
CS161 Week #8 1

Today in CS161

 Week #8 Practicing!

 Writing Programs to Practice
 Write a program that counts the number of

vowels in a sentence, ended by a period

 Write a program that creates an advertisement
for the Oregonian – taking out all vowels except
those that start as the first character of a word

CS161 Week #8 2

Counting Vowels – Solution #1

 Count the number of vowels…using arrays of

characters…word by word…

 First, write the algorithm:

 Prompt the user to enter in a sentence

 Read a word

 For every character in the word, if the character is an a,

e, i, o or u increment a counter by 1.

 Do this until the „\0‟ is reached.

 Display the results

CS161 Week #8 3

Welcome…and Read a word…

//inform the user of the rules

void welcome()

{

cout <<"Please enter a sentence - terminated by a period" <<endl;

cout <<"When you are done hit enter" <<endl <<endl <<endl;

}

//Read in a word

void read_word(char aword[])

{

cin.width(MAX); //make sure the word isn't too long!

cin >>aword; //skips leading whitespace and reads until
whitespace

cin.get();

}

CS161 Week #8 4

Count Vowels

//Count the vowels in the word

int count_vowels(char array[])

{

int length = strlen(array); //find out how many characters to go thru

int num_vowels = 0;

for (int i = 0; i < length; ++i)

if (array[i] == 'a' || array[i] == 'A' ||

array[i] == 'e' || array[i] == 'E' ||

array[i] == 'i' || array[i] == 'I' ||

array[i] == 'o' || array[i] == 'O' ||

array[i] == 'u' || array[i] == 'U') // It is a vowel!

++ num_vowels; //add one to the vowel counter

return num_vowels;

}

CS161 Week #8 5

Time to End…

//Is it time to end? If the end of the word is a period....

bool time_to_end(char aword[])

{

bool yes;

int length = strlen(aword);

if (aword[length-1] == '.')

yes = true; //yep - end of the sentence!

else

yes = false;

return yes;

}

CS161 Week #8 6

Main…

int main()

{

char word[MAX]; //it will hold the current word

int vowels = 0; //vowel counter

welcome();

do

{

read_word(word); //read in a word

vowels += count_vowels(word); //keep track of # vowels

} while (!time_to_end(word));

cout <<"You entered: " <<vowels <<" Vowels!" <<endl;

cin.get();

return 0;

}

CS161 Week #8 7

Putting it all together.

#include <iostream>

#include <cstring>

using namespace std;

//This program is written by Karla Fant to demonstrate

//the use of functions, arrays of characters, and the subscript operator

//to access individual elements of an array

void welcome(); //describes the rules

int count_vowels(char word[]); //counts the vowels in a word

void read_word(char word[]); //reads in a word from the user

bool time_to_end(char word[]); //does the word end in a period?

const int MAX = 21; //maximum array size for this program

CS161 Week #8 8

Running the program

CS161 Week #8 9

Counting Vowels – Solution #2

 Count the number of vowels…using arrays of

characters…reading in the entire sentence

 First, write the algorithm:

 Prompt the user to enter in a sentence

 Read a sentence

 For every character in the sentence, if the character is an

a, e, i, o or u increment a counter by 1.

 Do this until the „\0‟ is reached.

 Display the results

CS161 Week #8 10

Main…simplified!

int main()

{

char array[MAX]; //it will hold the current sentence (131)

int vowels = 0; //vowel counter

welcome();

read_sentence(array); //read it all in!

vowels += count_vowels(array); //keep track of # vowels

cout <<"You entered: " <<vowels <<" Vowels!" <<endl;

cin.get();

return 0;

}

CS161 Week #8 11

Read in a sentence…..

//Read in the entire sentence

//and ignore the ending period and newline that follows

void read_sentence(char array[])

{

cin.get(array,MAX,'.'); //read in an entire sentence

cin.ignore(100,'\n'); //ignore the period and newline afterwards

}

***nothing else changes! ***

***the function to count vowels remains exactly the same!!! ***

CS161 Week #8 12

Putting it all together.

#include <iostream>

#include <cstring>

using namespace std;

//This program is written by Karla Fant to demonstrate

//the use of functions, arrays of characters, and the subscript operator

//to access individual elements of an array

void welcome(); //describes the rules

int count_vowels(char array[]); //counts the vowels in an array

void read_sentence(char array[]); //reads in an entire sentence

const int MAX = 131; //maximum number of characters in a sentence

CS161 Week #8 13

Running the program

CS161 Week #8 14

Changing it…adding an isvowel function

 If we wrote one more function
 Let’s call it “isvowel”

 We can re-use that function any time we are wondering if a character is a

vowel.

