequence of character stored sequentially in
memory

CS161 Week #7 4

How do I define an Array of Characters?

 We know how to define a single character:

char ch=‘a’;

 But what about an array of characters?

char str[5];

 Since these are

just characters stored sequentially in
memory, we use a special character to
indicate the end of a string: ‘\0’

‘a’

CS161 Week #7 5

How do I read in a string?

 There are two ways to read in strings

 If the string is a sequence of characters

without any whitespace (like your first

name), then you can say:

cin >> str;

 If I enter “hi”, this is what is stored:

H i \0

CS161 Week #7 6

What does cin >> array_of_characters do?

char str[5];

cin >> str;

 When reading in an array of characters, cin

and the extraction operator (>>) skip leading

whitespace and read characters until a

whitespace character is encountered .

 Then, it automatically stores a „\ 0‟ after the

last character read in.

CS161 Week #7 7

What do we need to be careful about?

 We need to be careful when working with

arrays of characters...

 If we have an array of size 5

 that means there are 5 bytes of memory

allocated for our variable sequentially in

memory

 This means that we can store four characters

at most, since one spot needs to be reserved

for the terminating nul

CS161 Week #7 8

So, What could happen???

 Using cin >> str;

 If I enter “hello”, what is stored?

 Notice we ended up storing the „\0‟ in memory that is
not allocated for our variable

 this is extremely dangerous and can cause our
programs to bomb! (segmentation fault or core
dump when running...)

 It could stomp on memory of another variable!!

CS161 Week #7 9

What do we need to be careful about?

 What this means is that C++ does not check
to make sure we stay within the bounds of
our arrays

 C++ assumes that we know what we are
doing!

 It is a powerful language...one that can even
be used to design operating systems

 Therefore, if there is a chance that the user
may type in too many characters, we need to
read in our strings using a different approach

CS161 Week #7 10

Side note…what does cin.get() do?

 There is a cin.get function that is useful

 There are three ways to use this function:

 it can be used to read a single character

char ch; ch = cin.get();

cin.get(ch);

this reads in the next character from the

input buffer, even if that next character is

whitespace!

CS161 Week #7 11

How do I read in an array of characters
safely?

 Or, we can use the cin.get function to read in
an array of characters using 2 or 3 arguments:

char str[5];

cin.get(str, 5);

cin.get(str, 5, ‘\n’);

this reads in the next sequence of characters
up until (size-1) characters are read or the
delimiting character is encountered („\ n‟ by
default)…but not read

CS161 Week #7 12

The 3 argument cin.get function

 The three argument version of cin.get has the

following form:

cin.get(array_name, max_size,

delimiting_character);

 A side benefit of this function is that it will

allow us to read in sentences, our entire

first/last name, a paragraph, etc. This is

because the delimiting character need not be

white space!

CS161 Week #7 13

Reading in an entire line…or name…

 There is one “gotcha” with this function.

 While the three argument version of cin.get

won‟t read in too many characters (so it will

never store characters outside your array

bounds),

 it will not read in the delimiting character!

 Therefore, we must always “eat” the delimiting

character, using either:

cin.ignore(); or cin.ignore(100,‟\n‟);

cin.get(); or while(cin.get() != „\n‟);

CS161 Week #7 14

Ignoring the delimiter…

cin.ignore(); Ignores the next character

cin.ignore(100,‟\n‟);

Ignores the next 100 characters or until the

newline is read in

cin.get(); Reads (and throws out) the next

character…since we are not saving it in a

variable

CS161 Week #7 15

Ignoring the delimiter…

while(cin.get() != „\n‟);

This reads a character. Checks to see if it is a

newline. If it isn‟t, the body of the loop is

executed (which does nothing). Then it reads

again…it continues the process until a

newline is read

CS161 Week #7 16

Ignoring the delimiter…

while(cin.get() != „\n‟);

Is the same as….

char ch;

do

{

ch = cin.get();

} while (ch != „\n‟);

CS161 Week #7 17

Example using cin.get:

 Using cin.get(str, 5);

 If I enter “hi !”, what is stored?

 Notice that room is left to store the „\ 0‟ at the
end of the array, and there is no danger of
writing outside of our array bounds.

 But, what is left in the input buffer? ‘\n’

 How do we “flush” this? cin.ignore();

CS161 Week #7 18

Another example using cin.get:

 Using cin.get(str, 5);

 If I enter “hello what is stored?