//Check to see if a particular character is a vowel

bool isvowel(char ch)

{

//First let's lower case the character:

ch = tolower(ch);

if (ch == 'a' || ch == 'i' || ch == 'e' || ch == 'o' || ch == 'u')

return true;

return false; //not a vowel!

}

CS161 Week #8 15

Count Vowels

//Count the vowels in the word

int count_vowels(char array[])

{

int length = strlen(array); //find out how many characters to go thru

int num_vowels = 0;

for (int i = 0; i < length; ++i)

if (isvowel(array[i])) // It is a vowel!

++ num_vowels; //add one to the vowel counter

return num_vowels;

}

 The benefit is now we can use the “isvowel” function for other
programs! Let‟s see…

16

Creating an Advertisement…

 Our next program today is to create an
advertisement in the want-ad’s. Since each
line costs money, we will see what the ad is
like if we take out all of the vowels

 Of course, we don’t want to take out any
vowels that are the first letter of a word…as
those words would just not make sense

 If the word is less than 4 characters, then all
vowels stay…

 Let’s think about what functions we will
need…and the best way to start with that is to
write an algorithm!

CS161 Week #8

17

Creating an Advertisement…Algorithm

 Algorithm…working word by word
 Welcome the user. Ask them to enter in a line for an

advertisement. After each line they will be asked whether or
not there will be another line

 Prompt the user to enter in the first line of the ad

 Read in a word

Find out the length of the word

 If it is less than 4 characters, display it as is

Otherwise, display the first character of the word

For all of the rest of the characters in the word, display
them ONLY if they are not a vowel

 Continue with the next word , until a newline is next in the
input buffer

 Ask the user if they have another line. If so, continue
reading and processing each word

CS161 Week #8

CS161 Week #8 18

Welcome…and Read a word…

//inform the user of the rules

void welcome()

{

cout <<"Please enter the first line of your advertisement" <<endl;

cout <<"The resulting ad will be displayed and you will be asked ";

cout <<"if you have another line ...";

cout <<"When you are done hit enter" <<endl <<endl <<endl;

}

//Read in a word

void read_word(char array[])

{

cin.width(MAX); //make sure all words are within range

cin >>array; //skip leading whitespace, read in characters

//until whitespace is encountered but not read

}

CS161 Week #8 19

Display the word
//Display the word...using the rules outlined earlier

void display_word(char array[])

{

int length = strlen(array); //what is the length?

if (length < 4) //a short word...just display it!

cout <<array <<' ';

else

{

cout <<array[0]; //otherwise the first character is always

//displayed

for (int i=1; i<length; ++i) //go through all characters in the word

if (!isvowel(array[i])) //it is not a vowel

cout <<array[i]; //so output the character

cout <<' '; //have a space occur after the word

}

}

CS161 Week #8 20

Is it a vowel?...reused!…

//Check to see if a particular character is a vowel

bool isvowel(char ch)

{

//First let's lower case the character:

ch = tolower(ch);

if (ch == 'a' || ch == 'i' || ch == 'e' || ch == 'o' || ch == 'u')

return true;

return false; //not a vowel!

}

CS161 Week #8 21

Is it the end of a line? Or play again?
//Find out if we are at the end of a line....

bool end_of_line()

{

if (cin.get() == '\n') //we know there will be whitespace....

return true; //we are at the end

return false; //nope...not yet

}

//Does the user want to enter in another line?

bool again()

{

char response; //holds the y or n entered by the user

cout <<endl <<endl <<"Would you like to enter another line? Y or N ";

cin >>response; cin.get();

if (response == 'y' || response == 'Y') //YES!!

return true;

return false;

}

CS161 Week #8 22

Main…think of this as the glue!

int main()

{

char array[MAX]; //it will hold the current word

welcome();

do

{

do

{

read_word(array); //read a word

display_word(array); //display the appropriate parts of the word

} while (!end_of_line()); //continue for the rest of the line

} while (again()); //does the user want to do this again?

cin.get();

return 0;

}

CS161 Week #8 23

Putting it all together.