 Notice that room is left to store the „\ 0‟ at the
end of the array, and there is no danger of
writing outside of our array bounds.

 But, what is left in the input buffer? ‘o\n’

 How do we “flush” this? while(cin.get() !=‘\n’);

 Or cin.ignore(100,’\n’);

CS161 Week #7 19

How do I display an array of characters?

 Luckily, displaying strings isn‟t as

complicated. cout << str;

 Simply by using cout followed by the insertion

operator (<<), we can display as many

characters as have been stored in the array

until the terminating nul („\0‟) in encountered.

 Notice, the „\0‟ is important so that we don‟t

display “garbage” characters (i.e., memory

that has not been set or used yet!)

CS161 Week #7 20

What about other kinds of arrays?

 We can create an array of any kind of data
you would like: one int:

int value = 100

 But what about an array of integers?

int scores[5];

 These are

just integers stored sequentially in memory.

*** THERE IS NO SPECIAL ENDING Character
for arrays of any type other than arrays of
characters.

100

CS161 Week #7 21

Working with arrays – element by element

 Unlike arrays of characters, any other type of array

must be worked with one element at a time:

 by indexing through the array

 we begin by using subscripts that start at zero and

then progress until the array size-1

 For example, we can read in an array of integers one

element at a time:

for (int i = 0; i < 5; ++i)

{

cout <<“Enter another score: “;

cin >> score[i];

}

CS161 Week #7 22

Outputting the Array Contents.

 And, just like inputting … we must output each

element of the array using

 Subscripts

 score[0] is the first score

 Score[1] is the second score

 Score[4] is the last of the five scores

 For example, we can output them….

for (int i = 0; i < 5; ++i)

{

cout <<score[i] <<endl;

}

CS161 Week #7 23

Examples…Non Graphical

 Tic Tac Toe

 Using arrays

 But first, we won’t draw anything

 Output vertical bars on your non-

graphical screen for the board

| |

_______|____________|__________

| |

_______|____________|__________
| |

CS161 Week #7 24

Tic Tac Toe

 Practices using Functions

 Keeps main small

 And, uses 3 arrays to keep track of

the player’s X, O choices

 Algorithm:
 Display board, select first player

 Get the player’s choice until correct

 Show their choice on the board

 Switch users, unless there is a winner or cat scratch

 Continue until we are done (winner or cat scratch)

 Display the appropriate message

CS161 Week #7 25

Tic Tac Toe – without graphics!

CS161 Week #7 26

How are the arrays used?

char row1[4]={'1','2','3'}; //create the initial positions available

char row2[4]={'4','5','6'};

char row3[4]={'7‘,'8','9'};

row2

CS161 Week #7 27

Displaying the board

//Draw the tic tac toe board

void drawboard() //uses the #include <iomanip> library

{

cout <<endl <<endl;

cout <<setw(5) <<row1[0] <<setw(5) <<'|' <<setw(5) <<row1[1] <<setw(5)

<<'|' <<setw(5) <<row1[2] <<endl;

cout <<setw(10) <<'|' <<setw(10) <<'|' <<endl;

cout <<"---------------------------------" <<endl;

cout <<setw(10) <<'|' <<setw(10) <<'|' <<endl;

cout <<setw(5) <<row2[0] <<setw(5) <<'|' <<setw(5) <<row2[1] <<setw(5)

<<'|' <<setw(5) <<row2[2] <<endl;

cout <<setw(10) <<'|' <<setw(10) <<'|' <<endl;

cout <<"---------------------------------" <<endl;

cout <<setw(10) <<'|' <<setw(10) <<'|' <<endl;

cout <<setw(5) <<row3[0] <<setw(5) <<'|' <<setw(5) <<row3[1] <<setw(5)

<<'|' <<setw(5) <<row3[2] <<endl;

cout <<setw(10) <<'|' <<setw(10) <<'|' <<endl;

}

CS161 Week #7 28

Easier….

//Draw the tic tac toe board

void drawboard()

{

cout <<endl <<endl;

cout <<" " <<row1[0] <<" " <<'|' <<" " <<row1[1] <<" " <<'|' <<" " <<row1[2]

<<endl;

cout <<" " <<'|' <<" " <<'|' <<endl;

cout <<"-------------------------------" <<endl;

cout <<" " <<'|' <<" " <<'|' <<endl;

cout <<" " <<row2[0] <<" " <<'|' <<" " <<row2[1] <<" " <<'|' <<" " <<row2[2]

<<endl;

cout <<" " <<'|' <<" " <<'|' <<endl;

cout <<"-------------------------------" <<endl;

cout <<" " <<'|' <<" " <<'|' <<endl;

cout <<" " <<row3[0] <<" " <<'|' <<" " <<row3[1] <<" “ <<'|' <<" " <<row3[2]

<<endl;

cout <<" " <<'|' <<" " <<'|' <<endl;

}

CS161 Week #7 29

Tic Tac Toe – Selecting a player

 Selecting the first player
//Who is the first player?

char firstplayer()

{

char xo;

cout <<endl <<endl <<"Who would like to start? X or O? ";

cin >> xo; cin.get();

xo = toupper(xo); //let's keep it upper case only!

while (xo != 'X' && xo != 'O')

{

cout <<"Sorry - you need to enter an X or an O. Try again! ";

cin >>xo; cin.get();

xo = toupper(xo);

}

return xo;

}

CS161 Week #7 30

Time to select a board location

//Select a location on the board

int selectloc(char player) //the argument is an X or an O

{

int selection;

drawboard(); //show the locations on the board to select from

cout <<endl <<endl <<"Player: " <<player;

cout <<"...please enter your selected board location: ";

cin >> selection; cin.get();

while (selection < 1 || selection > 9)

{

cout <<"Sorry - enter a number between 1 and 9. Try again! ";

cin >>selection; cin.get();

}

return selection; //returns a valid number!

}

CS161 Week #7 31

Look at the individual row….

 Since the same operations happen on

each row…I wrote a function
 And…passed the appropriate row to be looking at as an

argument

 Remember position is between 1-9…but array indices for our

three row arrays are 1,2,3

bool checkloc(int position)

{

if (position >=1 && position <= 3) //row 1

return checkrow(row1,position-1);

if (position >= 4 && position <= 6) //row 2

return checkrow(row2,position-4);

return checkrow(row3,position-7); //row 3

}

CS161 Week #7 32

Check the location first….

 Is the requested location being used?
//Check to see if the position on the board has been taken?

//We need to check the appropriate row

bool checkrow(char row[], int index)

{

if (row[index] == 'X' || row[index] == 'O')

{

cout <<"That spot has been taken already - Try again!";

return false;

}

return true;

}

CS161 Week #7 33

Store the request “on” the board

 If the position was valid

 And if the position request was not

already being used
//At this point we know we have a valid position so just play it!

void playposition(int position, int player)

{

if (position >=1 && position <= 3) //row 1

row1[position-1] = player;

else if (position >= 4 && position <= 6) //row 2

row2[position-4] = player;

else

row3[position-7] = player; //row 3

}

CS161 Week #7 34

Continue to play until…

 There is a winner!
//Find out if there is a winner - horizontal, vertical, or diagonal

bool winner()

{

//Is there a horizontal winner?

if (all_across(row1) || all_across(row2) || all_across(row3))

return true;

//Is there a vertical winner?

if (all_down(0) || all_down(1) || all_down(2))

return true;

//Is there a diagonal winner?

if (all_diag())

return true;

return false;

}

CS161 Week #7 35

Check across for a row…

 Functions allowed us to reuse the

same code for each row:
//Are the same values all across a row?

bool all_across(char row[])

{

if (row[0] == row[1] && row[0] == row[2]) //all the same

return true;

return false;

}

CS161 Week #7 36

Check down for a column…

 Functions allowed us to reuse the

same code for each col:
//Are the same values in a colunm?

bool all_down (int col)

{

if (row1[col] == row2[col] && row1[col] == row3[col])

return true;

return false;

}

CS161 Week #7 37

Check both diagonals…

 Functions allowed us to keep the

winner function simple:
//Are the same values diagonal?

bool all_diag()

{

if (row1[0] == row2[1] && row1[0] == row3[2])

return true;

if (row1[2] == row2[1] && row1[2] == row3[0])

return true;

return false;

}

CS161 Week #7 38

We could also be done if…

 There was a cat scratch!
//Is there a catscratch?

bool catscratch()

{

//Are all of the places filled up?

if (no_holes(row1) && no_holes(row2) && no_holes(row3))

return true;

return false; //we can still play

}

Again, functions allowed me to reuse the same code for row1 then

for row2 and again for row3

CS161 Week #7 39

Finding if there are holes or not...