#include <iostream>

#include <cstring>

#include <cctype>

using namespace std;

//This program is written by Karla Fant to demonstrate

//how we can read in an array and output only select elements of the

//array. This program creates an advertisement where the vowels are

//stripped away -- the exceptions are when the vowel is located

//as the first element or if the word is short (less than 4 characters)

void welcome(); //describes the rules

void read_word(char word[]); //read a word

void display_word(char word[]); //display the word without vowels

bool isvowel(char); //is the character a vowel?

bool end_of_line(); //Did we reach the end of the line?

bool again(); //does the user want to enter another?

CS161 Week #8 24

Running the program

CS161 Week #8 25

Today in CS161

 Next Topic: Practicing!

 Writing Programs to Practice
 Write a game program (1 player) of Mad Math

 Reuse the functions to provide for multiple
players

 Rewrite the same program using “structures” to
group together related topics
 Greatly simplifying the ability to have multiple players!

CS161 Week #8 26

Mad Math – One Player

 A game that d isplays an equation and the player

must come up with the correct answer. As their score

increases, so does their level

 First, write the algorithm:

 Describe the rules

 Get the users name and capitalize each word

 Play the game

 Display an equation

 Get the answer

 Check to see if the answer is correct

 Increase/decrease the points

 Display the points

 Continue until the user is done

CS161 Week #8 27

Welcome…and Explain the Rules

//describe this game to the user

void welcome()

{

cout <<"Welcome to the Mad about Math program\n\n";

cout <<"The goal is to get as many equations correct\n";

cout <<"You get 1 point for each correct answer and -2 for each wrong!"

<<endl <<endl;

cout <<endl <<endl <<"Let's begin " <<endl <<endl;

srand(time(0));

}

CS161 Week #8 28

Get the Name of the Player

void get_name(char name[])

{

cout <<"What is your name? ";

cin.get(name,MAX);

cin.ignore(100,'\n');

capitalize(name); //make sure each word is capitalized

}

CS161 Week #8 29

Capitalize each word of the name

//Capitalize the first letter of each word in the name

void capitalize(char name[])

{

int length = strlen(name);

name[0] = toupper(name[0]); //capitalize the first character of the
name

//Find the blanks in a name

for (int i=0; i< length; ++i)

if (name[i] == ' ') //the next character needs to be capitalized

name[i+1] = toupper(name[i+1]);

}

CS161 Week #8 30

Show an equation

//Play the game! The argument indicates the complexity of the numbers

int equate(int max)

{

int first; //first number

int second; //second number

int operation; //type of operation

int answer ; //answer supplied by user

int correct; //correct answer

first = rand() % max;

second = rand() % max;

operation = rand() % 4;

CS161 Week #8 31

Show an equation

if (operation == 0) //additiom

{ cout <<"SOLVE: " <<first <<" + " <<second <<" Equals: ";

correct = first + second;

}

else if (operation == 1) //subtraction

{ cout <<"SOLVE: " <<first <<" - " <<second <<" Equals: ";

correct = first - second;

}

else if (operation == 2) //multiplication

{ cout <<"SOLVE: " <<first <<" x " <<second <<" Equals: ";

correct = first * second;

}

else //division

{ cout <<"SOLVE: " <<first <<" / " <<second <<" Equals: ";

correct = first / second;

}

cin >>answer; cin.get();

if (answer == correct)

return 1;

return -2;

}

CS161 Week #8 32

Show an equation…continued

//Does the user want to play again?

bool play_again()

{

char answer;

cout <<"Do you want to play again? ";

cin >>answer; cin.get();

return (answer == 'y' || answer == 'Y');

}

CS161 Week #8 33

Main…

int main()

{ int level = 10; //simplest level

char player[MAX];

int points = 0; //player's points

welcome();

get_name(player);

do

{ //show the equation

points += equate(level);

show_score(player,points);

progress(level,points); //should they progress a level?

} while (play_again());

ending_message(player, points);

cin.get(); return 0;

}

CS161 Week #8 34

Running the program

CS161 Week #8 35

Mad Math Game…Adding another player

 If we have written the functions for the single player

problem well enough, we can simply reuse them for

the next player…let’s see:

int play_game(char player[], int & points, int & level)

{

cout <<player <<"'s turn: ";

points += equate(level);

show_score(player,points);

progress(level,points); //should they progress a level?