 There was a cat scratch!
//Find out if there are any holes in the current row

bool no_holes(char row[])

{

for (int i = 0; i < 3; ++i)

if (row[i] != 'X' && row[i] != 'O')

return false; //there are still places to play!

return true;

}

CS161 Week #7 40

Other functions…

 Switching the player
//Switch from an X to an O

void switchplayer(char & player)

{

if (player == 'X')

player = 'O';

else

player = 'X';

}

CS161 Week #7 41

What main could look like…

int main()

{

char player; //X or O

int pos; //1-9 position

welcome(); //tell the user the rules

player = firstplayer(); //who goes first?

do //start playing until there is a winner

{

do

{

pos = selectloc(player); //Where to play?

} while (!checkloc(pos)); //Is it a valid choice?

CS161 Week #7 42

What main could look like…

//OK, now we have a valid choice, let's put it on the board

playposition(pos, player);

drawboard();

if (!winner() && !catscratch()) //don't switch if we are done

switchplayer(player); //Next person's turn!

} while (!winner() && !catscratch()); //are we done yet?

if (winner())

cout <<"CONGRADULATIONS! Player " <<player <<" WINS!!!!!!!!!!! "

<<endl;

else if (catscratch())

cout <<"CAT SCRATCH...Ouch! Play again sometime!" <<endl;

cin.get();

return 0;

}

CS161 Week #7 43

Playing the game…

CS161 Week #7 44

Playing the game…

CS161 Week #7 45

Playing the game…

CS161 Week #7 46

Today in CS161

 Next Topic: Arrays of Characters

 Using Arrays of Characters
 Copying

 Comparing

 Examples
 Working with arrays of characters using small

examples

 Graphical
 User interaction

CS161 Week #7 47

Operations on Arrays of Characters

 There are very few operations that can be
performed on array of characters (i.e., strings)

 We can read in string using:

cin >> array_of_characters;

cin.get(array, size, delimiter);

 We display strings using:

cout << array_of_characters;

 But, there are no others...

CS161 Week #7 48

Operations on Arrays of Characters

 For example, we cannot compare two arrays
of characters by saying:

char str1[10], str2[10];

if (str1 == str2)

 This is because an array is really the address of
the first element in a sequentially allocated set of
memory.

 So, the == or != operators would simply be
comparing the memory addresses! Oops!

CS161 Week #7 49

Comparing Arrays of Characters:

 Instead , to compare two arrays of characters

we must include another library: cstring

 And, call the string compare function:

strcmp(first_array, second_array);

 The strcmp function returns:

0 if first_array is equal to second_array

<0 if first_array is less than second_array

>0 if first_array is greater than second_array

50

Copying Arrays of Characters

We also cannot copy strings using the
assignment operator:

char str1[10], str2[10];

str1 = str2;

 This is illegal because an array is really the constant

address of the first element of the array. We can’t change the location
in memory where your array is located!!!! And…that is what this
assignment statement is attempting to do…

 Instead, we call strcpy from cstring library:

strcpy(str1, str2);//str1=str2;

CS161 Week #7

CS161 Week #7 51

For example:

 Let‟s now put this to use by writing a function to

read in two strings and d isplaying them in

alphabetical order

 First, write the algorithm:

 Get two strings (prompt, input, echo)

 If the first string is less than the second

 display the first string followed by the second

 If the first string is greater or equal to the second

 display the second string followed by the first

CS161 Week #7 52

Sorting Two Names:

#include <cstring>

void sort_two() {

char first[20], second[20];

cout << “Please enter two words, one per

line: “;

cin.get(first,20, ‘ ‘);

cin.get(); //don’t forget this part!

cin.get(second,20, ‘\n’);

cin.get(); //eat the carriage return;

if (strcmp(first, second) < 0)

cout << first << ‘ ‘ << second << endl;

else

cout << second << ‘ ‘ << first << endl;

}

CS161 Week #7 53

Change the function to have args:

void sort_two(char first[], char second[]) {

cout << “Please enter two words: “;

cin.get(first,20, ’\n’); cin.get();

cin.get(second,20, ‘\n’);

cin.get(); //eat the carriage return;

if (strcmp(first, second) > 0) {

char temp[20];

strcpy(temp, first);

strcpy(first, second);

strcpy(second, temp);

}

}

CS161 Week #7 54

We’d call the function by saying:

void sort_two(char first[], char second[]);

//prototype

int main() {

char str1[20], str2[20];

sort_two(str1, str2);

cout << str1 << ‘ ‘ << str2 << endl;

//what would happen if we then said:

sort_two(str2, str1);

cout << str1 << ‘ ‘ << str2 << endl;

return 0;

}

55

Example: Writing a program

 Let‟s write a program that reads in a
paragraph, one word at a time, and counts
the number of times the word “the” is used (it
could be capitalized and still count!)

 Algorithm:

Welcome the user

Read in a word

Check to see if the word is “the” or “The”
 If it is, increment a counter

While there are more words continue Reading

Display the results

CS161 Week #7

CS161 Week #7 56

Welcome Function

//Tell the user the rules of the program

void welcome()

{

cout <<"Welcome to the Counting Program! " <<endl;

cout <<"This program will count the number of times you type in ";

cout <<"the word The/the " <<endl;

cout <<"When you are done, type in a '@' symbol" <<endl <<endl;

cout <<"Let's get started...start typing in a pargraph!" <<endl <<endl;

}

CS161 Week #7 57

Read a word Function

//read in a word

void read_word(char word[])

{

cin.width(MAX); //let's make sure to secure memory

cin >>word; //skips leading whitespace,

//reads in characters

//until whitespace is encountered
//but not read

cin.get(); //ignore the whitespace

}

CS161 Week #7 58

Check to see if it is a “the” or “The”

//check to see if the word is "the" or "The"

int check_word(char word[])

{

if (strcmp(word,"the") == 0 ||

strcmp(word,"The") == 0)

return 1;

return 0; //the “else” situation

}

CS161 Week #7 59

Is it Time to End?

//Is it time to end (is there a @ character as the next character?

bool time_to_end()

{

if (cin.peek() == ' ' || cin.peek() == '\n') //are we at whitespace?

cin.ignore(); //ignore the whitespace...

if (cin.peek() == '@') //time to end

{

cin.ignore(100,'\n'); //ignore all the rest!

return true;

}

return false;

}

CS161 Week #7 60

Main….Keeping it small!

//This is where the program begins

int main()

{

char aword[MAX]; //holds the current word

int total = 0; //holds the running total, starting at zero

welcome();

do

{ read_word(aword); //get a word from the input buffer

total += check_word(aword); //add a 0 or 1 to the total

} while(!time_to_end()); //is it time to end?

cout <<"There were " <<total <<" uses of the word 'the' " <<endl;

cin.get();

return 0;

}

61

Extending the program: UPPER CASE!

 Now let‟s modify the program to allow all
versions of the word “the” to be used (the,
The, THE, THe, etc.)

We will do this by capitalizing all characters
and then just comparing the array with THE

void uppercase(char word[])

{

int length = strlen(word);

for (int i = 0; i < length; ++i)

word[i] = toupper(word[i]);

}

CS161 Week #7

CS161 Week #7 62

New version of check_word….

//check to see if the word is "the" or "The"

int check_word(char word[])

{

uppercase(word);

if (strcmp(word,"THE") == 0)

return 1;

return 0;

}

63

Extending the program: Any word!

 Now let‟s modify the program to count other
words…not just “the”. Letting it be the user‟s
choice what word to look for!

 Algorithm:

Welcome the user…explain the new rules

Read in the word to compare

Start by reading in a word of the paragraph

Check to see if the word matches
 If it is, increment a counter

While there are more words continue Reading

Display the results

CS161 Week #7

CS161 Week #7 64

Welcome Function

//Tell the user the rules of the program

void welcome()

{

cout <<"Welcome to the Counting Program! " <<endl;

cout <<"This program will count the number of times you type in ";

cout <<"the word The/the " <<endl;

cout <<"When you are done, type in a '@' symbol" <<endl <<endl;

cout <<"Let's get started...start typing in a pargraph!" <<endl <<endl;

}

CS161 Week #7 65

Check to see if it is a Match

//check to see if the word is "the" or "The"

int check_word(char word[],char against[])

{

uppercase(word);

if (strcmp(word,against) == 0)

return 1;

return 0;

}

CS161 Week #7 66

Our new Main function…
int main()

{

char to_compare[MAX]; //word to compare to

char aword[MAX]; //holds the current word

int total = 0; //holds the running total, starting at zero

welcome();

read_word(to_compare); //read in a word to compare

uppercase(to_compare); //make sure it is uppercase

do

{ read_word(aword); //get a word from the input buffer

total += check_word(aword,to_compare); //match?