}

CS161 Week #8 36

Main…with two players

int main()

{ int player1_level = 10; //simplest level

int player2_level = 10;

char player1[MAX]; //player1

char player2[MAX]; //player2

int player1_points = 0;

int player2_points = 0;

welcome();

cout <<"First player: ";

get_name(player1); //get the names of the two players

cout <<"Next player: ";

get_name(player2);

CS161 Week #8 37

Main…with two players

do

{ //let each player do an equation...

play_game(player1, player1_points, player1_level);

play_game(player2, player2_points, player2_level);

} while (play_again());

if (player1_level == player2_level && player1_points == player2_points)

cout <<"GREAT JOB! You are BOTH winners today "

<<"with " <<player1_points <<" points" <<endl <<endl;

else if (player1_level > player2_level || player1_points > player2_points)

cout <<"THE WINNER IS: " <<player1

<<"with " <<player1_points <<" points" <<endl <<endl;

else

cout <<"THE WINNER IS: " <<player2 <<" with "

<<player2_points <<" points" <<endl <<endl;

CS161 Week #8 38

Running the program

CS161 Week #8 39

What is a Structure

 Using structures (a new concept we will use in
CS162), we can simplify this further and easily allow
additional players

 Think about what a player is…a player has a name,
a score, and a level

 A structure is a way for us to group different types
of data together under a common name

 With an array, we are limited to having only a
single type of data for each element...
 We’d need an array of players names

 Another for the players scores

 Another for the players levels. Too complicated!

CS161 Week #8 40

What is a Structure

 With a structure, on the other hand, we can

group each of these under a common heading

 So, each player can now have a name,

score, and level tied to it

 And, we can then generalize this to allow

for an array of players…and add as many

as we want!

CS161 Week #8 41

Why would we use a Structure

 Some people argue that with C++ we no

longer need to use the concept of structures

 And, yes, you can do everything that we will

be doing with structures, with a “class”

(which we learn about next term!)

 My suggestion is to use structures

whenever you want to group different

types of data together, to help organize

your data

CS161 Week #8 42

How do you define a Structure?

 We typically define structures “globally”

 this means they are placed outside of the

main

We do this because structures are like a

“specification” or a new “data type”

 which means that we would want all of our

functions to have access to this way to

group data, and not just limit it to some

function by defining it to be local

CS161 Week #8 43

How do you define a Structure?

 Each component of a structure is called

a member and is referenced by a

member name (identifier).

 Structures differ from arrays in that

members of a structure do not have to

be of the same type. And, structure

members are not referenced using an

index.

CS161 Week #8 44

How do you define members of a Structure?

 A structure might look like:

struct storeitem

{

char item[20];

float cost;

float price;

int barcode;

};

 In this example, item, price, cost and barcode
are member names. storeitem is the name of a new
derived data type consisting of a character array, two
real numbers, and an integer.

CS161 Week #8 45

How do you define members of a Structure?

A structure might look like:
struct player //a player is: name, a score, and a level

{

char name[MAX];

int points;

int level;

}; //<---- notice the semicolon!

CS161 Week #8 46

How do you define instances of a Structure?

 Once your have declared this new derived

data type, you can create instances --

variables (or “objects”) which are of this type

(just like we are used to):

player player1;

Or, create an array:

player all_players[100];

CS161 Week #8 47

How do you define instances of a Structure?

 By saying:

player player1;

 From this statement, player1 is the variable (or

object)

 It has a name, score (#points) and level.

 Just think of player as being a type of data which

consists of an array of characters, two integers in

this case.

CS161 Week #8 48

How do you access members of a Structure?

 By saying:

player player1;

 To access a member of a structure variable, we
use a dot (the “direct member access” operator)
after the structure variable‟s identifier:

player1.name is the array of

characters

player1.points is the integer

player1.level is the level

CS161 Week #8 49

How do you access members of a Structure?

We can work with these members in
just the same way that we work with
variables of a fundamental type:

To read in a name, we can say:

cin >>player1.name

Or, cin.get(player1.name, 21);

 To display the score, we say:

cout <<player1.points

CS161 Week #8 50

What operations can be performed?

 Just like with arrays, there are very few
operations that can be performed on a
complete structure

We can‟t read in an entire structure at one
time, or write an entire structure, or use any
of the arithmetic operations...