} while(!time_to_end()); //is it time to end?

cout <<"There were " <<total <<" uses of the word " << to_compare<<endl;

cin.get();

67

Graphical…User Interaction

 For our graphics example, let‟s write a
program that will draw a word in the
graphics window at any mouse click (left or
right)

 It will end when a middle mouse click is hit

 Algorithm:

Welcome the user…explain the new rules

Read in the word to display

Wait for a mouse hit

While it wasn‟t a middle button
Display the word at the x,y location of the hit

CS161 Week #7

CS161 Week #7 68

Getting Started….
#include <iostream>

using namespace std;

#include "graphics.h"

//This program is an example of user interaction using

//graphics.h

//written by Karla Fant

//Wait for a mouse button hit

//Find out the x,y location where the mouse click happened

const int LEFT = 513; //code for the left button

const int RIGHT = 516; //code for the right button

const int MIDDLE = 519;//code for the middle button

bool get_mouse(int & x, int & y); //get the x,y location for any hit

void initialize(); //start up graphics

void welcome(char array[]);

CS161 Week #7 69

Welcome Function

//Tell the user the rules

void welcome(char todisplay[])

{

cout <<"We will be drawing interactively today a word or character ";

cout <<"of your choice " <<endl;

cout <<"Hit the middle button to end!" <<endl;

cout <<endl;

cout <<"What do you want to display? ";

cin >>todisplay; cin.get();

cout << "Please select the location on the board with the mouse:\n ";

}

CS161 Week #7 70

Initialize Graphics Window

void initialize()

{

int window_size;

cout << "Please select the size of your window: ";

cin >> window_size; cin.get();

initwindow(window_size,window_size);

setcolor(YELLOW); //colors go from 0 through 15

setlinestyle(0,0,6); //Solid, No pattern, 6 is VERY wide

settextstyle(0,0,5); //create a really large character (5)

settextjustify(1,1); //center both horizontally and vertically

}

CS161 Week #7 71

Get the Mouse Location upon click…
//Get the location of a mouse button hit...from any button

//Return false if the middle button is hit!

bool get_mouse(int & x, int & y)

{

//wait for any mouse click at all

while (!ismouseclick(LEFT) &&

!ismouseclick(MIDDLE) && !ismouseclick(RIGHT));

x = mousex();

y = mousey();

if (ismouseclick(MIDDLE)) //middle button happened

return false;

clearmouseclick(LEFT); //important! Reset the mouse

clearmouseclick(MIDDLE);

clearmouseclick(RIGHT);

return true;

}

CS161 Week #7 72

The Main function…

int main()

{

int x, y; //location for drawing

char todisplay[21];

initialize();

welcome(todisplay);

while(get_mouse(x,y)) //mouse click?

outtextxy(x,y,todisplay); //output text at the mouse click

//pause

getch(); //for graphics window

cin.get(); //for console window

return 0;

}

73

Graphical…User Interaction

 Now let‟s change it up!

 If the left button is hit, draw

 If the right button is hit, change the color

//Cycle through the colors!

void cyclecolor()

{

int color = getcolor();

color = (color + 1) % getmaxcolor();

setcolor(color);

}

CS161 Week #7

CS161 Week #7 74

Get the Mouse Location upon click…
//Get the location of a mouse button hit...from any button

//Return false if the middle button is hit!

bool get_mouse(int & x, int & y)

{

//wait for any mouse click at all

while (!ismouseclick(LEFT) &&

!ismouseclick(MIDDLE) && !ismouseclick(RIGHT));

x = mousex();

y = mousey();

if (ismouseclick(MIDDLE)) //middle button happened

return false;

if (ismouseclick(RIGHT)) //change the color

cyclecolor();

clearmouseclick(LEFT); //important!

clearmouseclick(MIDDLE); //important!

clearmouseclick(RIGHT); //important!

return true;

}