We can use assignment, to do a
“memberwise copy” copying each member
from one struct variable to another

CS161 Week #8 51

How do you define arrays of Structures?

 But, for structures to be meaningful when

representing a deck cards, a store

inventory, or a number of players for a

game.

 we may want to use an array of structures

 where every element represents a different

player in the game…

CS161 Week #8 52

How do you pass Structures to functions?

 To pass a structure to a function, we must

decide whether we want pass by reference or

pass by value

 By reference, we can pass 1 player:
return_type function(player & arg);

//or an array of players:

return_type function(player arg[]);

CS161 Week #8 53

Mad Math Game…2 players…
#include <iostream>

using namespace std;

//This program simulates a "mad about math" game

//written by Karla Fant for CS161 demonstrations

const int MAX = 21;

const int NUM = 2;

struct player //a player has a name, a score, and a level

{

char name[MAX];

int points;

int level;

}; //<---- notice the semicolon!

void welcome(char name[]); //display the rules

void capitalize (char name[]); //capitalize each word in a name

CS161 Week #8 54

This is the same as before….

//capitalize the first character of each word in a name

void capitalize(char name[])

{

int length = strlen(name);

name[0] = toupper(name[0]); //capitalize the first character of the name

//Find the blanks in a name

for (int i=0; i< length; ++i)

if (name[i] == ' ') //the next character needs to be capitalized

name[i+1] = toupper(name[i+1]);

}

CS161 Week #8 55

This is the same as before….
void get_name(char name[])

{ cout <<"What is your name? ";

cin.get(name,MAX);

cin.ignore(100,'\n');

capitalize(name); //make sure each word is capitalized

}

//describe this game to the user

void welcome()

{

cout <<"Welcome to the Mad about Math program\n\n";

cout <<"The goal is to get as many equations correct\n";

cout <<"You get 1 point for each correct answer and -2 for each

wrong!"

<<endl <<endl;

cout <<endl <<endl <<"Let's begin " <<endl <<endl;

srand(time(0));

}

CS161 Week #8 56

New Stuff…using the struct!

int play_game(player & a_player)

{

/ / Tell which player’s turn it is…

cout <<a_player.name <<"'s turn: ";

/ / Give the player an equation to calculate

a_player.points += equate(a_player.level);

/ / Show their score

show_score(a_player.name,a_player.points);

/ / should they progress a level?

progress(a_player.level,a_player.points);

}

CS161 Week #8 57

Main…now using the structure!

int main()

{

player players[NUM]; //we have two players

welcome();

//initialize the level and points

for (int i = 0; i < NUM; ++i)

{

players[i].level = 10;

players[i].points = 0;

cout <<"For player # " <<i+1 <<": ";

get_name(players[i].name);

}

CS161 Week #8 58

Main…now using the structure!

//Time to play the game!

do

{

for (int i = 0; i < NUM; ++i) //let each player do an equation...

play_game(players[i]);

} while (play_again());

winning_message(players);

cin.get();

return 0;

}

CS161 Week #8 59

Display the winning message…

void winning_message(player all[])

{

int highest_score = -99;

int highest_index = -99;

bool found_tie = false;

//Find the higihest score

for (int i = 0; i < NUM; ++i)

{

//find the player with the highest score

if (all[i].points > highest_score)

{

highest_score = all[i].points;

highest_index = i;

}

}

CS161 Week #8 60

Display the winning message…
//Now see if there is a tie

for (int i = 0; i < NUM; ++i)

{

//find the player with the highest score

if (all[i].points == highest_score && i != highest_index)

{

found_tie = true;

cout <<"GREAT JOB! We have a tie today! "

<<all[i].name <<" and " <<all[highest_index].name << " have "

<<highest_score <<" points" <<endl <<endl;

}

}

if (!found_tie) //there was not a tie

{

cout <<"THE WINNER IS: " <<all[highest_index].name

<<"with " <<highest_score <<" points" <<endl <<endl;

}

}

CS161 Week #8 61

Running the program

CS161 Week #8 62

Mad Math Game…Many Players!

 With structures and arrays of structures we can make

a slight jump with minimal code modifications to

allow for many players!

#include <iostream>

using namespace std ;

/ / This program simulates a "mad about math" game

/ / written by Karla Fant for CS161 demonstrations

const int MAX = 21;

const int NUM = 5; ***THE ONLY CHANGE ***

CS161 Week #8 63

Running the program

